Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2019, Vol. 13 Issue (1) : 70-79    https://doi.org/10.1007/s11705-018-1745-4
RESEARCH ARTICLE
Preparation of copolymer-grafted mixed-mode resins for immunoglobulin G adsorption
Shenggang Chen, Tao Liu, Ruiqi Yang, Dongqiang Lin, Shanjing Yao()
Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
 Download: PDF(520 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The mixed-mode resins for protein adsorption have been prepared by a novel strategy, copolymer grafting. Specially, the copolymer-grafted resins CG-M-A with two functional groups, 5-amino-benzimidazole (ABI) and methacryloxyethyltrimethyl ammonium chloride (METAC), have been prepared through surface-initiated activator generated by electron transfer for atom transfer radical polymerization of METAC and glycidyl methacrylate (GMA), followed by a ring-open reaction to introduce ABI. The charge and hydrophobicity of CG-M-A resins could be controlled by manipulating the addition of METAC and GMA/ABI. Besides, METAC and ABI provided positive effects together in both protein adsorption and elution: dynamic binding capacity of human Immunoglobulin G (hIgG) onto CG-M-A resin with the highest ligand ratio of METAC to ABI is 46.8 mg·g1 at pH 9 and the elution recovery of hIgG is 97.0% at pH 5. The separation experiment showed that purity and recovery of monoclonal antibody from cell culture supernatant are 96.0% and 86.5%, respectively, indicating that copolymer-grafted mixed-mode resins could be used for antibody purification.

Keywords atom transfer radical polymerization      copolymer-grafting      mixed-mode resin      protein adsorption     
Corresponding Author(s): Shanjing Yao   
Just Accepted Date: 14 May 2018   Online First Date: 13 September 2018    Issue Date: 25 February 2019
 Cite this article:   
Shenggang Chen,Tao Liu,Ruiqi Yang, et al. Preparation of copolymer-grafted mixed-mode resins for immunoglobulin G adsorption[J]. Front. Chem. Sci. Eng., 2019, 13(1): 70-79.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-018-1745-4
https://academic.hep.com.cn/fcse/EN/Y2019/V13/I1/70
Fig.1  Illustration of the controlled preparation of copolymer-grafted MMC resins CG-M-A
Resins Amount of monomers Ligand density Reaction efficiency
METAC /mmol?g1 GMA/ABI
/mmol?g1
LDMETAC
/mmol?g1
LDABI
/mmol?g1
METAC ABI
G-A320 0 1500 0 323±3 - 22.0%
CG-M60-A300 150 1350 56±2 302±4 40.0% 22.2%
CG-M160-A260 375 1125 157±4 259±6 42.7% 23.1%
CG-M330-A230 750 750 328±6 228±5 44.0% 30.7%
Tab.1  The METAC and GMA/ABI amount in the preparation of copolymer-grafted MMC resins, the ligand density of the copolymer-grafted MMC resins and the reaction efficiencies of METAC and ABI
Fig.2  Dextran calibration curves for copolymer-grafted MMC resins CG-M-A and polymer-grafted resin G-A320
Resins rmean/nm e ep eT
G-A320 60.3±1.1 0.42 0.58 0.76
CG-M60-A300 46.6±1.1 0.42 0.57 0.75
CG-M160-A260 38.0±1.1 0.41 0.67 0.81
CG-M330-A230 35.0±2.0 0.35 0.55 0.71
Tab.2  Interstitial, intraparticle and total porosities, and mean pore radii for copolymer-grafted MMC resins at different ligand ratios
Fig.3  Qm values of hIgG on resins G-M-A and CG-M-A with different ligand ratios at different pH
Fig.4  (a) Q10% and (b) Q10%/Q* values of hIgG on resins G-M-A and CG-M-A with different ligand ratios at different pHs
Fig.5  hIgG elution and regeneration profiles on resins CG-M-A and G-A320 using a step elution at pH 5 (20 mmol·L1) and regeneration at 0.1 mol·L1 NaOH. Loadings in all cases were 100% of the DBC at 0.65 mL·min1
Fig.6  Comparison of various samples by SEC-HPLC analysis. (a) Feedstock; (b) flow through fraction; (c) elution fraction; (d) CIP fraction. The mAb peak is at 16.6 min
1 DGao, L L Wang, D Q Lin, S J Yao. Evaluating antibody monomer separation from associated aggregates using mixed-mode chromatography. Journal of Chromatography A, 2013, 1294: 70–75
https://doi.org/10.1016/j.chroma.2013.04.018 pmid: 23639130
2 GZhao, X Y Dong, Y Sun. Ligands for mixed-mode protein chromatography: Principles, characteristics and design. Journal of Biotechnology, 2009, 144(1): 3–11
https://doi.org/10.1016/j.jbiotec.2009.04.009 pmid: 19409941
3 KKallberg, H O Johansson, L Bulow. Multimodal chromatography: An efficient tool in downstream processing of proteins. Biotechnology Journal, 2012, 7(12): 1485–1495
https://doi.org/10.1002/biot.201200074 pmid: 23139192
4 MZhu, G Carta. Protein adsorption equilibrium and kinetics in multimodal cation exchange resins. Adsorption, 2016, 22(2): 165–179
https://doi.org/10.1007/s10450-015-9735-z
5 XWang, C Bo, CWang, YWei. Controllable preparation of a hydrophilic/ion-exchange mixed-mode stationary phase by surface-initiated atom transfer radical polymerization using a mixture of two functional monomers. Journal of Separation Science, 2017, 40(9): 1861–1868
https://doi.org/10.1002/jssc.201601292 pmid: 28247469
6 PGagnon, F Hensel, SLee, SZaidi. Chromatographic behavior of IgM:DNA complexes. Journal of Chromatography A, 2011, 1218(17): 2405–2412
https://doi.org/10.1016/j.chroma.2010.12.066 pmid: 21215402
7 JChen, J Tetrault, ALey. Comparison of standard and new generation hydrophobic interaction chromatography resins in the monoclonal antibody purification process. Journal of Chromatography A, 2008, 1177(2): 272–281
https://doi.org/10.1016/j.chroma.2007.07.083 pmid: 17709111
8 VBrenac Brochier, ASchapman, PSantambien, LBritsch. Fast purification process optimization using mixed-mode chromatography sorbents in pre-packed mini-columns. Journal of Chromatography A, 2008, 1177(2): 226–233
https://doi.org/10.1016/j.chroma.2007.08.086 pmid: 17904149
9 SMenegatti, M Hussain, A DNaik, R GCarbonell, B MRao. mRNA display selection and solid-phase synthesis of Fc-binding cyclic peptide affinity ligands. Biotechnology and Bioengineering, 2013, 110(3): 857–870
https://doi.org/10.1002/bit.24760 pmid: 23108907
10 H FTong, D Q Lin, W N Chu, Q L Zhang, D Gao, R ZWang, S JYao. Multimodal charge-induction chromatography for antibody purification. Journal of Chromatography A, 2016, 1429: 258–264
https://doi.org/10.1016/j.chroma.2015.12.047 pmid: 26747689
11 R ZWang, D Q Lin, W N Chu, Q L Zhang, S J Yao. New tetrapeptide ligands designed for antibody purification with biomimetic chromatography: Molecular simulation and experimental validation. Biochemical Engineering Journal, 2016, 114: 191–201 doi:10.1016/j.bej.2016.06.030
12 LYu, N Liu, YHong, YSun. Protein adsorption and chromatography on novel mixed-mode resins fabricated from butyl-modified poly(ethylenimine)-grafted Sepharose. Chemical Engineering Science, 2015, 135: 223–231
https://doi.org/10.1016/j.ces.2015.04.016
13 R CRuaan, A Yang, DHsu. Bifunctional adsorbents for hydrophobic displacement chromatography of proteins. Biotechnology Progress, 2000, 16(6): 1132–1134
https://doi.org/10.1021/bp000059+ pmid: 11101346
14 YLi, Y Sun. Poly(4-vinylpyridine): a polymeric ligand for mixed-mode protein chromatography. Journal of Chromatography A, 2014, 1373: 97–105
https://doi.org/10.1016/j.chroma.2014.11.017 pmid: 25465367
15 TLiu, D Q Lin, H L Lu, S J Yao. Preparation and evaluation of dextran-grafted agarose resin for hydrophobic charge-induction chromatography. Journal of Chromatography A, 2014, 1369: 116–124
https://doi.org/10.1016/j.chroma.2014.10.014 pmid: 25441078
16 TLiu, D Q Lin, Q C Wu, Q L Zhang, C X Wang, S J Yao. A novel polymer-grafted hydrophobic charge-induction chromatographic resin for enhancing protein adsorption capacity. Chemical Engineering Journal, 2016, 304: 251–258
https://doi.org/10.1016/j.cej.2016.06.074
17 H LLu, D Q Lin, M M Zhu, S J Yao. Protein adsorption on DEAE ion-exchange resins with different ligand densities and pore sizes. Journal of Separation Science, 2012, 35(22): 3084–3090
https://doi.org/10.1002/jssc.201101083 pmid: 22707393
18 L LYu, S P Tao, X Y Dong, Y Sun. Protein adsorption to poly(ethylenimine)-modified Sepharose FF: I. a critical ionic capacity for drastically enhanced capacity and uptake kinetics. Journal of Chromatography A, 2013, 1305: 76–84
https://doi.org/10.1016/j.chroma.2013.07.014 pmid: 23876766
19 C XWang, D Q Lin, T Liu, S JYao. Hydrophobic charge-induction chromatographic resin with 5-aminobenzimidazol ligand: Effects of ligand density on protein adsorption. Separation Science and Technology, 2016, 51(10): 1700–1707
https://doi.org/10.1080/01496395.2016.1175477
20 J MAngelo, A Cvetkovic, RGantier, A MLenhoff. Characterization of cross-linked cellulosic ion-exchange adsorbents: 2. Protein sorption and transport. Journal of Chromatography A, 2016, 1438: 100–112
https://doi.org/10.1016/j.chroma.2016.02.019 pmid: 26905881
21 TLiu, J M Angelo, D Q Lin, A M Lenhoff, S J Yao. Characterization of dextran-grafted hydrophobic charge-induction resins: Structural properties, protein adsorption and transport. Journal of Chromatography A, 2017, 1517: 44–53
https://doi.org/10.1016/j.chroma.2017.07.090 pmid: 28855091
22 PDePhillips, A M Lenhoff. Pore size distributions of cation-exchange adsorbents determined by inverse size-exclusion chromatography. Journal of Chromatography A, 2000, 883(1–2): 39–54
https://doi.org/10.1016/S0021-9673(00)00420-9 pmid: 10910199
23 MKremer, E Pothmann, TRoessler, JBaker, AYee, H Blanch, J MPrausnitz. Pore-size distributions of cationic polyacrylamide hydrogels varying in initial monomer concentration and cross-linker-monomer ratio. Macromolecules, 1994, 27(11): 2965–2973
https://doi.org/10.1021/ma00089a012
24 RBhambure, C M Gillespie, M Phillips, HGraalfs, A MLenhoff. Ionic strength-dependent changes in tentacular ion exchangers with variable ligand density. I. Structural properties. Journal of Chromatography A, 2016, 1463: 90–101
https://doi.org/10.1016/j.chroma.2016.08.010 pmid: 27544749
25 M CStone, G Carta. Protein adsorption and transport in agarose and dextran-grafted agarose media for ion exchange chromatography. Journal of Chromatography A, 2007, 1146(2): 202–215
https://doi.org/10.1016/j.chroma.2007.02.041 pmid: 17336312
26 L LYu, Y Sun. Protein adsorption to poly(ethylenimine)-modified Sepharose FF: II. effect of ionic strength. Journal of Chromatography A, 2013, 1305: 85–93
https://doi.org/10.1016/j.chroma.2013.07.016 pmid: 23885672
27 HThomas, B Coquebert de Neuville, GStorti, MMorbidelli, MJoehnck, MSchulte. Role of tentacles and protein loading on pore accessibility and mass transfer in cation exchange materials for proteins. Journal of Chromatography A, 2013, 1285: 48–56
https://doi.org/10.1016/j.chroma.2013.01.104 pmid: 23489485
28 X MYuan, D Q Lin, Q L Zhang, D Gao, S JYao. A microcalorimetric study of molecular interactions between immunoglobulin G and hydrophobic charge-induction ligand. Journal of Chromatography A, 2016, 1443: 145–151
https://doi.org/10.1016/j.chroma.2016.03.041 pmid: 27017449
29 H FTong, D Q Lin, X M Yuan, S J Yao. Enhancing IgG purification from serum albumin containing feedstock with hydrophobic charge-induction chromatography. Journal of Chromatography A, 2012, 1244: 116–122
https://doi.org/10.1016/j.chroma.2012.04.073 pmid: 22609164
30 S CBurton, D R Harding. Hydrophobic charge induction chromatography: salt independent protein adsorption and facile elution with aqueous buffers. Journal of Chromatography A, 1998, 814(1–2): 71–81
https://doi.org/10.1016/S0021-9673(98)00436-1 pmid: 9718687
31 A RMazzer, X Perraud, JHalley, JO’Hara, D GBracewell. Protein A chromatography increases monoclonal antibody aggregation rate during subsequent low pH virus inactivation hold. Journal of Chromatography A, 2015, 1415: 83–90
https://doi.org/10.1016/j.chroma.2015.08.068 pmid: 26346187
32 PGagnon, R Nian, DLeong, AHoi. Transient conformational modification of immunoglobulin G during purification by protein A affinity chromatography. Journal of Chromatography A, 2015, 1395: 136–142
https://doi.org/10.1016/j.chroma.2015.03.080 pmid: 25882588
[1] FCE-17068-OF-CSG_suppl_1 Download
[1] Ming Zhao, Run Liu, Jian Luo, Yan Sun, Qinghong Shi. Fabrication of high-capacity cation-exchangers for protein adsorption: Comparison of grafting-from and grafting-to approaches[J]. Front. Chem. Sci. Eng., 2019, 13(1): 120-132.
[2] LI Aixiang, LU Zaijun, LÜ Zijian. Synthesis and characterization of well-defined comb-like branched polymers [J]. Front. Chem. Sci. Eng., 2008, 2(4): 407-411.
[3] ZHOU Xiaopeng, SU Xueli, SUN Yan. Analysis of statistical thermodynamic model for binary protein adsorption equilibria on cation exchange adsorbent[J]. Front. Chem. Sci. Eng., 2007, 1(2): 103-112.
[4] YU Tao, WANG Yun, LU Dairen, BAI Ruke, LU Weiqi. Synthesis of mid-dicarboxy polystyrene by ATRP and formation of ionic-bonded supramolecules[J]. Front. Chem. Sci. Eng., 2007, 1(2): 140-145.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed