Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2019, Vol. 13 Issue (1) : 108-119    https://doi.org/10.1007/s11705-018-1742-7
RESEARCH ARTICLE
Effect of incorporating Elaeagnus angustifolia extract in PCL-PEG-PCL nanofibers for bone tissue engineering
Vahideh R. Hokmabad1, Soodabeh Davaran2, Marziyeh Aghazadeh3,4, Effat Alizadeh3,5, Roya Salehi2(), Ali Ramazani1()
1. Department of Chemistry, University of Zanjan, Zanjan, Iran
2. Drug Applied Research Center and Department of Medical Nanotechnology, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran
3. Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
4. Oral Medicine Department of Dental Faculty, Tabriz University of Medical Sciences, Tabriz, Iran
5. Department of Medical Biotechnology, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran
 Download: PDF(1741 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Plants have been used for medicinal purposes for thousands of years but they are still finding new uses in modern times. For example, Elaeagnus angustifolia (EA) is a medicinal herb with antinociceptive, anti-inflammatory, antibacterial and antioxidant properties and it is widely used in the treatment of rheumatoid arthritis and osteoarthritis. EA extract was loaded onto poly(ϵ-caprolactone)-poly(ethylene glycol)-poly(ϵ-caprolactone) (PCL-PEG-PCL/EA) nanofibers and their potential applications for bone tissue engineering were studied. The morphology and chemical properties of the fibers were evaluated using Fourier transform infrared spectroscopy, field emission scanning electron microscopy, contact angle measurements and mechanical tests. All the samples had bead-free morphologies with average diameters ranging from 100 to 200 nm. The response of human cells to the PCL-PEG-PCL/EA nanofibers was evaluated using human dental pulp stem cells (hDPSCs). The hDPSCs had better adhesion and proliferation capacity on the EA loaded nanofibers than on the pristine PCL-PEG-PCL nanofibers. An alizarin red S assay and the alkaline phosphatase activity confirmed that the nanofibrous scaffolds induced osteoblastic performance in the hDPSCs. The quantitative real time polymerase chain reaction results confirmed that the EA loaded nanofibrous scaffolds had significantly upregulated gene expression correlating to osteogenic differentiation. These results suggest that PCL-PEG-PCL/EA nanofibers might have potential applications for bone tissue engineering.

Keywords Elaeagnus angustifolia      scaffold      electrospinning      human dental pulp stem cell      tissue engineering     
Corresponding Author(s): Roya Salehi,Ali Ramazani   
Just Accepted Date: 14 May 2018   Online First Date: 23 January 2019    Issue Date: 25 February 2019
 Cite this article:   
Vahideh R. Hokmabad,Soodabeh Davaran,Marziyeh Aghazadeh, et al. Effect of incorporating Elaeagnus angustifolia extract in PCL-PEG-PCL nanofibers for bone tissue engineering[J]. Front. Chem. Sci. Eng., 2019, 13(1): 108-119.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-018-1742-7
https://academic.hep.com.cn/fcse/EN/Y2019/V13/I1/108
Name Forward Reverse
BMP2 GAGAAGGAGGAGGCAAAGAAAAG GAAGCAGCAACGCTAGAAGAC
BGLAP ATTGTGGCTCACCCTCCATCA AGGGCTATTTGGGGGTCATC
DSPP CTGGTGCATGAAGGTGATAGAG TCCTACTTCTGCCCACTTAGA
RUNX2 ACCTTGACCATAACCGTCTTC GGCGGTCAGAGAACAAACTA
GAPDH CAAGATCATCAGCAATGCCTCC GCCATCACGCCACAGTTTCC
Tab.1  Sequences of primers used for QRT-PCR
Fig.1  FE-SEM micrographs of (a) PCEC, (b) PCEC/5EA, (c) PCEC/10EA, and (d) PCEC/15EA nanofibers and corresponding fiber diameter distributions. Scale bar= 2 mm
Sample Solution viscosity/(mPa·s)
PCEC 99.88
PCEC/5EA 105.6
PCEC/10EA 106.38
PCEC/15EA 125.62
Tab.2  Viscosity of PCEC solutions with different amount of EA extract
Fig.2  FTIR spectra of (a) EA pulp extract, (b) PCEC, and (c) EA loaded PCEC nanofibers
Fig.3  Stress-strain curve of (a) PCEC, (b) PCEC/5EA, (c) PCEC/10EA, (d) PCEC/15EA nanofibers
Scaffold Contact angle Scaffold Contact angle
PCEC 67° PCEC/5EA 65°
PCEC/10EA PCEC/15EA 39°
Tab.3  Water contact angles of PCEC nanofibers with different amount of EA
Fig.4  MTT assay results for hDPSCs cultured on TCPS (ctrl), PCEC, and PCEC/EA for 3, 7, and 12 days
Fig.5  FE-SEM micrographs of adhered hDPSCs on (a, b) PCEC, (c, d) PCEC/5EA, (e, f) PCEC/10EA, and (g, h) PCEC/15EA electrospun nanofibers after 14 days of culture. Scale bars: (a, c, e, and g) = 10 mm, (b, d, f, and h) = 50 mm
Fig.6  Effect of EA extract on hDPSCs osteogenic differentiation: (a) a bar graph showing quantitative results of differentiated hDPSCs stained with alizarin red S after 16 days of culture; **p<0.01; (b) cells were stained with alizarin red S at day 16 to visualize mineralized matrix
Fig.7  ALP activity of hDPSCs cultured on PCEC, PCEC/5EA, PCEC/10EA, and PCEC/15EA nanofibrous scaffolds and control (without scaffold). *p<0.05, **p<0.01
Fig.8  Comparison of the osteogenic genes expression levels: (a) BGLAP, (b) BMP2, (c) DSPP, and (d) RUNX2. *p<0.05, **p<0.01, ***p<0.001
1 MKikuchi, S Itoh, SIchinose, KShinomiya, JTanaka. Self-organization mechanism in a bone-like hydroxyapatite/collagen nanocomposite synthesized in vitro and its biological reaction in vivo. Biomaterials, 2001, 22(13): 1705–1711
https://doi.org/10.1016/S0142-9612(00)00305-7 pmid: 11396873
2 M SChapekar. Tissue engineering: Challenges and opportunities. Journal of Biomedical Materials Research: Part A, 2000, 53(6): 617–620
https://doi.org/10.1002/1097-4636(2000)53:6<617::AID-JBM1>3.0.CO;2-C pmid: 11074418
3 NShadjou, M Hasanzadeh. Graphene and its nanostructure derivatives for use in bone tissue engineering: Recent advances. Journal of Biomedical Materials Research: Part A, 2016, 104(5): 1250–1275
https://doi.org/10.1002/jbm.a.35645 pmid: 26748447
4 MDiba, M Kharaziha, MFathi, MGholipourmalekabadi, ASamadikuchaksaraei. Preparation and characterization of polycaprolactone/forsterite nanocomposite porous scaffolds designed for bone tissue regeneration. Composites Science and Technology, 2012, 72(6): 716–723
https://doi.org/10.1016/j.compscitech.2012.01.023
5 YYu, B Sun, CYi, XMo. Stem cell homing-based tissue engineering using bioactive materials. Frontiers of Materials Science, 2017, 11(2): 93–105
https://doi.org/10.1007/s11706-017-0373-0
6 KVerma, R Bains, V KBains, MRawtiya, KLoomba, S CSrivastava. Therapeutic potential of dental pulp stem cells in regenerative medicine: An overview. Dental Research Journal, 2014, 11(3): 302–308
pmid: 25097638
7 P DPotdar, Y D Jethmalani. Human dental pulp stem cells: Applications in future regenerative medicine. World Journal of Stem Cells, 2015, 7(5): 839–851
https://doi.org/10.4252/wjsc.v7.i5.839 pmid: 26131314
8 Y YJo, H J Lee, S Y Kook, H W Choung, J Y Park, J H Chung, Y H Choung, E S Kim, H C Yang, P H Choung. Isolation and characterization of postnatal stem cells from human dental tissues. Tissue Engineering, 2007, 13(4): 767–773
https://doi.org/10.1089/ten.2006.0192 pmid: 17432951
9 SGronthos, J Brahim, WLi, L WFisher, NCherman, ABoyde, PDenBesten, P GRobey, SShi. Stem cell properties of human dental pulp stem cells. Journal of Dental Research, 2002, 81(8): 531–535
https://doi.org/10.1177/154405910208100806 pmid: 12147742
10 RHass, C Kasper, SBöhm, RJacobs. Different populations and sources of human mesenchymal stem cells (MSC): A comparison of adult and neonatal tissue-derived MSC. Cell Communication and Signaling, 2011, 9(1): 12–25
https://doi.org/10.1186/1478-811X-9-12 pmid: 21569606
11 RKhanna-Jain, B Mannerström, AVuorinen, G KSándor, RSuuronen, SMiettinen. Osteogenic differentiation of human dental pulp stem cells on β-tricalcium phosphate/poly (L-lactic acid/caprolactone) three-dimensional scaffolds. Journal of Tissue Engineering, 2012, 3(1): 2041731412467998
https://doi.org/10.1177/2041731412467998 pmid: 23316276
12 FPaduano, M Marrelli, L JWhite, K MShakesheff, MTatullo. Odontogenic differentiation of human dental pulp stem cells on hydrogel scaffolds derived from decellularized bone extracellular matrix and collagen type I. PLoS One, 2016, 11(2): e0148225
https://doi.org/10.1371/journal.pone.0148225 pmid: 26882351
13 MMiura, S Gronthos, MZhao, BLu, L W Fisher, P G Robey, S Shi. SHED: Stem cells from human exfoliated deciduous teeth. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(10): 5807–5812
https://doi.org/10.1073/pnas.0937635100 pmid: 12716973
14 JKarbanová, TSoukup, JSuchánek, JMokrý. Osteogenic differentiation of human dental pulp-derived stem cells under various ex-vivo culture conditions. Acta Medica, 2010, 53(2): 79–84
https://doi.org/10.14712/18059694.2016.64 pmid: 20672743
15 FAsghari, R Salehi, MAgazadeh, EAlizadeh, KAdibkia, MSamiei, AAkbarzadeh, N AAval, SDavaran. The odontogenic differentiation of human dental pulp stem cells on hydroxyapatite-coated biodegradable nanofibrous scaffolds. International Journal of Polymeric Materials and Polymeric Biomaterials, 2016, 65(14): 720–728
https://doi.org/10.1080/00914037.2016.1163564
16 SFu, P Ni, BWang, BChu, J Peng, LZheng, XZhao, F Luo, YWei, ZQian. In vivo biocompatibility and osteogenesis of electrospun poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone)/nano-hydroxyapatite composite scaffold. Biomaterials, 2012, 33(33): 8363–8371
https://doi.org/10.1016/j.biomaterials.2012.08.023 pmid: 22921926
17 W JLi, C T Laurencin, E J Caterson, R S Tuan, F K Ko. Electrospun nanofibrous structure: A novel scaffold for tissue engineering. Journal of Biomedical Materials Research: Part A, 2002, 60(4): 613–621
https://doi.org/10.1002/jbm.10167 pmid: 11948520
18 CLi, C Vepari, H JJin, H JKim, D LKaplan. Electrospun silk-BMP-2 scaffolds for bone tissue engineering. Biomaterials, 2006, 27(16): 3115–3124
https://doi.org/10.1016/j.biomaterials.2006.01.022 pmid: 16458961
19 RZhang, P X Ma. Poly(α-hydroxyl acids)/hydroxyapatite porous composites for bone-tissue engineering. I. Preparation and morphology. Journal of Biomedical Materials Research, 1999, 44(4): 446–455
https://doi.org/10.1002/(SICI)1097-4636(19990315)44:4<446::AID-JBM11>3.0.CO;2-F pmid: 10397949
20 Y BKim, G H Kim. PCL/alginate composite scaffolds for hard tissue engineering: Fabrication, characterization, and cellular activities. ACS Combinatorial Science, 2015, 17(2): 87–99
https://doi.org/10.1021/co500033h pmid: 25541639
21 IMaitlo, S Ali, M YAkram, F KShehzad, JNie. Binary phase solid-state photopolymerization of acrylates: Design, characterization and biomineralization of 3D scaffolds for tissue engineering. Frontiers of Materials Science, 2017, 11(4): 307–317
https://doi.org/10.1007/s11706-017-0394-8
22 D HReneker, I Chun. Nanometre diameter fibres of polymer, produced by electrospinning. Nanotechnology, 1996, 7(3): 216–223
https://doi.org/10.1088/0957-4484/7/3/009
23 XZong, H Bien, C YChung, LYin, D Fang, B SHsiao, BChu, E Entcheva. Electrospun fine-textured scaffolds for heart tissue constructs. Biomaterials, 2005, 26(26): 5330–5338
https://doi.org/10.1016/j.biomaterials.2005.01.052 pmid: 15814131
24 T JSill, H A von Recum. Electrospinning: Applications in drug delivery and tissue engineering. Biomaterials, 2008, 29(13): 1989–2006
https://doi.org/10.1016/j.biomaterials.2008.01.011 pmid: 18281090
25 NOgata, S Yamaguchi, NShimada, GLu, T Iwata, KNakane, TOgihara. Poly(lactide) nanofibers produced by a melt-electrospinning system with a laser melting device. Journal of Applied Polymer Science, 2007, 104(3): 1640–1645
https://doi.org/10.1002/app.25782
26 M RForoughi, S Karbasi, MKhoroushi, A AKhademi. Polyhydroxybutyrate/chitosan/bioglass nanocomposite as a novel electrospun scaffold: Fabrication and characterization. Journal of Porous Materials, 2017, 24(6): 1447–1460
https://doi.org/10.1007/s10934-017-0385-2
27 S RBhattarai, NBhattarai, H KYi, P HHwang, D ICha, H YKim. Novel biodegradable electrospun membrane: Scaffold for tissue engineering. Biomaterials, 2004, 25(13): 2595–2602
https://doi.org/10.1016/j.biomaterials.2003.09.043 pmid: 14751745
28 DPuppi, A M Piras, N Detta, DDinucci, FChiellini. Poly(lactic-co-glycolic acid) electrospun fibrous meshes for the controlled release of retinoic acid. Acta Biomaterialia, 2010, 6(4): 1258–1268
https://doi.org/10.1016/j.actbio.2009.08.015 pmid: 19683605
29 GChouzouri, M Xanthos. In vitro bioactivity and degradation of polycaprolactone composites containing silicate fillers. Acta Biomaterialia, 2007, 3(5): 745–756
https://doi.org/10.1016/j.actbio.2007.01.005 pmid: 17392042
30 YHosseini, R Emadi, MKharaziha, ADoostmohammadi. Reinforcement of electrospun poly(ε-caprolactone) scaffold using diopside nanopowder to promote biological and physical properties. Journal of Applied Polymer Science, 2017, 134(6): 44433–44441
https://doi.org/10.1002/app.44433
31 YDu, X Chen, Y HKoh, BLei. Facilely fabricating PCL nanofibrous scaffolds with hierarchical pore structure for tissue engineering. Materials Letters, 2014, 122(22): 62–65
https://doi.org/10.1016/j.matlet.2014.02.031
32 J MMiszuk, T Xu, QYao, FFang, J D Childs, Z Hong, JTao, HFong, H Sun. Functionalization of PCL-3D electrospun nanofibrous scaffolds for improved BMP2-induced bone formation. Applied Materials Today, 2018, 10(1): 194–202
https://doi.org/10.1016/j.apmt.2017.12.004 pmid: 29577064
33 AValizadeh, M Bakhtiary, AAkbarzadeh, RSalehi, S MFrakhani, OEbrahimi, MRahmati-Yamchi, SDavaran. Preparation and characterization of novel electrospun poly(ε-caprolactone)-based nanofibrous scaffolds. Artificial Cells, Nanomedicine, and Biotechnology, 2016, 44(2): 504–509
https://doi.org/10.3109/21691401.2014.965310 pmid: 25307268
34 PNi, Q Ding, MFan, JLiao, Z Qian, JLuo, XLi, F Luo, ZYang, YWei. Injectable thermosensitive PEG-PCL-PEG hydrogel/acellular bone matrix composite for bone regeneration in cranial defects. Biomaterials, 2014, 35(1): 236–248
https://doi.org/10.1016/j.biomaterials.2013.10.016 pmid: 24138826
35 M BSá, M TRalph, D C ONascimento, C SRamos, I M SBarbosa, F BSá, JLima-Filho. Phytochemistry and preliminary assessment of the antibacterial activity of chloroform extract of Amburana cearensis (Allemão) AC Sm. against Klebsiella pneumoniae carbapenemase-producing strains. Evidence-Based Complementary and Alternative Medicine, 2014, 2014: 1–7
36 ANageeb, A Al-Tawashi, A HMohammad Emwas, Z Abdel-Halim Al-Talla, NAl-Rifai. Comparison of artemisia annua bioactivities between traditional medicine and chemical extracts. Current Bioactive Compounds, 2013, 9(4): 324–332
https://doi.org/10.2174/157340720904140404151439 pmid: 24761137
37 M SSabir, D S Ahmad, I M Hussain, K M Tahir. Antibacterial activity of Elaeagnus umbellata (Thunb.) a medicinal plant from Pakistan. Saudi Medical Journal, 2007, 28(2): 259–263
pmid: 17268691
38 SSuganya, J Venugopal, SRamakrishna, BLakshmi, VGiri Dev. Herbally derived polymeric nanofibrous scaffolds for bone tissue regeneration. Journal of Applied Polymer Science, 2014, 131(3): 39835–39845
https://doi.org/10.1002/app.39835
39 D KKim, J I Kim, T I Hwang, B R Sim, G Khang. Bioengineered osteoinductive Broussonetia kazinoki/silk fibroin composite scaffolds for bone tissue regeneration. ACS Applied Materials & Interfaces, 2017, 9(2): 1384–1394
https://doi.org/10.1021/acsami.6b14351 pmid: 28001353
40 SSuganya, T Senthil Ram, BLakshmi, VGiridev. Herbal drug incorporated antibacterial nanofibrous mat fabricated by electrospinning: An excellent matrix for wound dressings. Journal of Applied Polymer Science, 2011, 121(5): 2893–2899
https://doi.org/10.1002/app.33915
41 TTalaei-Khozani, Z Vojdani, FDehghani, EHeidari, EKharazinejad, M RPanjehshahin. Toxic effects of Elaeagnus angustifolia fruit extract on chondrogenesis and osteogenesis in mouse limb buds. Tokai Journal of Experimental and Clinical Medicine, 2011, 36(3): 63–70
pmid: 21932186
42 AKhodakarm-Tafti, D Mehrabani, LHomafar, GFarjanikish. Healing effects of Elaeagnus angustifolia extract in experimentally induced ulcerative colitis in rats. Journal of Pharmacologicaly Toxicologicaly, 2015, 10(1): 29–35
https://doi.org/10.3923/jpt.2015.29.35
43 M HFarzaei, R Bahramsoltani, ZAbbasabadi, RRahimi. A comprehensive review on phytochemical and pharmacological aspects of Elaeagnus angustifolia L. Journal of Pharmacy and Pharmacology, 2015, 67(11): 1467–1480
https://doi.org/10.1111/jphp.12442 pmid: 26076872
44 HHosseinzadeh, R Rahimi. Anti-inflammatory effects of Elaeagnus angustifolia L. fruits in mice and rats. Iranian Journal of Medical Sciences, 1999, 24: 143–147
45 MRamezani, H Hosseinzadeh, NDaneshmand. Antinociceptive effect of Elaeagnus angustifolia fruit seeds in mice. Fitoterapia, 2001, 72(3): 255–262
https://doi.org/10.1016/S0367-326X(00)00290-2 pmid: 11295301
46 HHosseinzadeh, M Ramezani, NNamjo. Muscle relaxant activity of Elaeagnus angustifolia L. fruit seeds in mice. Journal of Ethnopharmacology, 2003, 84(2-3): 275–278
https://doi.org/10.1016/S0378-8741(02)00331-8 pmid: 12648826
47 AAhmadiani, J Hosseiny, SSemnanian, MJavan, FSaeedi, MKamalinejad, SSaremi. Antinociceptive and anti-inflammatory effects of Elaeagnus angustifolia fruit extract. Journal of Ethnopharmacology, 2000, 72(1-2): 287–292
https://doi.org/10.1016/S0378-8741(00)00222-1 pmid: 10967484
48 IGürbüz, OUstün, EYesilada, ESezik, OKutsal. Anti-ulcerogenic activity of some plants used as folk remedy in Turkey. Journal of Ethnopharmacology, 2003, 88(1): 93–97
https://doi.org/10.1016/S0378-8741(03)00174-0 pmid: 12902057
49 MMehrabani Natanzi, PPasalar, MKamalinejad, A RDehpour, S MTavangar, RSharifi, NGhanadian, MRahimi-Balaei, SGerayesh-Nejad. Effect of aqueous extract of Elaeagnus angustifolia fruit on experimental cutaneous wound healing in rats. Acta Medica Iranica, 2012, 50(9): 589–596
pmid: 23165807
50 YPanahi, G H Alishiri, N Bayat, S MHosseini, ASahebkar. Efficacy of Elaeagnus Angustifolia extract in the treatment of knee osteoarthritis: A randomized controlled trial. EXCLI Journal, 2016, 15: 203–210
pmid: 27330526
51 RHamidpour, S Hamidpour, MHamidpour, MShahlari, MSohraby, NShahlari, RHamidpour. Russian olive (Elaeagnus angustifolia L.): From a variety of traditional medicinal applications to its novel roles as active antioxidant, anti-inflammatory, anti-mutagenic and analgesic agent. Journal of Traditional and Complementary Medicine, 2016, 7(1): 24–29
https://doi.org/10.1016/j.jtcme.2015.09.004 pmid: 28053884
52 ZAmiri Tehranizadeh, ABaratian, HHosseinzadeh. Russian olive (Elaeagnus angustifolia) as a herbal healer. BioImpacts, 2016, 6(3): 155–167
https://doi.org/10.15171/bi.2016.22 pmid: 27853679
53 MMofid, S H Sadraie, H Imani, GTorkaman, GKaka, M R Naghii, G Alishiri, M HAsadi. The effect of mesenchymal stem cells and aqueous extract of Elaeagnus angustifolia on the mechanical properties of articular cartilage in an experimental model of rat osteoarthritis. Anatomical Sciences Journal, 2015, 12(2): 68–74
54 M HDabbaghmanesh, ANoorafshan, PTalezadeh, NTanideh, FKoohpeyma, AIraji, MBakhshayeshkaram, NMontazeri-Najafabady. Stereological investigation of the effect of Elaeagnus angustifolia fruit hydroalcoholic extract on osteoporosis in ovariectomized rats. Avicenna Journal of Phytomedicine, 2017, 7(3): 261–274
pmid: 28748173
55 LJunqueira, J Carneiro, RKelley. Adipose tissue. In: Malley J, Lebowiz H, Boyle P J, eds. Basic Histology Text & Atlas. 11th ed. New York: McGraw-Hill, 2005: 123–127
56 RGarcía-Villalba, MLarrosa, SPossemiers, F ATomás-Barberán, J CEspín. Bioavailability of phenolics from an oleuropein-rich olive (Olea europaea) leaf extract and its acute effect on plasma antioxidant status: Comparison between pre- and postmenopausal women. European Journal of Nutrition, 2014, 53(4): 1015–1027
https://doi.org/10.1007/s00394-013-0604-9 pmid: 24158653
57 J RChen, O P Lazarenko, X Wu, JKang, M LBlackburn, KShankar, T MBadger, M JRonis. Dietary-induced serum phenolic acids promote bone growth via p38 MAPK/β-catenin canonical Wnt signaling. Journal of Bone and Mineral Research, 2010, 25(11): 2399–2411
https://doi.org/10.1002/jbmr.137 pmid: 20499363
58 MBakhtiari, R Salehi, AAkbarzadeh, SDavaran. Development of novel doxorubicin loaded biodegradable polymeric nanofibers as the anticancer drug delivery systems. BioNanoScience, 2018, 8(1): 60–66
https://doi.org/10.1007/s12668-017-0421-3
59 FAjalloueian, H Tavanai, JHilborn, ODonzel-Gargand, KLeifer, AWickham, AArpanaei. Emulsion electrospinning as an approach to fabricate PLGA/chitosan nanofibers for biomedical applications. BioMed Research International, 2014, 2014: 1–13
60 J RVenugopal, SLow, A T Choon, A B Kumar, S Ramakrishna. Nanobioengineered electrospun composite nanofibers and osteoblasts for bone regeneration. Artificial Organs, 2008, 32(5): 388–397
https://doi.org/10.1111/j.1525-1594.2008.00557.x pmid: 18471168
61 MAghazadeh, M Samiei, EAlizadeh, PPorkar, MBakhtiyari, RSalehi. Towards osteogenic bioengineering of dental pulp stem induced by sodium fluoride on hydroxyapatite based biodegradable polymeric scaffold. Fibers and Polymers, 2017, 18(8): 1468–1477
https://doi.org/10.1007/s12221-017-7120-0
62 D CRio, M Ares Jr, G JHannon, T WNilsen. Purification of RNA using TRIzol (TRI reagent). Cold Spring Harbor Protocols, 2010, 2010(6): t5439
https://doi.org/10.1101/pdb.prot5439 pmid: 20516177
63 S JCho, S M Jung, M Kang, H SShin, J HYouk. Preparation of hydrophilic PCL nanofiber scaffolds via electrospinning of PCL/PVP-b-PCL block copolymers for enhanced cell biocompatibility. Polymer, 2015, 69(14): 95–102
https://doi.org/10.1016/j.polymer.2015.05.037
64 M FCanbolat, A Celebioglu, TUyar. Drug delivery system based on cyclodextrin-naproxen inclusion complex incorporated in electrospun polycaprolactone nanofibers. Colloids and Surfaces B: Biointerfaces, 2014, 115(3): 15–21
https://doi.org/10.1016/j.colsurfb.2013.11.021 pmid: 24316584
65 QChen, J Chen, HDu, QLi, J Chen, GZhang, HLiu, J Wang. Structural characterization and antioxidant activities of polysaccharides extracted from the pulp of Elaeagnus angustifolia L. International Journal of Molecular Sciences, 2014, 15(7): 11446–11455
https://doi.org/10.3390/ijms150711446 pmid: 24972139
66 VRaeisdasteh Hokmabad, SDavaran, ARamazani, RSalehi. Design and fabrication of porous biodegradable scaffolds: A strategy for tissue engineering. Journal of Biomaterials Science. Polymer Edition, 2017, 28(16): 1797–1825
https://doi.org/10.1080/09205063.2017.1354674 pmid: 28707508
67 VLeung, F Ko. Biomedical applications of nanofibers. Polymers for Advanced Technologies, 2011, 22(3): 350–365
https://doi.org/10.1002/pat.1813
68 VZijah, R Salehi, MAghazadeh, MSamiei, EAlizadeh, SDavaran. Towards optimization of odonto/osteogenic bioengineering: in vitro comparison of simvastatin, sodium fluoride, melanocyte-stimulating hormone. In vitro Cellular & Developmental Biology. Animal, 2017, 53(6): 502–512
https://doi.org/10.1007/s11626-017-0141-6 pmid: 28342024
69 DLi, H Sun, XHu, YLin, B Xu. Facile method to prepare PLGA/hydroxyapatite composite scaffold for bone tissue engineering. Materials Technology, 2013, 28(6): 316–323
https://doi.org/10.1179/1753555712Y.0000000054
70 CPisani, E Rascol, CDorandeu, CCharnay, YGuari, JChopineau, J MDevoisselle, OPrat. Biocompatibility assessment of functionalized magnetic mesoporous silica nanoparticles in human HepaRG cells. Nanotoxicology, 2017, 11(7): 871–890
https://doi.org/10.1080/17435390.2017.1378749 pmid: 28937306
71 SPreethi Soundarya, VSanjay, AHaritha Menon, SDhivya, NSelvamurugan. Effects of flavonoids incorporated biological macromolecules based scaffolds in bone tissue engineering. International Journal of Biological Macromolecules, 2018, 110(6): 74–87
https://doi.org/10.1016/j.ijbiomac.2017.09.014 pmid: 28893682
72 J FZhang, G Li, C YChan, C LMeng, M CLin, Y CChen, M LHe, P CLeung, H FKung. Flavonoids of Herba epimedii regulate osteogenesis of human mesenchymal stem cells through BMP and Wnt/β-catenin signaling pathway. Molecular and Cellular Endocrinology, 2010, 314(1): 70–74
https://doi.org/10.1016/j.mce.2009.08.012 pmid: 19703516
73 EAlizadeh, N Zarghami, M BEslaminejad, AAkbarzadeh, ABarzegar, S AMohammadi. The effect of dimethyl sulfoxide on hepatic differentiation of mesenchymal stem cells. Artificial Cells, Nanomedicine, and Biotechnology, 2016, 44(1): 157–164
https://doi.org/10.3109/21691401.2014.928778 pmid: 24978442
74 B BShotorbani, EAlizadeh, RSalehi, ABarzegar. Adhesion of mesenchymal stem cells to biomimetic polymers: A review. Materials Science and Engineering C, 2017, 71(80): 1192–1200
https://doi.org/10.1016/j.msec.2016.10.013 pmid: 27987676
75 SHoseinzadeh, A Atashi, MSoleimani, EAlizadeh, NZarghami. MiR-221-inhibited adipose tissue-derived mesenchymal stem cells bioengineered in a nano-hydroxy apatite scaffold. In vitro Cellular & Developmental Biology. Animal, 2016, 52(4): 479–487
https://doi.org/10.1007/s11626-015-9992-x pmid: 26822432
76 MSamiei, M Aghazadeh, EAlizadeh, NAslaminabadi, SDavaran, SShirazi, FAshrafi, RSalehi. Osteogenic/odontogenic bioengineering with co-administration of simvastatin and hydroxyapatite on poly caprolactone based nanofibrous scaffold. Advanced Pharmaceutical Bulletin, 2016, 6(3): 353–365
https://doi.org/10.15171/apb.2016.047 pmid: 27766219
[1] Min Song, Wei Zhang, Yongsheng Chen, Jinming Luo, John C. Crittenden. The preparation and performance of lignin-based activated carbon fiber adsorbents for treating gaseous streams[J]. Front. Chem. Sci. Eng., 2017, 11(3): 328-337.
[2] Yang YU, Hong ZHANG, Hong SUN, Dandan XING, Fanglian YAO. Nano-hydroxyapatite formation via co-precipitation with chitosan-g-poly(N-isopropylacrylamide) in coil and globule states for tissue engineering application[J]. Front Chem Sci Eng, 2013, 7(4): 388-400.
[3] Lijun JI, Yunfeng SI, Ailing LI, Wenjun WANG, Dong QIU, Aiping ZHU. Progress of three-dimensional macroporous bioactive glass for bone regeneration[J]. Front Chem Sci Eng, 2012, 6(4): 470-483.
[4] Dongjiao ZHOU, Shaochuan SHEN, Junxian YUN, Kejian YAO, Dong-Qiang LIN. Cryo-copolymerization preparation of dextran-hyaluronate based supermacroporous cryogel scaffolds for tissue engineering applications[J]. Front Chem Sci Eng, 2012, 6(3): 339-347.
[5] Heyun WANG, Yakai FENG, Marc BEHL, Andreas LENDLEIN, Haiyang ZHAO, Ruofang XIAO, Jian LU, Li ZHANG, Jintang GUO. Hemocompatible polyurethane/gelatin-heparin nanofibrous scaffolds formed by a bi-layer electrospinning technique as potential artificial blood vessels[J]. Front Chem Sci Eng, 2011, 5(3): 392-400.
[6] Yakai FENG, Fanru MENG, Ruofang XIAO, Haiyang ZHAO, Jintang GUO. Electrospinning of polycarbonate urethane biomaterials[J]. Front Chem Sci Eng, 2011, 5(1): 11-18.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed