Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2019, Vol. 13 Issue (2) : 310-323    https://doi.org/10.1007/s11705-018-1750-7
REVIEW ARTICLE
Carbon-based materials for photodynamic therapy: A mini-review
Di Lu, Ran Tao, Zheng Wang()
School of Pharmaceutical Science & Technology, Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
 Download: PDF(4552 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Carbon-based materials have been extensively applied in photodynamic therapy owing to the unique optical characteristics, good biocompatibility and tunable systematic toxicity. This mini-review mainly focuses on the recent application of carbon-based materials including graphene, carbon nanotube, fullerene, corannulene, carbon dot and mesoporous carbon nanoparticle. The carbon-based materials can perform not only as photosensitizers, but also effective carriers for photosensitizers in photodynamic therapy, and its combined treatment.

Keywords photodynamic therapy      carbon-based materials      graphene      carbon nanotube      fullerene      corannulene      carbon dot      mesoporous carbon nanoparticle     
Corresponding Author(s): Zheng Wang   
Just Accepted Date: 07 June 2018   Online First Date: 07 December 2018    Issue Date: 22 May 2019
 Cite this article:   
Di Lu,Ran Tao,Zheng Wang. Carbon-based materials for photodynamic therapy: A mini-review[J]. Front. Chem. Sci. Eng., 2019, 13(2): 310-323.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-018-1750-7
https://academic.hep.com.cn/fcse/EN/Y2019/V13/I2/310
Fig.1  Various derivatives of graphene: (a) graphene, (b) GO, (c) rGO, (d) porous graphene, (e) GQD and (f) three dimensional graphene foam. Panel (f) is reproduced with permission from ref. [38]. Copyright (2016) American Chemical Society
Fig.2  Illustration of the mitochondria-targeting GOQD-based photosensitizer. Reproduced with permission from ref. [42]. Copyright (2018) John Wiley and Sons
Fig.3  The synergistic enhancement of FA-GO-PEG/C60 in combined PTT and PDT. Reproduced with permission from ref. [56]. Copyright (2014) Royal Society of Chemistry
Fig.4  The synthetic process of NGO-UCNP-Ce6 and imaging-guided cancer therapy. Reproduced with permission from ref. [62]. Copyright (2018) Royal Society of Chemistry
Fig.5  Schematic diagram of SWCNT and MWCNT formed by rolled-up graphene sheet. Reproduced with permission from ref. [65]. Copyright (2016) Elsevier
Fig.6  Preparation and application of albumin/Ce6 fabricated EB/carbon nanotube-based delivery system. Reproduced with permission from ref. [84]. Copyright (2016) Elsevier
Fig.7  Schematic procedure of (A) SWCNTs-PEG, (B) GP-Fe3O4@CQDs and (C) SWCNTs-PEG-Fe3O4@CQDs. Reproduced with permission from ref. [85]. Copyright (2018) Elsevier
Fig.8  Schematic illustration of the “off-on” state of C60-DOX NPs in mouse. Reproduced with permission from ref. [98]. Copyright (2016) Elsevier
Fig.9  A schematic illustration of the nanoparticle synthesis and the capability of targeting CSCs and achieving combined chemotherapy, PDT, and PTT under NIR laser irradiation. Reproduced with permission from ref. [99]. Copyright (2016) Elsevier
Fig.10  Illustration of corannulene for ROS generation and its mitochondria accumulation. Reproduced with permission from ref. [106]. Copyright (2017) Royal Society of Chemistry
Fig.11  Schematic diagram of 630 nm light-driven water splitting enhanced PDT. Reproduced with permission from ref. [110]. Copyright (2016) American Chemical Society
1 T JDougherty, B WHenderson. Photodynamic therapy. Marcel Dekker, 1992, 1–15
2 T JDougherty, C JGomer, B WHenderson, GJori, D Kessel, MKorbelik, JMoan, Q Peng. Photodynamic therapy. Journal of the National Cancer Institute, 1998, 90(12): 889–905
https://doi.org/10.1093/jnci/90.12.889 pmid: 9637138
3 R RAllison, H C Mota, C H Sibata. Clinical PD/PDT in North America: An historical review. Photodiagnosis and Photodynamic Therapy, 2004, 1(4): 263–277
https://doi.org/10.1016/S1572-1000(04)00084-5 pmid: 25048431
4 T CSilva, A F F Pereira, R A Exterkate, V S Bagnato, M A Buzalaf, M A Machado, J M Ten Cate, W Crielaard, D MDeng. Application of an active attachment model as a high-throughput demineralization biofilm model. Journal of Dentistry, 2012, 40(1): 41–47
https://doi.org/10.1016/j.jdent.2011.09.009 pmid: 21996336
5 J CKennedy, R H Pottier. Endogenous protoporphyrin IX, a clinically useful photosensitizer for photodynamic therapy. Journal of Photochemistry and Photobiology B: Biology, 1992, 14(4): 275–292 doi:10.1016/1011-1344(92)85108-7
pmid: 1403373
6 MSzygula, A Pietrusa, MAdamek, BWojciechowski, AKawczyk-Krupka, WCebula, WDuda, A Sieron. Combined treatment of urinary bladder cancer with the use of photodynamic therapy (PDT) and subsequent BCG-therapy: A pilot study. Photodiagnosis and Photodynamic Therapy, 2004, 1(3): 241–246
https://doi.org/10.1016/S1572-1000(04)00067-5 pmid: 25048338
7 MLyons, I Phang, SEljamel. The effects of PDT in primary malignant brain tumours could be improved by intraoperative radiotherapy. Photodiagnosis and Photodynamic Therapy, 2012, 9(1): 40–45
https://doi.org/10.1016/j.pdpdt.2011.12.001 pmid: 22369727
8 MDate, K Fukuchi, YNamiki, AOkumura, SMorita, HTakahashi, KOhura. Therapeutic effect of photodynamic therapy using PAD-S31 and diode laser on human liver cancer cells. Liver International, 2004, 24(2): 142–148
https://doi.org/10.1111/j.1478-3231.2004.00902.x pmid: 15078479
9 A MAlgharib, A Sultan, JParekh, FVaz, C Hopper. Endoluminal tracheal stenting prior to head and neck PDT. Photodiagnosis and Photodynamic Therapy, 2014, 11(3): 444–446
https://doi.org/10.1016/j.pdpdt.2014.03.014 pmid: 24792454
10 B FOverholt, M Panjehpour, J MHaydek. Photodynamic therapy for Barrett’s esophagus. Gastrointestinal Endoscopy, 1997, 7(2): 207–220
https://doi.org/10.1016/S1052-5157(18)30308-8 pmid: 9101262
11 KMoghissi. Endoscopic photodynamic therapy (PDT) for oesophageal cancer. Photodiagnosis and Photodynamic Therapy, 2006, 3(2): 93–95
https://doi.org/10.1016/j.pdpdt.2006.03.005 pmid: 25049097
12 MOrtner. Photodynamic therapy for cholangiocarcinoma. Journal of Hepato-Biliary-Pancreatic Sciences, 2001, 8(2): 137–139
https://doi.org/10.1007/s005340170036 pmid: 11455469
13 FBerr, M Wiedmann, ATannapfel, UHalm, K R Kohlhaw, F Schmidt, CWittekind, JHauss, JMössner. Photodynamic therapy for advanced bile duct cancer: Evidence for improved palliation and extended survival. Hepatology, 2000, 31(2): 291–298
https://doi.org/10.1002/hep.510310205 pmid: 10655248
14 S GBown, A Z Rogowska, D E Whitelaw, W R Lees, L B Lovat, P Ripley, LJones, PWyld, A Gillams, A WHatfield. Photodynamic therapy for cancer of the pancreas. Gut, 2002, 50(4): 549–557
https://doi.org/10.1136/gut.50.4.549 pmid: 11889078
15 YQiang, X Zhang, JLi, ZHuang. Medical progress. Chinese Medical Journal, 2006, 119(10): 845–857
pmid: 16732988
16 D JKereiakes, A MSzyniszewski, DWahr, H C Herrmann, D I Simon, C Rogers, PKramer, WShear, A CYeung, K AShunk, et al.. Phase I drug and light dose-escalation trial of motexafin lutetium and far red light activation (phototherapy) in subjects with coronary artery disease undergoing percutaneous coronary intervention and stent deployment: Procedural and long-term results. Circulation, 2003, 108(11): 1310–1315
https://doi.org/10.1161/01.CIR.0000087602.91755.19 pmid: 12939212
17 BPollock, D Turner, M RStringer, R ABojar, VGoulden, G IStables, W JCunliffe. Topical aminolaevulinic acid-photodynamic therapy for the treatment of acne vulgaris: A study of clinical efficacy and mechanism of action. British Journal of Dermatology, 2004, 151(3): 616–622
https://doi.org/10.1111/j.1365-2133.2004.06110.x pmid: 15377348
18 D EDolmans, D Fukumura, R KJain. Photodynamic therapy for cancer. Nature Reviews: Cancer, 2003, 3(5): 380–387
https://doi.org/10.1038/nrc1071 pmid: 12724736
19 LDing. Phthalocyanine based photosensitizers for photodynamic therapy. Chinese Journal of Inorganic Chemistry, 2013, 29(8): 1591–1598
20 DZhenjun, J W Lown. Hypocrellins and their use in photosensitization. Photochemistry and Photobiology, 1990, 52(3): 609–616
https://doi.org/10.1111/j.1751-1097.1990.tb01807.x pmid: 2284353
21 JCao, H An, XHuang, GFu, R Zhuang, LZhu, JXie, F Zhang. Monitoring of the tumor response to nano-graphene oxide-mediated photothermal/photodynamic therapy by diffusion-weighted and BOLD MRI. Nanoscale, 2016, 8(19): 10152–10159
https://doi.org/10.1039/C6NR02012G pmid: 27121639
22 PRong, K Yang, ASrivastan, D OKiesewetter, XYue, F Wang, LNie, ABhirde, ZWang, Z Liu, et al.. Photosensitizer loaded nano-graphene for multimodality imaging guided tumor photodynamic therapy. Theranostics, 2014, 4(3): 229–239
https://doi.org/10.7150/thno.8070 pmid: 24505232
23 R OOgbodu, I Ndhundhuma, AKarsten, TNyokong. Photodynamic therapy effect of zinc monoamino phthalocyanine-folic acid conjugate adsorbed on single walled carbon nanotubes on melanoma cells. Spectrochimica Acta. Part A: Molecular and Biomolecular Spectroscopy, 2015, 137: 1120–1125
https://doi.org/10.1016/j.saa.2014.09.033 pmid: 25305603
24 R OOgbodu, E K Amuhaya, P Mashazi, TNyokong. Photophysical properties of zinc phthalocyanine-uridine single walled carbon nanotube--conjugates. Spectrochimica Acta. Part A: Molecular and Biomolecular Spectroscopy, 2015, 149: 231–239
https://doi.org/10.1016/j.saa.2015.04.040 pmid: 25965170
25 XWang, C X Yang, J T Chen, X P Yan. A dual-targeting upconversion nanoplatform for two-color fluorescence imaging-guided photodynamic therapy. Analytical Chemistry, 2014, 86(7): 3263–3267
https://doi.org/10.1021/ac500060c pmid: 24621215
26 CYu, P Avci, TCanteenwala, L YChiang, B JChen, M RHamblin. Photodynamic therapy with hexa (sulfo-n-butyl) [60] fullerene against sarcoma in vitro and in vivo. Journal of Nanoscience and Nanotechnology, 2016, 16(1): 171–181
https://doi.org/10.1166/jnn.2016.10652 pmid: 27398442
27 B PJiang, L F Hu, X C Shen, S C Ji, Z Shi, C JLiu, LZhang, HLiang. One-step preparation of a water-soluble carbon nanohorn/phthalocyanine hybrid for dual-modality photothermal and photodynamic therapy. ACS Applied Materials & Interfaces, 2014, 6(20): 18008–18017
https://doi.org/10.1021/am504860c pmid: 25248075
28 MZhang, T Murakami, KAjima, KTsuchida, A SSandanayaka, OIto, S Iijima, MYudasaka. Fabrication of ZnPc/protein nanohorns for double photodynamic and hyperthermic cancer phototherapy. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(39): 14773–14778
https://doi.org/10.1073/pnas.0801349105 pmid: 18815374
29 ABattigelli, M C Ménard, A Bianco. Carbon nanomaterials as new tools for immunotherapeutic applications. Journal of Materials Chemistry B: Materials for Biology and Medicine, 2014, 2(37): 6144–6156
https://doi.org/10.1039/C4TB00563E
30 QLi, L Hong, HLi, CLiu. Graphene oxide-fullerene C60 (GO-C60) hybrid for photodynamic and photothermal therapy triggered by near-infrared light. Biosensors & Bioelectronics, 2017, 89(Part 1): 477–482
https://doi.org/10.1016/j.bios.2016.03.072 pmid: 27055602
31 JShi, Y Liu, LWang, JGao, J Zhang, XYu, RMa, R Liu, ZZhang. A tumoral acidic pH-responsive drug delivery system based on a novel photosensitizer (fullerene) for in vitro and in vivo chemo-photodynamic therapy. Acta Biomaterialia, 2014, 10(3): 1280–1291
https://doi.org/10.1016/j.actbio.2013.10.037 pmid: 24211343
32 GHong, S Diao, A LAntaris, HDai. Carbon nanomaterials for biological imaging and nanomedicinal therapy. Chemical Reviews, 2015, 115(19): 10816–10906
https://doi.org/10.1021/acs.chemrev.5b00008 pmid: 25997028
33 GModugno, C Ménard-Moyon, MPrato, ABianco. Carbon nanomaterials combined with metal nanoparticles for theranostic applications. British Journal of Clinical Pharmacology, 2015, 172(4): 975–991
https://doi.org/10.1111/bph.12984 pmid: 25323135
34 DBitounis, H Ali-Boucetta, B HHong, D HMin, KKostarelos. Prospects and challenges of graphene in biomedical applications. Advanced Materials, 2013, 25(16): 2258–2268
https://doi.org/10.1002/adma.201203700 pmid: 23494834
35 KYang, L Feng, XShi, ZLiu. Nano-graphene in biomedicine: theranostic applications. Chemical Society Reviews, 2013, 42(2): 530–547
https://doi.org/10.1039/C2CS35342C pmid: 23059655
36 SShi, K Yang, HHong, H FValdovinos, T RNayak, YZhang, C PTheuer, T EBarnhart, ZLiu, W Cai. Tumor vasculature targeting and imaging in living mice with reduced graphene oxide. Biomaterials, 2013, 34(12): 3002–3009
https://doi.org/10.1016/j.biomaterials.2013.01.047 pmid: 23374706
37 XShi, H Gong, YLi, CWang, L Cheng, ZLiu. Graphene-based magnetic plasmonic nanocomposite for dual bioimaging and photothermal therapy. Biomaterials, 2013, 34(20): 4786–4793
https://doi.org/10.1016/j.biomaterials.2013.03.023 pmid: 23557860
38 JQin, H Chen, HChang, YMa, Y Chen. Highly reusable and environmentally friendly solid fuel material based on three-dimensional graphene foam. Energy & Fuels, 2016, 30(11): 9876–9881
https://doi.org/10.1021/acs.energyfuels.6b01867
39 W SKuo, Y T Shao, K S Huang, T M Chou, C H Yang, P Chen, CChang, CHuang, CHsu, T Chou. Antimicrobial amino-functionalized nitrogen-doped graphene quantum dots for eliminating multidrug-resistant species in dual-modality photodynamic therapy and bioimaging under two-photon excitation. ACS Applied Materials & Interfaces, 2018, 10(17): 14438–14446
https://doi.org/10.1021/acsami.8b01429 pmid: 29620851
40 Z MMarkovic, B Z Ristic, K M Arsikin, D G Klisic, L M Harhaji-Trajkovic, B M Todorovic-Markovic, D P Kepic, T K Kravic-Stevovic, S P Jovanovic, M M Milenkovic, et al.. Graphene quantum dots as autophagy-inducing photodynamic agents. Biomaterials, 2012, 33(29): 7084–7092
https://doi.org/10.1016/j.biomaterials.2012.06.060 pmid: 22795854
41 JGe, M Lan, BZhou, WLiu, L Guo, HWang, QJia, G Niu, XHuang, HZhou, et al.. A graphene quantum dot photodynamic therapy agent with high singlet oxygen generation. Nature Communications, 2014, 5(1): 4596
https://doi.org/10.1038/ncomms5596 pmid: 25105845
42 YLiu, Y Xu, XGeng, YHuo, D Chen, KSun, GZhou, B Chen, KTao. Synergistic targeting and efficient photodynamic therapy based on graphene oxide quantum dot-upconversion nanocrystal hybrid nanoparticles. Small, 2018, 14(19): e1800293
https://doi.org/10.1002/smll.201800293 pmid: 29665272
43 D KChatterjee, L SFong, YZhang. Nanoparticles in photodynamic therapy: An emerging paradigm. Advanced Drug Delivery Reviews, 2008, 60(15): 1627–1637
https://doi.org/10.1016/j.addr.2008.08.003 pmid: 18930086
44 DChen, R Tao, KTao, BChen, S K Choi, Q Tian, YXu, GZhou, K Sun. Efficacy dependence of photodynamic therapy mediated by upconversion nanoparticles: Subcellular positioning and irradiation productivity. Small, 2017, 13(13): 1602053
https://doi.org/10.1002/smll.201602053 pmid: 28060457
45 DHu, J Zhang, GGao, ZSheng, HCui, L Cai. Indocyanine green-loaded polydopamine-reduced graphene oxide nanocomposites with amplifying photoacoustic and photothermal effects for cancer theranostics. Theranostics, 2016, 6(7): 1043–1052
https://doi.org/10.7150/thno.14566 pmid: 27217837
46 LZhou, L Zhou, SWei, XGe, J Zhou, HJiang, FLi, J Shen. Combination of chemotherapy and photodynamic therapy using graphene oxide as drug delivery system. Journal of Photochemistry and Photobiology B: Biology, 2014, 135(3): 7–16
https://doi.org/10.1016/j.jphotobiol.2014.04.010 pmid: 24792568
47 CMcCallion, J Burthem, KRees-Unwin, AGolovanov, APluen. Graphene in therapeutics delivery: Problems, solutions and future opportunities. European Journal of Pharmaceutics and Biopharmaceutics, 2016, 104: 235–250
https://doi.org/10.1016/j.ejpb.2016.04.015 pmid: 27113141
48 YCho, Y Choi. Graphene oxide-photosensitizer conjugate as a redox-responsive theranostic agent. Chemical Communications, 2012, 48(79): 9912–9914
https://doi.org/10.1039/c2cc35197h pmid: 22932979
49 TAkbari, M Pourhajibagher, FHosseini, NChiniforush, EGholibegloo, MKhoobi, SShahabi, ABahador. The effect of indocyanine green loaded on a novel nano-graphene oxide for high performance of photodynamic therapy against Enterococcus faecalis. Photodiagnosis and Photodynamic Therapy, 2017, 20: 148–153
https://doi.org/10.1016/j.pdpdt.2017.08.017 pmid: 28867453
50 KYang, J Wan, SZhang, BTian, Y Zhang, ZLiu. The influence of surface chemistry and size of nanoscale graphene oxide on photothermal therapy of cancer using ultra-low laser power. Biomaterials, 2012, 33(7): 2206–2214
https://doi.org/10.1016/j.biomaterials.2011.11.064 pmid: 22169821
51 XMa, H Tao, KYang, LFeng, L Cheng, XShi, YLi, L Guo, ZLiu. A functionalized graphene oxide-iron oxide nanocomposite for magnetically targeted drug delivery, photothermal therapy, and magnetic resonance imaging. Nano Research, 2012, 5(3): 199–212
https://doi.org/10.1007/s12274-012-0200-y
52 BTian, C Wang, SZhang, LFeng, Z Liu. Photothermally enhanced photodynamic therapy delivered by nano-graphene oxide. ACS Nano, 2011, 5(9): 7000–7009
https://doi.org/10.1021/nn201560b pmid: 21815655
53 ASahu, W I Choi, J H Lee, G Tae. Graphene oxide mediated delivery of methylene blue for combined photodynamic and photothermal therapy. Biomaterials, 2013, 34(26): 6239–6248
https://doi.org/10.1016/j.biomaterials.2013.04.066 pmid: 23706688
54 YWang, H Wang, DLiu, SSong, X Wang, HZhang. Graphene oxide covalently grafted upconversion nanoparticles for combined NIR mediated imaging and photothermal/photodynamic cancer therapy. Biomaterials, 2013, 34(31): 7715–7724
https://doi.org/10.1016/j.biomaterials.2013.06.045 pmid: 23859660
55 GGollavelli, Y C Ling. Magnetic and fluorescent graphene for dual modal imaging and single light induced photothermal and photodynamic therapy of cancer cells. Biomaterials, 2014, 35(15): 4499–4507
https://doi.org/10.1016/j.biomaterials.2014.02.011 pmid: 24602568
56 ZHu, J Li, YHuang, LChen, Z Li. Functionalized graphene/C60 nanohybrid for targeting photothermally enhanced photodynamic therapy. RSC Advances, 2014, 5(1): 654–664
https://doi.org/10.1039/C4RA13427C
57 JPu, Y Mo, SWan, LWang. Fabrication of novel graphene-fullerene hybrid lubricating films based on self-assembly for MEMS applications. Chemical Communications, 2014, 50(4): 469–471
https://doi.org/10.1039/C3CC47486K pmid: 24257346
58 PSong, L Liu, GHuang, YYu, Q Guo. Largely enhanced thermal and mechanical properties of polymer nanocomposites via incorporating C60@graphene nanocarbon hybrid. Nanotechnology, 2013, 24(50): 505706
https://doi.org/10.1088/0957-4484/24/50/505706 pmid: 24270978
59 A KGeim. Graphene: Status and prospects. Science, 2009, 324(5934): 1530–1534
https://doi.org/10.1126/science.1158877 pmid: 19541989
60 YZhu, S Murali, WCai, XLi, J W Suk, J R Potts, R S Ruoff. Graphene and graphene oxide: Synthesis, properties, and applications. Advanced Materials, 2010, 22(35): 3906–3924
https://doi.org/10.1002/adma.201001068 pmid: 20706983
61 XSun, Z Liu, KWelsher, J TRobinson, AGoodwin, SZaric, HDai. Nano-graphene oxide for cellular imaging and drug delivery. Nano Research, 2008, 1(3): 203–212
https://doi.org/10.1007/s12274-008-8021-8 pmid: 20216934
62 AGulzar, J Xu, DYang, LXu, F He, SGai, PYang. Nano-graphene oxide-UCNP-Ce6 covalently constructed nanocomposites for NIR-mediated bioimaging and PTT/PDT combinatorial therapy. Dalton Transactions, 2018, 47(11): 3931–3939
https://doi.org/10.1039/C7DT04141A pmid: 29459928
63 M RFalvo, G J Clary, R M Taylor II, V Chi, F PBrooks Jr, SWashburn, RSuperfine. Bending and buckling of carbon nanotubes under large strain. Nature, 1997, 389(6651): 582–584
https://doi.org/10.1038/39282 pmid: 9335495
64 M RFalvo, R M Taylor II, A Helser, VChi, F PBrooks Jr, SWashburn, RSuperfine. Nanometre-scale rolling and sliding of carbon nanotubes. Nature, 1999, 397(6716): 236–238
https://doi.org/10.1038/16662 pmid: 9930698
65 M N A W MYazid, N A CSidik, RMamat, GNajafi. A review of the impact of preparation on stability of carbon nanotube nanofluids. International Communications in Heat and Mass Transfer, 2016, 78: 253–263
https://doi.org/10.1016/j.icheatmasstransfer.2016.09.021
66 B QWei, R Vajtai, YJung, JWard, R Zhang, GRamanath, P MAjayan. Microfabrication technology: Organized assembly of carbon nanotubes. Nature, 2002, 416(6880): 495–496
https://doi.org/10.1038/416495a pmid: 11932732
67 NGandra, P L Chiu, W Li, Y RAnderson, SMitra, HHe, R Gao. Photosensitized singlet oxygen production upon two-photon excitation of single-walled carbon nanotubes and their functionalized analogs. Journal of Physical Chemistry C: Nanomaterials and Interfaces, 2009, 113(13): 5182–8185
https://doi.org/10.1021/jp809268q pmid: 20046942
68 TMurakami, H Nakatsuji, MInada, YMatoba, TUmeyama, MTsujimoto, SIsoda, MHashida, HImahori. Photodynamic and photothermal effects of semiconducting and metallic-enriched single-walled carbon nanotubes. Journal of the American Chemical Society, 2012, 134(43): 17862–17865
https://doi.org/10.1021/ja3079972 pmid: 23083004
69 LWang, J Shi, RLiu, YLiu, J Zhang, XYu, JGao, C Zhang, ZZhang. Photodynamic effect of functionalized single-walled carbon nanotubes: A potential sensitizer for photodynamic therapy. Nanoscale, 2014, 6(9): 4642–4651
https://doi.org/10.1039/C3NR06835H pmid: 24647856
70 HAli-Boucetta, K Kostarelos. Carbon nanotubes in medicine & biology—therapy and diagnostics. Advanced Drug Delivery Reviews, 2013, 65(15): 1897–1898
https://doi.org/10.1016/j.addr.2013.11.002 pmid: 24220279
71 A JAndersen, J T Robinson, H Dai, A CHunter, T LAndresen, S MMoghimi. Single-walled carbon nanotube surface control of complement recognition and activation. ACS Nano, 2013, 7(2): 1108–1119
https://doi.org/10.1021/nn3055175 pmid: 23301860
72 XMa, L H Zhang, L R Wang, X Xue, J HSun, YWu, G Zou, XWu, P CWang, W GWamer, et al.. Single-walled carbon nanotubes alter cytochrome c electron transfer and modulate mitochondrial function. ACS Nano, 2012, 6(12): 10486–10496
https://doi.org/10.1021/nn302457v pmid: 23171082
73 AStaicu, A Smarandache, APascu, M LPascu. Photophysics of covalently functionalized single wall carbon nanotubes with verteporfin. Applied Surface Science, 2017, 417: 170–174
https://doi.org/10.1016/j.apsusc.2017.03.031
74 BAveline, T Hasan, R WRedmond, BAveline, THasan, R WRedmond. Photophysical and photosensitizing properties of benzoporphyrin derivative monoacid ring A (BPD-MA). Photochemistry and Photobiology, 1994, 59(3): 328–335
https://doi.org/10.1111/j.1751-1097.1994.tb05042.x pmid: 8016212
75 USah, K Sharma, NChaudhri, MSankar, PGopinath. Antimicrobial photodynamic therapy: Single-walled carbon nanotube (SWCNT)-Porphyrin conjugate for visible light mediated inactivation of Staphylococcus aureus. Colloids and Surfaces B: Biointerfaces, 2018, 162: 108–117
https://doi.org/10.1016/j.colsurfb.2017.11.046 pmid: 29190461
76 S MBachilo, M S Strano, C Kittrell, R HHauge, R ESmalley, R BWeisman. Structure-assigned optical spectra of single-walled carbon nanotubes. Science, 2002, 298(5602): 2361–2366
https://doi.org/10.1126/science.1078727 pmid: 12459549
77 MZhang, J Wang, WWang, JZhang, NZhou. Magnetofluorescent photothermal micelles packaged with GdN@CQDs as photothermal and chemical dual-modal therapeutic agents. Chemical Engineering Journal, 2017, 330: 442–452
https://doi.org/10.1016/j.cej.2017.07.138
78 RSingh, S V Torti. Carbon nanotubes in hyperthermia therapy. Advanced Drug Delivery Reviews, 2013, 65(15): 2045–2060
https://doi.org/10.1016/j.addr.2013.08.001 pmid: 23933617
79 CLiang, S Diao, CWang, HGong, T Liu, GHong, XShi, H Dai, ZLiu. Tumor metastasis inhibition by imaging-guided photothermal therapy with single-walled carbon nanotubes. Advanced Materials, 2014, 26(32): 5646–5652
https://doi.org/10.1002/adma.201401825 pmid: 24924258
80 BZhang, H Wang, SShen, XShe, W Shi, JChen, QZhang, YHu, Z Pang, XJiang. Fibrin-targeting peptide CREKA-conjugated multi-walled carbon nanotubes for self-amplified photothermal therapy of tumor. Biomaterials, 2016, 79: 46–55
https://doi.org/10.1016/j.biomaterials.2015.11.061 pmid: 26695116
81 V SMurali, C Mikoryak, RWang, R KDraper. Abstract 5374: Effect of carbon nanotube amount and subcellular location on the near infrared (NIR) photothermal ablation of cells. Cancer Research, 2014, 74(19): 5374–5374
https://doi.org/10.1158/1538-7445.AM2014-5374
82 YHashida, H Tanaka, SZhou, SKawakami, FYamashita, TMurakami, TUmeyama, HImahori, MHashida. Photothermal ablation of tumor cells using a single-walled carbon nanotube-peptide composite. Journal of Controlled Release, 2014, 173(1): 59–66
https://doi.org/10.1016/j.jconrel.2013.10.039 pmid: 24211651
83 IMarangon, C Ménard-Moyon, A K ASilva, ABianco, NLuciani, FGazeau. Synergic mechanisms of photothermal and photodynamic therapies mediated by photosensitizer/carbon nanotube complexes. Carbon, 2016, 97(6): 110–123
https://doi.org/10.1016/j.carbon.2015.08.023
84 LXie, G Wang, HZhou, FZhang, ZGuo, C Liu, XZhang, LZhu. Functional long circulating single walled carbon nanotubes for fluorescent/photoacoustic imaging-guided enhanced phototherapy. Biomaterials, 2016, 103: 219–228
https://doi.org/10.1016/j.biomaterials.2016.06.058 pmid: 27392290
85 MZhang, W Wang, YCui, XChu, B Sun, NZhou, JShen. Magnetofluorescent Fe3O4/carbon quantum dots coated single-walled carbon nanotubes as dual-modal targeted imaging and chemo/photodynamic/photothermal triple-modal therapeutic agents. Chemical Engineering Journal, 2018, 338: 526–538
https://doi.org/10.1016/j.cej.2018.01.081
86 H WKroto, J R Heath, S C O’Brien, R F Curl, R E Smalley. C60: Buckminsterfullerene. Nature, 1985, 318(6042): 162–163
https://doi.org/10.1038/318162a0
87 WKrätschmer, L D Lamb, K Fostiropoulos, D RHuffman. Solid C60: A new form of carbon. Nature, 1990, 347(6291): 354–358
https://doi.org/10.1038/347354a0
88 R JWilson, G Meijer, D SBethune, R DJohnson, DChambliss, M Sde Vries, H EHunziker, H RWendt. Imaging C60 clusters on a surface using a scanning tunnelling microscope. Nature, 1990, 348(6302): 621–622
https://doi.org/10.1038/348621a0
89 GJia, H Wang, LYan, XWang, R Pei, TYan, YZhao, X Guo. Cytotoxicity of carbon nanomaterials: Single-wall nanotube, multi-wall nanotube, and fullerene. Environmental Science & Technology, 2005, 39(5): 1378–1383
https://doi.org/10.1021/es048729l pmid: 15787380
90 XCai, J Hao, XZhang, BYu, J Ren, CLuo, QLi, Q Huang, XShi, WLi, J Liu. The polyhydroxylated fullerene derivative C60(OH)24 protects mice from ionizing-radiation-induced immune and mitochondrial dysfunction. Toxicology and Applied Pharmacology, 2010, 243(1): 27–34
https://doi.org/10.1016/j.taap.2009.11.009 pmid: 19914272
91 ZLi, L L Pan, F L Zhang, Z Wang, Y YShen, Z ZZhang. Preparation and characterization of fullerene (C60) amino acid nanoparticles for liver cancer cell treatment. Journal of Nanoscience and Nanotechnology, 2014, 14(6): 4513–4518
https://doi.org/10.1166/jnn.2014.8242 pmid: 24738422
92 EOtake, S Sakuma, KTorii, AMaeda, HOhi, S Yano, AMorita. Effect and mechanism of a new photodynamic therapy with glycoconjugated fullerene. Photochemistry and Photobiology, 2010, 86(6): 1356–1363
https://doi.org/10.1111/j.1751-1097.2010.00790.x pmid: 20796243
93 J WArbogast, A P Darmanyan, C S Foote, F N Diederich, R L Whetten, Y Rubin, M MAlvarez, S JAnz. Photophysical properties of sixty atom carbon molecule (C60). Journal of Physical Chemistry, 2002, 95(1): 11–12
https://doi.org/10.1021/j100154a006
94 YSaitoh, A Miyanishi, HMizuno, SKato, H Aoshima, KKokubo, NMiwa. Super-highly hydroxylated fullerene derivative protects human keratinocytes from UV-induced cell injuries together with the decreases in intracellular ROS generation and DNA damages. Journal of Photochemistry and Photobiology B: Biology, 2011, 102(1): 69–76
https://doi.org/10.1016/j.jphotobiol.2010.09.006 pmid: 20943412
95 YIwamoto, Y Yamakoshi. A highly water-soluble C60-NVP copolymer: A potential material for photodynamic therapy. Chemical Communications, 2006, 46(46): 4805–4807
https://doi.org/10.1039/B614305A pmid: 17345735
96 RAsada, F Liao, YSaitoh, NMiwa. Photodynamic anti-cancer effects of fullerene [C60]-PEG complex on fibrosarcomas preferentially over normal fibroblasts in terms of fullerene uptake and cytotoxicity. Molecular and Cellular Biochemistry, 2014, 390(1–2): 175–184
https://doi.org/10.1007/s11010-014-1968-8 pmid: 24496749
97 ZLi, F L Zhang, L L Pan, X L Zhu, Z Z Zhang. Preparation and characterization of injectable Mitoxantrone poly (lactic acid)/fullerene implants for in vivo chemo-photodynamic therapy. Journal of Photochemistry and Photobiology B: Biology, 2015, 149: 51–57
https://doi.org/10.1016/j.jphotobiol.2015.05.018 pmid: 26046749
98 JShi, B Wang, LWang, TLu, Y Fu, HZhang, ZZhang. Fullerene (C60)-based tumor-targeting nanoparticles with “off-on” state for enhanced treatment of cancer. Journal of Controlled Release, 2016, 235: 245–258
https://doi.org/10.1016/j.jconrel.2016.06.010 pmid: 27276066
99 HWang, P Agarwal, SZhao, JYu, X Lu, XHe. Combined cancer therapy with hyaluronan-decorated fullerene-silica multifunctional nanoparticles to target cancer stem-like cells. Biomaterials, 2016, 97: 62–73
https://doi.org/10.1016/j.biomaterials.2016.04.030 pmid: 27162075
100 QHu, W Sun, YLu, H NBomba, YYe, T Jiang, A JIsaacson, ZGu. Tumor microenvironment-mediated construction and deconstruction of extracellular drug-delivery depots. Nano Letters, 2016, 16(2): 1118–1126
https://doi.org/10.1021/acs.nanolett.5b04343 pmid: 26785163
101 W EBarth, R G Lawton. Dibenzo [ghi,mno] fluoranthene. Journal of the American Chemical Society, 1966, 88(2): 380–381
https://doi.org/10.1021/ja00954a049
102 LZoppi, L Martin-Samos, K KBaldridge. Effect of molecular packing on corannulene-based materials electroluminescence. Journal of the American Chemical Society, 2011, 133(35): 14002–14009
https://doi.org/10.1021/ja2040688 pmid: 21793582
103 S NSpisak, A V Zabula, A S Filatov, A Y Rogachev, M A Petrukhina. Selective endo and exo binding of alkali metals to corannulene. Angewandte Chemie, 2011, 50(35): 8090–8094
https://doi.org/10.1002/anie.201103028 pmid: 21748832
104 K KBaldridge, J SSiegel. Corannulene-based fullerene fragments C20H10-C50H10: When does a buckybowl become a buckytube? Theoretical Chemistry Accounts, 1997, 97(1–4): 67–71
https://doi.org/10.1007/s002140050238
105 F JLovas, R J McMahon, J U Grabow, M Schnell, JMack, L TScott, R LKuczkowski. Interstellar chemistry: A strategy for detecting polycyclic aromatic hydrocarbons in space. Journal of the American Chemical Society, 2005, 127(12): 4345–4349
https://doi.org/10.1021/ja0426239 pmid: 15783216
106 SLiu, D Lu, XWang, DDing, D Kong, ZWang, YZhao. Topology dictates function: Controlled ROS production and mitochondria accumulation via curved carbon materials. Journal of Materials Chemistry B: Materials for Biology and Medicine, 2017, 5(25): 4918–4925
https://doi.org/10.1039/C7TB00954B
107 LZhang, X Dong, DLu, SLiu, D Ding, DKong, AFan, Z Wang, YZhao. Controlled ROS production by corannulene: The vehicle makes a difference. Biomaterials Science, 2017, 5(7): 1236–1240
https://doi.org/10.1039/C7BM00221A pmid: 28589978
108 J HLiu, L Cao, G ELeCroy, PWang, M J Meziani, Y Dong, YLiu, P GLuo, Y PSun. Carbon quantum dots for fluorescecne labelling of cells. ACS Applied Materials & Interfaces, 2015, 7(34): 19439–19445
https://doi.org/10.1021/acsami.5b05665 pmid: 26262834
109 PHuang, J Lin, XWang, ZWang, C Zhang, MHe, KWang, F Chen, ZLi, GShen, et al.. Light-triggered theranostics based on photosensitizer-conjugated carbon dots for simultaneous enhanced-fluorescence imaging and photodynamic therapy. Advanced Materials, 2012, 24(37): 5104–5110
https://doi.org/10.1002/adma.201200650 pmid: 22718562
110 D WZheng, B Li, C XLi, J XFan, QLei, C Li, ZXu, X ZZhang. Carbon-dot-decorated carbon nitride nanoparticles for enhanced photodynamic therapy against hypoxic tumor via water splitting. ACS Nano, 2016, 10(9): 8715–8722
https://doi.org/10.1021/acsnano.6b04156 pmid: 27532320
111 YFang, Y Lv, FGong, ZWu, X Li, HZhu, LZhou, C Yao, FZhang, GZheng, et al.. Interface tension-induced synthesis of monodispersed mesoporous carbon hemispheres. Journal of the American Chemical Society, 2015, 137(8): 2808–2811
https://doi.org/10.1021/jacs.5b01522 pmid: 25680067
112 G JXu, S J Liu, H Niu, W PLv, R AWu. Functionalized mesoporous carbon nanoparticles for targeted chemo-photothermal therapy of cancer cells under near-infrared irradiation. RSC Advances, 2014, 4(64): 33986–33997
https://doi.org/10.1039/C4RA03993A
113 LZhou, K Dong, Z WChen, J SRen, X GQu. Near-infrared absorbing mesoporous carbon nanoparticle as an intelligent drug carrier for dual-triggered synergistic cancer therapy. Carbon, 2015, 82: 479–488
https://doi.org/10.1016/j.carbon.2014.10.091
114 ANel, T Xia, LMädler, NLi. Toxic potential of materials at the nanolevel. Science, 2006, 311(5761): 622–627
https://doi.org/10.1126/science.1114397 pmid: 16456071
115 SKang, M Herzberg, D FRodrigues, MElimelech. Antibacterial effects of carbon nanotubes: Size does matter! Langmuir, 2008, 24(13): 6409–6413
https://doi.org/10.1021/la800951v pmid: 18512881
116 C MSayes, A M Gobin, K D Ausman, J Mendez, J LWest, V LColvin. Nano-C60 cytotoxicity is due to lipid peroxidation. Biomaterials, 2005, 26(36): 7587–7595
https://doi.org/10.1016/j.biomaterials.2005.05.027 pmid: 16005959
117 D HShin, Y T Tam, G S Kwon. Polymeric micelle nanocarriers in cancer research. Frontiers of Chemical Science and Engineering, 2016, 10(3): 348–359
https://doi.org/10.1007/s11705-016-1582-2
118 PZhang, J Ye, ELiu, LSun, J Zhang, SLee, JGong, H He, V CYang. Aptamer-coded DNA nanoparticles for targeted doxorubicin delivery using pH-sensitive spacer. Frontiers of Chemical Science and Engineering, 2017, 11(4): 529–536
https://doi.org/10.1007/s11705-017-1645-z
[1] Xuewen Hu, Yun Wang, Jinbo Ou Yang, Yang Li, Peng Wu, Hengju Zhang, Dingzhong Yuan, Yan Liu, Zhenyu Wu, Zhirong Liu. Synthesis of graphene oxide nanoribbons/chitosan composite membranes for the removal of uranium from aqueous solutions[J]. Front. Chem. Sci. Eng., 2020, 14(6): 1029-1038.
[2] Krishnaveni Kalaiappan, Subadevi Rengapillai, Sivakumar Marimuthu, Raja Murugan, Premkumar Thiru. Kombucha SCOBY-based carbon and graphene oxide wrapped sulfur/polyacrylonitrile as a high-capacity cathode in lithium-sulfur batteries[J]. Front. Chem. Sci. Eng., 2020, 14(6): 976-987.
[3] Abdolhamid Hatefi-Mehrjardi, Amirkhosro Beheshti-Marnani, Zarrin Es'haghi. Signal promoting role of a p-type transition metal dichalcogenide used for the detection of ultra-trace amounts of diclofenac via a labeled aptasensor[J]. Front. Chem. Sci. Eng., 2019, 13(4): 823-831.
[4] Chi Him Alpha Tsang, Adilet Zhakeyev, Dennis Y.C. Leung, Jin Xuan. GO-modified flexible polymer nanocomposites fabricated via 3D stereolithography[J]. Front. Chem. Sci. Eng., 2019, 13(4): 736-743.
[5] Bin Xu, Toshiro Kaneko, Toshiaki Kato. Improvement in growth yield of single-walled carbon nanotubes with narrow chirality distribution by pulse plasma CVD[J]. Front. Chem. Sci. Eng., 2019, 13(3): 485-492.
[6] Aswathy Vasudevan, Vasyl Shvalya, Aleksander Zidanšek, Uroš Cvelbar. Tailoring electrical conductivity of two dimensional nanomaterials using plasma for edge electronics: A mini review[J]. Front. Chem. Sci. Eng., 2019, 13(3): 427-443.
[7] Xiuqi Fang, Carles Corbella, Denis B. Zolotukhin, Michael Keidar. Plasma-enabled healing of graphene nano-platelets layer[J]. Front. Chem. Sci. Eng., 2019, 13(2): 350-359.
[8] Leila Ouni, Ali Ramazani, Saeid Taghavi Fardood. An overview of carbon nanotubes role in heavy metals removal from wastewater[J]. Front. Chem. Sci. Eng., 2019, 13(2): 274-295.
[9] Zhiyong Wang, Yuan Pu, Dan Wang, Jie-Xin Wang, Jian-Feng Chen. Recent advances on metal-free graphene-based catalysts for the production of industrial chemicals[J]. Front. Chem. Sci. Eng., 2018, 12(4): 855-866.
[10] Peizhen Duan, Juan Shen, Guohong Zou, Xu Xia, Bo Jin. Biomimetic mineralization and cytocompatibility of nanorod hydroxyapatite/graphene oxide composites[J]. Front. Chem. Sci. Eng., 2018, 12(4): 798-805.
[11] Kai Wang, Jinbo Pang, Liwei Li, Shengzhe Zhou, Yuhao Li, Tiezhu Zhang. Synthesis of hydrophobic carbon nanotubes/reduced graphene oxide composite films by flash light irradiation[J]. Front. Chem. Sci. Eng., 2018, 12(3): 376-382.
[12] Lijuan Qiu, Ruiyang Zhang, Ying Zhang, Chengjin Li, Qian Zhang, Ying Zhou. Superhydrophobic, mechanically flexible and recyclable reduced graphene oxide wrapped sponge for highly efficient oil/water separation[J]. Front. Chem. Sci. Eng., 2018, 12(3): 390-399.
[13] Sophie L. Pirard, Sigrid Douven, Jean-Paul Pirard. Large-scale industrial manufacturing of carbon nanotubes in a continuous inclined mobile-bed rotating reactor via the catalytic chemical vapor deposition process[J]. Front. Chem. Sci. Eng., 2017, 11(2): 280-289.
[14] Erik C. Neyts. The role of ions in plasma catalytic carbon nanotube growth: A review[J]. Front. Chem. Sci. Eng., 2015, 9(2): 154-162.
[15] Shanshan WANG, Yang LI, Xiaobin FAN, Fengbao ZHANG, Guoliang ZHANG. β-Cyclodextrin functionalized graphene oxide: an efficient and recyclable adsorbent for the removal of dye pollutants[J]. Front. Chem. Sci. Eng., 2015, 9(1): 77-83.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed