Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2018, Vol. 12 Issue (3) : 329-338    https://doi.org/10.1007/s11705-018-1741-8
RESEARCH ARTICLE
Copper nanoparticles/polyaniline-derived mesoporous carbon electrocatalysts for hydrazine oxidation
Tao Zhang1, Tewodros Asefa1,2()
1. Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, New Jersey, NJ 08854, USA
2. Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, New Jersey, NJ 08854, USA
 Download: PDF(474 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Copper nanoparticles-decorated polyaniline-derived mesoporous carbon that can serve as noble metal-free electrocatalyst for the hydrazine oxidation reaction (HzOR) is synthesized via a facile synthetic route. The material exhibits excellent electrocatalytic activity toward HzOR with low overpotential and high current density. The material also remains stable during the electrocatalytic reaction for long time. Its good electrocatalytic performance makes this material a promising alternative to conventional noble metal-based catalysts (e.g., Pt) that are commonly used in HzOR-based fuel cells.

Keywords copper nanoparticles      mesoporous carbon      noble metal-free electrocatalyst      hydrazine oxidation reaction      polyaniline     
Corresponding Author(s): Tewodros Asefa   
Just Accepted Date: 26 April 2018   Online First Date: 02 August 2018    Issue Date: 18 September 2018
 Cite this article:   
Tao Zhang,Tewodros Asefa. Copper nanoparticles/polyaniline-derived mesoporous carbon electrocatalysts for hydrazine oxidation[J]. Front. Chem. Sci. Eng., 2018, 12(3): 329-338.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-018-1741-8
https://academic.hep.com.cn/fcse/EN/Y2018/V12/I3/329
Fig.1  Scheme 1 ??Schematic illustration of the synthetic procedure applied to make polyaniline (PANI)-derived mesoporous carbon-supported Cu NPs (Cu-PDMC) material
Fig.2  TEM images of (a, b) PDMC and (c) Cu-PDMC; (d) HRTEM image of Cu-PDMC
Material BET surface area/(m2?g?1) Average pore size/nm Pore volume/(cm3?g?1)
PDMC 712 10.6 1.33
Cu-PDMC 695 9.7 1.24
Tab.1  Structural properties of PDMC and Cu-PDMCa)
Fig.3  (a) N2 adsorption/desorption isotherms of PDMC and Cu-PDMC and (b) their corresponding pore size distributions
Fig.4  XRD patterns of PDMC and Cu-PDMC
Fig.5  (a) XPS survey spectra of Cu-PDMC; High-resolution XPS spectra of (b) N 1s peak, (c) C 1s peak and (d) Cu 2p peak of Cu-PDMC
Fig.6  TGA curves obtained under air for PDMC and Cu-PDMC materials
Fig.7  Cyclic voltammograms of HzOR over PDMC and Cu-PDMC materials obtained using 50 mmol?L-1 hydrazine in PBS (pH 7.4) at a scan rate of 10 mV?s?1
Electrocatalyst Reaction medium Scan rate /(mV?s?1) [N2H4]
/mmol·L-1
Onset/Peak potential /(V vs. SCE)a) Ref.
Cu-GP 0.1 mol·L-1 KOH 100 10 ?0.1/0.3 [34]
S-RGO/Cu 0.1 mol·L-1 KOH 100 10 NA/0.26 [35]
Flower-shaped CuO 0.1 mol·L-1 KOH 50 100 ?0.18/NA [36]
Cu (hydr)oxide/Cu electrode 0.1 mol·L-1 NaOH 50 10 NA/0.21 [37]
Cu metal electrode 1 mol·L-1 NaOH 20 5 wt-%b) ?0.87/NA [38]
CeO2-RGO 3 mol·L-1 NaOH 50 22 0.1/0.5 [39]
Ag/CFC 1 mol·L-1 KOH 10 20 ?0.54/?0.24 [40]
Au/TiO2-NTs/Ti 0.1 mol·L-1 PBS 100 0.85 ?0.1/0.24 [41]
Pd/C 0.05 mol·L-1 H2SO4 20 10 ?0.05/0.1 [42]
Nanoporous gold 0.1 mol·L-1 PBS 20 10 ?0.4/NA [43]
AuPd DANCs 0.1 mol·L-1 HClO4 50 10 ?0.11/0.1 [44]
Cu-PDMC 0.01 mol·L-1 PBS 10 50 ?0.31/0.04 This work
Tab.2  Comparison of the electrocatalytic activity toward HzOR of different metal-based electrocatalysts
Fig.8  (a) Cyclic voltammograms (CVs) of HzOR obtained for different hydrazine concentrations at a scan rate of 10 mV?s-1 in a 0.01 mol·L-1 PBS solution (pH 7.4) over Cu-PDMC and (b) the linear dependence of current density of HzOR with respect to the concentration of hydrazine
Fig.9  Electrochemical analysis used to determine the electron transfer number of HzOR over Cu-PDMC material. (a) Cyclic voltammograms of HzOR obtained with 50 mmol·L-1 hydrazine in a 0.01 mol·L-1 PBS solution (pH 7.4) at different scan rates, (b) the linear dependence of current density ( I/A) vs. square root of scan rate (v1/2), (c) the linear dependence of peak potential (Ep) vs. log? of scan rate ( log?v), and (d) a plot of current density (I/A) vs. square root of time ( t1/2) obtained from chronoamperometric analysis
Fig.10  Chronoamperometric stability test of Cu-PDMC in 50 mmol·L-1 hydrazine in a 0.01 mol·L-1 PBS solution (pH 7.4) during electrocatalytic HzOR
Fig.11  Cyclic voltammograms of HzOR obtained with a scan rate of 10 mV?s?1 in 50 mmol·L-1 hydrazine in PBS (pH 7.4) over Cu-PDMC material before and after it was being used in a chronoamperometric test
1 Cazetta A L, Zhang T, Silva T L, Almeida V C, Asefa T. Bone char-derived metal-free N- and S-co-doped nanoporous carbon and its efficient electrocatalytic activity for hydrazine oxidation. Applied Catalysis B: Environmental, 2018, 225: 30–39
https://doi.org/10.1016/j.apcatb.2017.11.050
2 Martins A C, Huang X, Goswami A, Koh K, Meng Y, Almeida V C, Asefa T. Fibrous porous carbon electrocatalysts for hydrazine oxidation by using cellulose filter paper as precursor and self-template. Carbon, 2016, 102: 97–105
https://doi.org/10.1016/j.carbon.2016.02.028
3 Koh K, Meng Y, Huang X, Zou X, Chhowalla M, Asefa T. N- and O-doped mesoporous carbons derived from rice grains: Efficient metal-free electrocatalysts for hydrazine oxidation. Chemical Communications, 2016, 52(93): 13588–13591
https://doi.org/10.1039/C6CC06140K pmid: 27805180
4 Meng Y, Zou X, Huang X, Goswami A, Liu Z, Asefa T. Polypyrrole-derived nitrogen and oxygen co-doped mesoporous carbons as efficient metal-free electrocatalyst for hydrazine oxidation. Advanced Materials, 2014, 26(37): 6510–6516
https://doi.org/10.1002/adma.201401969 pmid: 25123849
5 Huang J, Zhao S, Chen W, Zhou Y, Yang X, Zhu Y, Li C. Three-dimensionally grown thorn-like Cu nanowire arrays by fully electrochemical nanoengineering for highly enhanced hydrazine oxidation. Nanoscale, 2016, 8(11): 5810–5814
https://doi.org/10.1039/C5NR06512G pmid: 26580842
6 Yu D, Wei L, Jiang W, Wang H, Sun B, Zhang Q, Goh K, Si R, Chen Y. Nitrogen doped holey graphene as an efficient metal-free multifunctional electrochemical catalyst for hydrazine oxidation and oxygen reduction. Nanoscale, 2013, 5(8): 3457–3464
https://doi.org/10.1039/c3nr34267k pmid: 23474688
7 Ma Y, Li H, Wang R, Wang H, Lv W, Ji S. Ultrathin willow-like CuO nanoflakes as an efficient catalyst for electro-oxidation of hydrazine. Journal of Power Sources, 2015, 289: 22–25
https://doi.org/10.1016/j.jpowsour.2015.04.151
8 Yang G W, Gao G Y, Wang C, Xu C L, Li H L. Controllable deposition of Ag nanoparticles on carbon nanotubes as a catalyst for hydrazine oxidation. Carbon, 2008, 46(5): 747–752
https://doi.org/10.1016/j.carbon.2008.01.026
9 Asefa T. Metal-free and noble metal-free heteroatom-doped nanostructured carbons as prospective sustainable electrocatalysts. Accounts of Chemical Research, 2016, 49(9): 1873–1883
https://doi.org/10.1021/acs.accounts.6b00317 pmid: 27599362
10 White R J, Luque R, Budarin V L, Clark J H, Macquarrie D J. Supported metal nanoparticles on porous materials. Methods and applications. Chemical Society Reviews, 2009, 38(2): 481–494
https://doi.org/10.1039/B802654H pmid: 19169462
11 Wildgoose G G, Banks C E, Compton R G. Metal nanoparticles and related materials supported on carbon nanotubes: Methods and applications. Small, 2006, 2(2): 182–193
https://doi.org/10.1002/smll.200500324 pmid: 17193018
12 Huang X, Zhou L J, Voiry D, Chhowalla M, Zou X, Asefa T. Monodisperse mesoporous carbon nanoparticles from polymer/silica self-aggregates and their electrocatalytic activities. ACS Applied Materials & Interfaces, 2016, 8(29): 18891–18903
https://doi.org/10.1021/acsami.6b05739 pmid: 27362728
13 Koh K, Jeon M, Chevrier D M, Zhang P, Yoon C W, Asefa T. Novel nanoporous N-doped carbon-supported ultrasmall Pd nanoparticles: Efficient catalysts for hydrogen storage and release. Applied Catalysis B: Environmental, 2017, 203: 820–828
https://doi.org/10.1016/j.apcatb.2016.10.080
14 Meng Y, Voiry D, Goswami A, Zou X, Huang X, Chhowalla M, Liu Z, Asefa T. N-, O-, and S-tridoped nanoporous carbons as selective catalysts for oxygen reduction and alcohol oxidation reactions. Journal of the American Chemical Society, 2014, 136(39): 13554–13557
https://doi.org/10.1021/ja507463w pmid: 25188332
15 Zhang Q, Qin Z, Luo Q, Wu Z, Liu L, Shen B, Hu W. Microstructure and nanoindentation behavior of Cu composites reinforced with graphene nanoplatelets by electroless co-deposition technique. Scientific Reports, 2017, 7(1): 1338–1349
https://doi.org/10.1038/s41598-017-01439-3 pmid: 28465613
16 Chaudhari N K, Song M Y, Yu J S. Heteroatom-doped highly porous carbon from human urine. Scientific Reports, 2014, 4(1): 5221–5230
https://doi.org/10.1038/srep05221 pmid: 24909133
17 Zhang T, Low J, Huang X, Al-Sharab J F, Yu J, Asefa T. Copper-decorated microsized nanoporous titanium dioxide photocatalysts for carbon dioxide reduction by water. ChemCatChem, 2017, 9(15): 3054–3062
https://doi.org/10.1002/cctc.201700512
18 Sugano Y, Shiraishi Y, Tsukamoto D, Ichikawa S, Tanaka S, Hirai T. Supported Au-Cu bimetallic alloy nanoparticles: An aerobic oxidation catalyst with regenerable activity by visible-light irradiation. Angewandte Chemie International Edition, 2013, 52(20): 5295–5299
https://doi.org/10.1002/anie.201301669 pmid: 23585018
19 Jiang D, Liu Q, Wang K, Qian J, Dong X, Yang Z, Du X, Qiu B. Enhanced non-enzymatic glucose sensing based on copper nanoparticles decorated nitrogen-doped graphene. Biosensors & Bioelectronics, 2014, 54: 273–278
https://doi.org/10.1016/j.bios.2013.11.005 pmid: 24287416
20 Ryu S K, Lee W K, Park S J. Thermal decomposition of hydrated copper nitride [Cu(NO3)2∙3H2O] on activated carbon fibers. Carbon Science, 2004, 5: 180–185
21 Bhaduri B, Verma N. Carbon bead-supported nitrogen-enriched and Cu-doped carbon nanofibers for the abatement of NO emissions by reduction. Journal of Colloid and Interface Science, 2015, 457: 62–71
https://doi.org/10.1016/j.jcis.2015.06.047 pmid: 26151568
22 Shiota K, Matsunaga H, Miyake A. Thermal analysis of ammonium nitrate and basic copper (II) nitrate mixtures. Journal of Thermal Analysis and Calorimetry, 2015, 121(1): 281–286
https://doi.org/10.1007/s10973-015-4536-x
23 Morales M V, Asedegbega-Nieto E, Bachiller-Baeza B, Cuerrero-Ruiz A. Bioethanol dehydrogenation over copper supported on functionalized graphene materials and a high surface area graphite. Carbon, 2016, 102: 426–436
https://doi.org/10.1016/j.carbon.2016.02.089
24 Pels J R, Kapteijn F, Moulijn J A, Zhu Q, Thomas K M. Evolution of nitrogen functionalities in carbonaceous materials during pyrolysis. Carbon, 1995, 33(11): 1641–1653
https://doi.org/10.1016/0008-6223(95)00154-6
25 Matter P H, Zhang L, Ozkan U S. The role of nanostructure in nitrogen-containing carbon catalysts for the oxygen reduction reaction. Journal of Catalysis, 2006, 239(1): 83–96
https://doi.org/10.1016/j.jcat.2006.01.022
26 Colón G, Maicu M, Hidalgo J A, Navío J A. Cu-doped TiO2 systems with improved photocatalytic activity. Applied Catalysis B: Environmental, 2006, 67(1-2): 41–51
https://doi.org/10.1016/j.apcatb.2006.03.019
27 Liu L, Gao F, Zhao H, Li Y. Tailoring Cu valence and oxygen vacancy in Cu/TiO2 catalysts for enhanced CO2 photoreduction efficiency. Applied Catalysis B: Environmental, 2013, 134–135: 349–358
https://doi.org/10.1016/j.apcatb.2013.01.040
28 Ola O, Maroto-Valer M M. Copper based TiO2 honeycomb monoliths for CO2 photoreduction. Catalysis Science & Technology, 2014, 4(6): 1631–1637
https://doi.org/10.1039/C3CY00991B
29 Qin L, Xu H, Zhu K, Kang S Z, Li G, Li X. Noble-metal-free copper nanoparticles/reduced graphene oxide composite: A new and highly efficient catalyst for transformation of 4-nitrophenol. Catalysis Letters, 2017, 147(6): 1315–1321
https://doi.org/10.1007/s10562-017-2038-0
30 Park B K, Jeong S, Kim D, Moon J, Lim S, Kim J S. Synthesis and size control of monodisperse copper nanoparticles by polyol method. Journal of Colloid and Interface Science, 2007, 311(2): 417–424
https://doi.org/10.1016/j.jcis.2007.03.039 pmid: 17448490
31 Fard A K, Rhadfi T, Mckay G, Al-marri M, Abdala A, Hilal N, Hussien M A. Enhancing oil removal from water using ferric oxide nanoparticles doped carbon nanotubes adsorbents. Chemical Engineering Journal, 2016, 293: 90–101
https://doi.org/10.1016/j.cej.2016.02.040
32 Xiong H, Moyo M, Motchelaho M A, Tetana Z N, Dube S M A, Jewell L L, Covile N J. Fischer-Tropsch synthesis: Iron catalysts supported on N-doped carbon spheres prepared by chemical vapor deposition and hydrothermal approaches. Journal of Catalysis, 2014, 311: 80–87
https://doi.org/10.1016/j.jcat.2013.11.007
33 Zou X, Silva R, Goswami A, Asefa T. Cu-doped carbon nitride: Bio-inspired synthesis of H2-evolving electrocatalysts using graphitic carbon nitride (g-C3N4) as a host material. Applied Surface Science, 2015, 357: 221–228
https://doi.org/10.1016/j.apsusc.2015.08.197
34 Gao H, Wang Y, Xiao F, Ching C B, Duan H. Growth of copper nanocubes on graphene paper as free-standing electrodes for direct hydrazine fuel cells. Journal of Physical Chemistry C, 2012, 116(14): 7719–7725
https://doi.org/10.1021/jp3021276
35 Liu C, Zhang H, Tang Y, Luo S. Controllable growth of graphene/Cu composite and its nanoarchitecture-dependent electrocatalytic activity to hydrazine oxidation. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2014, 2(13): 4580–4587
https://doi.org/10.1039/C3TA14137C
36 Ma Y, Wang H, Key J, Ji S, Lv W, Wang R. Control of CuO nanocrystal morphology from ultrathin “willow-leaf” to “flower-shaped” for increased hydrazine oxidation activity. Journal of Power Sources, 2015, 300: 344–350
https://doi.org/10.1016/j.jpowsour.2015.09.087
37 Karim-Nezhad G, Jafarloo R, Dorraji P S. Copper (hydr)oxide modified copper electrode for electrocatalytic oxidation of hydrazine in alkaline media. Electrochimica Acta, 2009, 54(24): 5721–5726
https://doi.org/10.1016/j.electacta.2009.05.019
38 Asazawa K, Yamada K, Tanaka H, Taniguchi M, Oguro K. Electrochemical oxidation of hydrazine and its derivatives on the surface of metal electrodes in alkaline media. Journal of Power Sources, 2009, 191(2): 362–365
https://doi.org/10.1016/j.jpowsour.2009.02.009
39 Srivastava M, Das A K, Khanra P, Uddin M E, Kim N H, Lee J H. Characterizations of in situ grown ceria nanoparticles on reduced graphene oxide as a catalyst for the electrooxidation of hydrazine. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2013, 1(34): 9792–9801
https://doi.org/10.1039/c3ta11311f
40 Liu R, Ye K, Gao Y, Zhang W, Wang G, Gao D. Ag supported on carbon fiber cloth as the catalyst for hydrazine oxidation in alkaline medium. Electrochimica Acta, 2015, 186: 239–244
https://doi.org/10.1016/j.electacta.2015.10.126
41 Hosseini M, Momeni M M, Faraji M. Electro-oxidation of hydrazine on gold nanoparticles supported on TiO2 nanotube matrix as a new high active electrode. Journal of Molecular Catalysis A: Chemical, 2011, 335(1-2): 199–204
https://doi.org/10.1016/j.molcata.2010.11.034
42 Liang Y, Zhou Y, Ma J, Zhao J, Chen Y, Tang Y, Lu T. Preparation of highly dispersed and ultrafine Pd/C catalyst and its electrocatalytic performance for hydrazine electrooxidation. Applied Catalysis B: Environmental, 2011, 103(3–4): 388–396
https://doi.org/10.1016/j.apcatb.2011.02.001
43 Yan X, Meng F, Cui S, Liu J, Gu J, Zou Z. Effective and rapid electrochemical detection of hydrazine by nanoporous gold. Journal of Electroanalytical Chemistry, 2011, 661(1): 44–48
https://doi.org/10.1016/j.jelechem.2011.07.011
44 Chen L X, Jiang L Y, Wang A J, Chen Q Y, Feng J J. Simple synthesis of bimetallic AuPd dendritic alloyed nanocrystals with enhanced electrocatalytic performance for hydrazine oxidation reaction. Electrochimica Acta, 2016, 190: 872–878
https://doi.org/10.1016/j.electacta.2015.12.151
[1] Jie Liu, Jiahao Shen, Jingjing Wang, Yuan Liang, Routeng Wu, Wenwen Zhang, Delin Shi, Saixiang Shi, Yanping Wang, Yimin Wang, Yumin Xia. Polymeric ionic liquid—assisted polymerization for soluble polyaniline nanofibers[J]. Front. Chem. Sci. Eng., 2021, 15(1): 118-126.
[2] Di Lu, Ran Tao, Zheng Wang. Carbon-based materials for photodynamic therapy: A mini-review[J]. Front. Chem. Sci. Eng., 2019, 13(2): 310-323.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed