Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2018, Vol. 12 Issue (3) : 433-439    https://doi.org/10.1007/s11705-018-1743-6
RESEARCH ARTICLE
Crystal-to-crystal transformation from the triclinic to the cubic crystal system by partial desolvation
Qianqian Guo, Irmgard Kalf, Ulli Englert()
Institute of Inorganic Chemistry, RWTH Aachen University, Aachen, Germany
 Download: PDF(263 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Diffusion reaction of the labile building block Mg(acacCN)2 (acacCN= 3-cyanoacetylacetonate) with silver salts leads to a series of solvated Mg/Ag bimetallic coordination polymers with composition [Mg(acacCN)3Ag]·solvent. Despite their common stoichiometry, the topology of these polymers depends on the solvent of crystallization. The two-dimensional coordination compound [Mg(acacCN)3Ag]·4CHCl3 in space group P1 is obtained as platelet-shaped crystals from a mixture of methanol and chloroform. When kept in the reaction mixture, these thin plates within one week convert to isometric tetrahedral crystals of the 3D network [Mg(acacCN)3Ag]·2CHCl3 in the cubic space group P213. The transformation reaction proceeds via dissolution and recrystallization. The co-crystallized solvent molecules play an important role for stabilizing the target structure: They subtend Cl···Cl contacts and interact via non-classical C–H···O hydrogen bonds with the coordination framework. In the new cubic coordination network, both Mg(II) and Ag(I) adopt octahedral coordination, with unprecedented face-sharing by bridging O atoms of three acetylacetonato moieties. Prolonged standing of [Mg(acacCN)3Ag]·2CHCl3 in the reaction medium leads to further degradation, under formation of [Ag(acacCN)].

Keywords ditopic ligand      substituted acetylacetone      desolvation      diffraction     
Corresponding Author(s): Ulli Englert   
Just Accepted Date: 14 May 2018   Online First Date: 23 August 2018    Issue Date: 18 September 2018
 Cite this article:   
Qianqian Guo,Irmgard Kalf,Ulli Englert. Crystal-to-crystal transformation from the triclinic to the cubic crystal system by partial desolvation[J]. Front. Chem. Sci. Eng., 2018, 12(3): 433-439.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-018-1743-6
https://academic.hep.com.cn/fcse/EN/Y2018/V12/I3/433
Fig.1  Synthesis, composition and the crystal shape change of 1a, 1b and Ag(acacCN)
Fig.2  Simulated (red) and experimental powder (black) patterns for 1b
Compound 1b
Empirical formula C20H20AgCl6MgN3O6
Moiety formula C18H18AgMgN3O6
2(CHCl3)
Formula weight/(g·mol1) 743.27
Crystal description colorless, truncated tetrahedra
Crystal size/mm 0.22 × 0.22 × 0.23
Crystal system cubic
Space group P213
a 14.1793(13)
V3 2850.8(8)
Z 4
µ/mm?1 1.331
Total/unique reflections 17643/2000
Rint 0.0290
R[F2>2s(F2)] 0.0208
wR2 (F2) 0.0536
GOF 1.012
No. of parameters 114
Dρrmax/Dρrmin (e Å?3) 0.462/?0.327
Flack parameter [22] ?0.004(8)
CCDC 1817598
Tab.1  Crystal data and refinement results for 1b
Fig.3  (a) Coordination geometry about Mg(II); H and peripheral N atoms have been omitted. Selected interatomic angles in °: O1-Mg1-O2= 85.07(9); O1-Mg1-O2ii = 168.32(10); symmetry operators: i = 1.5 ? y, 1 ? z, ?0.5+ x; ii = 0.5+ z, 1.5 ? x, 1 ? y; (b) Mg(II) in the plane subtended by three silver cations; symmetry operators: i = 0.5+ z, 1.5 ? x, 1 ? y; ii = z, x, ?1+ y
Fig.4  Ag(I) coordination (Å) (a) in the closely related bimetallic polymers [Mg(acacCN)3Ag]·2CHCl3, 1b and (b) in [Al(acacCN)3Ag]PF6·CHCl3. Color code: Ag, green; C, black; Cl, brown; Mg, yellow; N, blue; O, red
Fig.5  Three dimensional dia framwork in 1b. Color code: Mg(II), pink; Ag(I), black; O, red; N, blue; C, gray.
1 Burrows A D. Mixed-component metal–organic frameworks (MC-MOFs): Enhancing functionality through solid solution formation and surface modifications. CrystEngComm, 2011, 13(11): 3623–3642
https://doi.org/10.1039/c0ce00568a
2 Kondracka M, Englert U. Bimetallic coordination polymers via combination of substitution-inert building blocks and labile connectors. Inorganic Chemistry, 2008, 47(22): 10246–10257
https://doi.org/10.1021/ic800748f pmid: 18855377
3 Merkens C, Englert U. Ordered bimetallic coordination networks featuring rare earth and silver cations. Dalton Transactions, 2012, 41(15): 4664–4673
https://doi.org/10.1039/c2dt11772j pmid: 22382363
4 Merkens C, Becker N, Lamberts K, Englert U. Bimetallic coordination networks based on Al(acacCN)3: a building block between inertness and lability. Dalton Transactions, 2012, 41(28): 8594–8599
https://doi.org/10.1039/c2dt30623a pmid: 22669470
5 Burrows A D, Cassar K, Mahon M F, Warren J E. The stepwise formation of mixed-metal coordination networks using complexes of 3-cyanoacetylacetonate. Dalton Transactions, 2007, (24): 2499–2509
https://doi.org/10.1039/b702074k pmid: 17563785
6 Merkens C, Pecher O, Steuber F, Eisenhut S, Görne A, Haarmann F, Englert U. Crystal-to-crystal transformations in a seven-coordinated scandium complex. Zeitschrift fur Anorganische und Allgemeine Chemie, 2013, 639(2): 340–346
https://doi.org/10.1002/zaac.201200386
7 Kremer M, Englert U. N Donor substituted acetylacetones—versatile ditopic ligands. Zeitschrift für Kristallographie-Crystalline Materials, 2018,
https://doi.org/10.1515/zkri-2017-2131
8 Chen B, Fronczek F R, Maverick A W. Solvent-dependent 44 square grid and 64.82 NbO frameworks formed by Cu(Pyac)2 (bis[3-(4-pyridyl)pentane-2,4-dionato]copper(II)). Chemical Communications, 2003, (17): 2166–2167
https://doi.org/10.1039/b305457h pmid: 13678183
9 Chen B, Fronczek F R, Maverick A W. Porous Cu-Cd mixed-metal-organic frameworks constructed from Cu(Pyac)2 [Bis[3-(4-pyridyl)pentane-2,4-dionato]copper(II)]. Inorganic Chemistry, 2004, 43(26): 8209–8211
https://doi.org/10.1021/ic048992n pmid: 15606158
10 Zhang Y, Chen B, Fronczek F R, Maverick A W. A nanoporous Ag-Fe mixed-metal-organic framework exhibiting single-crystal-to-single-crystal transformations upon guest exchange. Inorganic Chemistry, 2008, 47(11): 4433–4435
https://doi.org/10.1021/ic800183v pmid: 18454517
11 Vreshch V D, Lysenko A B, Chernega A N, Sieler J, Domasevitch K V. Heterobimetallic Cd(Zn)/Be coordination polymers involving pyridyl functionalized beryllium diketonates. Polyhedron, 2005, 24(8): 917–926
https://doi.org/10.1016/j.poly.2005.02.023
12 Vreshch V D, Lysenko A B, Chernega A N, Howard J A K, Krautscheid H, Sieler J, Domasevitch K V. Extended coordination frameworks incorporating heterobimetallic squares. Dalton Transactions, 2004, (18): 2899–2903
https://doi.org/10.1039/b407244h pmid: 15349164
13 Vreshch V D, Chernega A N, Howard J A K, Sieler J, Domasevitch K V. Two-step construction of molecular and polymeric mixed-metal Cu(Co)/Be complexes employing functionality of a pyridyl substituted acetylacetonate. Dalton Transactions, 2003, (9): 1707–1711
https://doi.org/10.1039/b212733d
14 Guo Q, Englert U. Neutral mixed-metal coordination polymers based on a ditopic acetylacetonate, Mg(ii) and Ag(i): Syntheses, characterization and solvent-dependent topologies. Dalton Transactions, 2017, 46(26): 8514–8523
https://doi.org/10.1039/C7DT01283G pmid: 28636049
15 Silvernail C M, Yap G, Sommer R D, Rheingold A L, Day V W, Belot J A. An effective synthesis of alkyl b-cyano-a,g-diketones using chlorosulfonylisocyanate and a representative Cu(II) complex. Polyhedron, 2001, 20(26–27): 3113–3117
https://doi.org/10.1016/S0277-5387(01)00935-4
16 Guo Q, Merkens C, Si R, Englert U. Crosslinking of the Pd(acacCN)2 building unit with Ag(I) salts: Dynamic 1D polymers and an extended 3D network. CrystEngComm, 2015, 17(23): 4383–4393
https://doi.org/10.1039/C5CE00043B
17 Guo Q, Englert U. Controlled stepwise synthesis of a Cu-MOF: Transmetallation of a magnesium precursor to a three-dimensional framework with very high solvent content. Zeitschrift für Kristallographie-Crystalline Materials, 2017, 232(11): 759–765
18 SAINT+ (version 7.68). Program for Reduction of Data Collected on Bruker CCD Area Detector Diffractometer, 2009
19 Sheldrick G M. SADABS (version 2.03). Program for Empirical Absorption Correction of Area Detector Data, 2004
20 Sheldrick G M. A short history of SHELX. Acta Crystallographica. Section A, Foundations and Advances, 2008, 64(1): 112–122
https://doi.org/10.1107/S0108767307043930 pmid: 18156677
21 Sheldrick G M. Crystal structure refinement with SHELXL. Acta Crystallographica. Section C, Structural Chemistry, 2015, 71(1): 3–8
https://doi.org/10.1107/S2053229614024218 pmid: 25567568
22 Flack H D. On enantiomorph-polarity estimation. Acta Crystallographica. Section A, Foundations and Advances, 1983, 39: 876–881
23 Groom C R, Bruno I J, Lightfoot M P, Ward S C. The Cambridge Structural Database. Acta Crystallographica. Section B, Structural Science, Crystal Engineering and Materials, 2016, 72(2): 171–179
https://doi.org/10.1107/S2052520616003954 pmid: 27048719
24 CSD Version 5.39, including updates until Nov. 2017
25 Du J, Cao M D, Feng S L, Su F, Sang X J, Zhang L C, You W S, Yang M, Zhu Z M. Two new preyssler-type polyoxometalate-based coordination polymers and their application in horseradish peroxidase immobilization. Chemistry, 2017, 23(58): 14614–14622
https://doi.org/10.1002/chem.201703158 pmid: 28833778
26 Beichel W, Preiss U P, Benkmil B, Steinfeld G, Eiden P, Kraft A, Krossing I. Temperature dependent crystal structure analyses and ion volume determinations of organic salts. Zeitschrift fur Anorganische und Allgemeine Chemie, 2013, 639(12–13): 2153–2161
https://doi.org/10.1002/zaac.201300246
27 Lang J P, Tatsumi K. Aggregation of the half-sandwich trisulfido complex of tungsten with silver ions: Synthesis of a cyanide-bridged helical polymer { [ ( η 5− C 5 M e 5)WS3]2 A g 5(C N)}∞ and a cyclic cluster [( η5−C5Me5) WS3Ag]4. Inorganic Chemistry, 1999, 38(6): 1364–1367
https://doi.org/10.1021/ic980883j pmid: 11670928
28 Croizat P, Sculfort S, Welter R, Braunstein P. Hexa- and octanuclear heterometallic clusters with copper-, silver-, or gold-molybdenum bonds and d10-d10 interactions. Organometallics, 2016, 35(23): 3949–3958
https://doi.org/10.1021/acs.organomet.6b00745
29 Sculfort S, Welter R, Braunstein P. Heterometallicchains and clusters with gold-transition metal bonds: synthesis and interconversion. Inorganic Chemistry, 2010, 49(5): 2372–2382
https://doi.org/10.1021/ic902245v pmid: 20121149
30 Lang J P, Kawaguchi H, Tatsumi K. Synthesis of a heterobimetallic ladder polymer [( η5−C5Me5) WS3A g2Br]n. Inorganic Chemistry, 1997, 36(27): 6447–6449
https://doi.org/10.1021/ic970687x
31 Sakane G, Shibahara T, Hou H, Liu Y, Xin X. Solid state synthesis and crystal structure of a novel cluster, [WS4Ag3 I(AsPh3)3](SAsPh3). Transition Metal Chemistry, 1996, 21(5): 398–400
https://doi.org/10.1007/BF00140778
32 Sculfort S, Croizat P, Messaoudi A, Bénard M, Rohmer M M, Welter R, Braunstein P. Two-dimensional triangular and square heterometallic clusters: influence of the closed-shell d10 electronic configuration. Angewandte Chemie International Edition, 2009, 48(51): 9663–9667
https://doi.org/10.1002/anie.200903895 pmid: 19824031
33 Jin Q H, Wang R, Hu K Y, Xiao Y L, Cui L N, Zhang C L. Construction of two novel tungsten(VI)–silver(I) mixed metal clusters controlled by bis(diphenylphosphino) methane and coordinated inorganic anions. Inorganica Chimica Acta, 2011, 367(1): 93–97
https://doi.org/10.1016/j.ica.2010.12.003
34 Yang Y, Liu Q, Huang L, Kang B, Lu J. Assembly of heterometallic V2M2S4 cubane-like clusters. Syntheses and structures of [Et4N]2[V2M2S4(OC4H8dtc)2(SPh)2](M= Cu, Ag; dtc= dithiocarbamate). Journal of the Chemical Society, Chemical Communications, 1992, (20): 1512–1514
https://doi.org/10.1039/c39920001512
35 Lang J P, Xin X Q, Cai J H, Kang B S. Studies on solid state reactions of coordination compounds. LXIII. Solid state synthesis of a series of tetranuclear Mo(W)-Ag mixed-metal clusters. Crystal structures of [(n-Bu)4N]3[MoOS3Ag3Br4] and [(n-Bu)4N]3. Chinese Journal of Chemistry, 1993, 11(5): 418–424
https://doi.org/10.1002/cjoc.19930110506
36 O’Keeffe M, Peskov M A, Ramsden S J, Yaghi O M. The Reticular Chemistry Structure Resource (RCSR) database of, and symbols for, crystal nets. Accounts of Chemical Research, 2008, 41(12): 1782–1789
https://doi.org/10.1021/ar800124u pmid: 18834152
37 Dolomanov O V, Blake A J, Champness N R, Schröder M. OLEX: New software for visualization and analysis of extended crystal structures. Journal of Applied Crystallography, 2003, 36(5): 1283–1284
https://doi.org/10.1107/S0021889803015267
38 Truong K N, Müller P, Dronskowski R, Englert U. Dynamic uptake and release of water in the mixed-metal EDTA complex M3[Yb(EDTA)(CO3)] (M= K, Rb, Cs). Crystal Growth & Design, 2017, 17(1): 80–88
https://doi.org/10.1021/acs.cgd.6b01227
39 Creighton J A, Albrecht M G, Hester R E, Matthew J A D. The dependence of the intensity of Raman bands of pyridine at a silver electrode on the wavelength of excitation. Chemical Physics Letters, 1978, 55(1): 55–58
https://doi.org/10.1016/0009-2614(78)85131-8
40 Guo Q, Englert U. An acetylacetonate or a pyrazole? Both! 3-(3,5-Dimethyl-pyrazol-4-yl)pentane-2,4-dione as a ditopic ligand. Crystal Growth & Design, 2016, 16(9): 5127–5135
https://doi.org/10.1021/acs.cgd.6b00710
41 Cohen M D, Schmidt G M J. Topochemistry. Part I. A survey. Journal of the Chemical Society, 1964: 1996–2000
https://doi.org/10.1039/jr9640001996
[1] FCE-18021-OF-GQ_suppl_1 Download
[1] Annett SCHROETER, Tanja ENGELBRECHT, Reinhard H. H. NEUBERT. Influence of short chain ceramides and lipophilic penetration enhancers on the nano-structure of stratum corneum model membranes studied using neutron diffraction[J]. Front Chem Sci Eng, 2013, 7(1): 29-36.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed