Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2018, Vol. 12 Issue (3) : 577-591    https://doi.org/10.1007/s11705-018-1758-z
REVIEW ARTICLE
Recent advances toward high voltage, EC-free electrolytes for graphite-based Li-ion battery
Tong Zhang, Elie Paillard()
Helmholtz Institute Muenster – Forschungszentrum Juelich (IEK 12), Corrensstr. 46, 48149 Muenster, Germany
 Download: PDF(519 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Lithium-ion batteries are a key technology in today’s world and improving their performances requires, in many cases, the use of cathodes operating above the anodic stability of state-of-the-art electrolytes based on ethylene carbonate (EC) mixtures. EC, however, is a crucial component of electrolytes, due to its excellent ability to allow graphite anode operation–also required for high energy density batteries–by stabilizing the electrode/electrolyte interface. In the last years, many alternative electrolytes, aiming at allowing high voltage battery operation, have been proposed. However, often, graphite electrode operation is not well demonstrated in these electrolytes. Thus, we review here the high voltage, EC-free alternative electrolytes, focusing on those allowing the steady operation of graphite anodes. This review covers electrolyte compositions, with the widespread use of additives, the change in main lithium salt, the effect of anion (or Li salt) concentration, but also reports on graphite protection strategies, by coatings or artificial solid electrolyte interphase (SEI) or by use of water-soluble binder for electrode processing as these can also enable the use of graphite in electrolytes with suboptimal intrinsic SEI formation ability.

Keywords lithium-ion      electrolyte      solid electrolyte interphase      additives      high voltage      graphite     
Corresponding Author(s): Elie Paillard   
Just Accepted Date: 25 June 2018   Online First Date: 07 September 2018    Issue Date: 18 September 2018
 Cite this article:   
Tong Zhang,Elie Paillard. Recent advances toward high voltage, EC-free electrolytes for graphite-based Li-ion battery[J]. Front. Chem. Sci. Eng., 2018, 12(3): 577-591.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-018-1758-z
https://academic.hep.com.cn/fcse/EN/Y2018/V12/I3/577
Fig.1  Solvents and approaches used for allowing graphite anode operation in high voltage electrolytes
Additive Additive concentration/wt-% Solvent/wt-% Experimental conditions Ref.
VC, FEC, DiFEC 2.5% or 10% EMC NMC422/Graphite
2.8–4.5 V
RT, 40°C, 60°C
[46]
VC, FEC, DiFEC, MEC 1%, 2%, 3%, 4%, 5% EMC(≥95%) [62]
PES 1%, 2%, 3%, 5%, 8% FEC: TFEC
(1:1)
[63]
PES+ MMDS 2% PES+ 0.5% MMDS [64]
PES, MMDS, SL, MA, DTD, TTSPi, TTSP, PBF, PPF, SA, 4-TB, HDI, TAP 1% EMC:VC (98:2)
SA 0.2%, 0.5%, 1%, 2%, 3% EMC [65]
VC 10% SL Graphite/Li, LFP/Graphite
2.8–4.0 V, RT, 60°, 90°C
[66]
[67]
1%,2%,3%,5%,8% SL:EMC (3:7) (NMC422)/Graphite
2.8–4.4 V
[68]
TAP 2% SL:EMC (3:7) +
2% VC
LaPO4-coated NMC442/Graphite
2.8–4.5 V
[49]
MMDS 1%
TTSPi 1% SL:EMC (3:7) +
2% VC+ 1% MMDS
FEC 1%, 2%, 3%, 4% EMS Graphite/Li, RT [69]
4% EMS NMC111/Graphite
3–4.3 V
RT
EMS:EA (1:1)
MeiPrSO2:EA (1:1)
EtiPrSO2:EA (1:1)
FEC: F-EMC: F-EPE (3:5:2, ratio by volume) LNMO/Graphite
3.5–4.9 V, RT, 55°C
[44]
TFP-PC-E 2% F-AEC:F-EMC:F-EPE (2:6:2, ratio by volume) LNMO/Graphite
3.5–4.9 V,
RT, 55°C
[70]
FEC:FEMC
(1:9, ratio by volume)
(NMC532)/Graphite
2.7–4.7 V, RT
[71]
FEC 2% SL:DMC (1:1) Graphite/Li, RT This work
Tab.1  LiPF6-based, EC-free electrolytes allowing graphite anode cycling
Fig.2  Cycling performance of graphite electrodes (96/2/2 (graphite (SLP30, Timcal)/CMC/SBR), total mass loading: 7.5 mg·cm−2) in 1.0 mol·L1 LiPF6 SL:DMC (1:1, wt-%) with FEC and DS as additives and without (a) discharge capacity vs. cycle number (b), (c) and (d) selected voltage profiles for each electrolyte (as indicated on the graph). Electrolyte and electrode preparation as well as the experimental conditions for the electrochemical testing are the same as reported in [81]
Salt Successful salt concentration Solvent Cell configuration Ref.
LiFSI [Li(TG)][TFSI]
ca. 3.0 mol·L−1
TG Graphite/Li, LFP/Graphite [103]
LiTFSI Graphite/Li [104]
LiTFSI 4.5 mol·L1 AN [105]
LiTFSI 3.2 mol·L1 DMSO [106]
LiTFSI 3.0 mol·L1 SL [106]
LiTFSI 3.0 mol·L1 THF [106]
LiFSI 3.6 mol·L1 DME [107]
LiFSI+
LiPF6
5.0 mol·L1 LiFSI+
0.5 mol·L1 LiPF6
EA NMC111/Graphite and NMC442/Graphite
2.8–4.7 V
[91]
LiFSI 5.5 mol·L1 DMC LNMO/Graphite 2.8–5.0 V [108]
Tab.2  Overview of ‘high concentration’ electrolyte able to operate a graphite anode
Fig.3  (a) Voltage profile of a graphite electrode in a 4.2 mol·L1 LiTFSI/AN electrolyte at C/10 (Reproduced with permission from [105]); (b) representative Li+ cation solvate species (SSIP, CIP and AGGs) in dilute and concentrated electrolytes and schematic illustration of the electrolyte reduction mechanism at the electrode/electrolyte interface in dilute and concentrated electrolytes. The red dot represents Li+, the blue ellipse represents solvent molecular and the green ellipse represents the salt anion (Reproduced with permission from [111]); (c) mechanism of Li ion desolvation at the graphite/glyme-Li salt solvate ionic liquids (Reproduced with permission from [104]); (d) formation of a transient SEI in a concentrated electrolyte (Reproduced with permission from [112])
Fig.4  Cycling performance of graphite electrodes 96/2/2 (graphite (SLP30, Timcal)/CMC/SBR), total mass loading: 7.5 mg·cm2) in 1.0 mol·L1 and 1.2 mol·L1 LiFSI, SL:DMC (1:1, wt-%) electrolytes. (a) Capacity and efficiency vs. cycle number; (b) voltage profiles (1st, 2nd, 3rd and 20th cycle). The electrolyte preparation, electrode preparation and electrochemical testing method was the same as reported in [81]
Fig.5  Charge-discharge curves of graphite/Li half cell with 1.0 mol·L−1 LiTFSI in SL electrolyte. (a) With a PVDF-based graphite electrode, reproduced with permission from [106]; (b) using a 90/5/5 (graphite (SLP30, Timcal)/SuperP/CMC), total mass loading:2 mg·cm−2
Acronym Name Acronym Name
ADN Adiponitrile NCA LiNi0.80Co0.15Al0.05O2
DEC Diethyl carbonate LNMO LiNi0.5 Mn1.5O4
DiFEC Difluoro ethylene carbonate MA Maleic anhydride
DMC Dimethyl carbonate MB Methyl butyrate
DME Dimethoxyethane MEC Methylene-ethylene carbonate
DMSO Dimethyl sulfoxide MeiPrSO2 Isopropyl methyl sulfone
DS Divinyl sulfone MMDS Methylene methanedisulfonate
DTD 1,3,2-Dioxathiolane-2.2-dioxide NMC111 LiNi1/3Mn1/3Co1/3O2
EA Ethylene acetate NMC442 LiNi0.4Mn0.4Co0.2O2
EC Ethylene carbonate NMC532 LiNi0.5Mn0.3Co0.2O2
EMC Ethyl methyl carbonate PBF Pyridine boron trifluoride
EMS Ethyl methyl sulfone PC Propylene carbonate
ES Ethylene sulfite PEO Polyethylene oxide
EtiPrSO2 Ethyl isopropyl sulfone PES Prop-1-ene-1,3-sultone
F-AEC 4-[2,3,3,3-Tertrafluoro-2-(trifluoromethyl)propyl]-1,3-dioxolan-2-one PPF Pyridine phosphorus pentafluoride
FEC Fluoroethylene carbonate PS Propylene sulfite
F-EMC Methyl-2,2,2-trifluoroethyl carbonate SA Succinic anhydride
F-EPE 1,1,2,2-Tetrafluoroethyl-2,2,3,3-tetrafluoropropyl ether SL Sulfolane (also tetramethylene sulfone)
FMPS Trifluoropropylmethyl sulfone TAP Triallyl phosphate
FMS Methane fluorosulfonyl TEGDME Tertraglyme (tetraethylene glycol dimethyl ether)
GBL g-Butyrolactone TFEC Bis(2,2,2-trifluoroethyl) carbonate)
HDI Hexamethylene diisocyanate TFP-PC-E 4-[1,1,2,2-Tetrafluoroethoxy)methyl]-1,3-dioxolane-2-one
LFP LiFePO4 TriEGDME Triglyme (triethylene glycol dimethyl ether)
LiBOB Lithium bis(oxalate)borate THF Tetrahydrofuran
LiDFOB Lithium difluoro(oxalate)borate TTSP Tris(trimethylsilyl) phosphate
LiFSI Lithium bis(fluorosulfonyl)imide TTSPi Tris(trimethylsilyl) phosphite
LiOTF Lithium trifluoromethane sulfonate VC Vinylene carbonate
LiPF6 Lithium hexafluorophosphate 4-TB 4-(Trifluoromethyl) benzonitrile
LiTFSI Lithium bis(trifluoromethanesulfonyl)imide
  
1 U.S. Energy Information Administration. Annual Energy Outlook 2017 with projections to 2050, 2017, 1–64
2 Lewis G N, Keyes F G. The potential of the lithium electrode. Journal of the American Chemical Society, 1913, 35(4): 340–344
https://doi.org/10.1021/ja02193a004
3 Harris W S. Electrochemical studies in cyclic esters. Dissertation for the Doctoral Degree. Berkeley, CA: University of California, 1958
4 Jasinski R. Bibliography on the uses of propylene carbonate in high energy, density batteries. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1967, 15: 89–91
https://doi.org/10.1016/0022-0728(67)85012-5
5 Julien C, Mauger A, Vijh A, Zaghib K. Lithium batteries: Science and technology. Basel: Springer International Publishing, 2016, 1–27
6 Winn D A, Steele B C H. Thermodynamic characterisation of non-stoichiometric titanium di-sulphide. Materials Research Bulletin, 1976, 11(5): 551–557
https://doi.org/10.1016/0025-5408(76)90238-5
7 Whittingham M S. Preparation of stoichiometric titanium disulfide. US Patent, 4007055, 1975–05–09
8 Murphy D W, Trumbore F A. The chemistry of TiS and NbSe cathodes. Journal of the Electrochemical Society, 1976, 123(7): 960–964
https://doi.org/10.1149/1.2133012
9 Armand M B. Chapter – Intercalation electrodes. Materials for Advanced Batteries. Boston, MA: Springer, 1980, 145–161
10 Lazzari M, Scrosati B. A Cyclable Lithium organic electrolyte cell based on two intercalation electrodes. Journal of the Electrochemical Society, 1980, 127(3): 773–774
https://doi.org/10.1149/1.2129753
11 Mizushima K, Jones P C, Wiseman P J, Goodenough J B. LixCoO2 (0<x<‒1): A new cathode material for batteries of high energy density. Materials Research Bulletin, 1980, 15(6): 783–789
https://doi.org/10.1016/0025-5408(80)90012-4
12 Mizushima K, Jones P C, Wiseman P J, Goodenough J B. LixCoO2 (0<x ≤ 1): A new cathode material for batteries of high energy density. Solid State Ionics, 1981, 3–4: 171–174
https://doi.org/10.1016/0167-2738(81)90077-1
13 Nagaura T, Nagamine M, Tanabe I, Miyamoto N. Solid state batteries with sulfide-based solid electrolytes. Progress in batteries and solar cells, 1989, 8: 84–88
14 Nagaura T, Tozawa K. Lithium ion rechargeable battery. Progress in Batteries and Solar Cells, 1990, 9: 209–212
15 Ozawa K. Lithium-ion rechargeable batteries with LiCoO2 and carbon electrodes: The LiCoO2/C system. Solid State Ionics, 1994, 69(3–4): 212–221
https://doi.org/10.1016/0167-2738(94)90411-1
16 Fong R, von Sacken U, Dahn J R. Studies of lithium intercalation into carbons using nonaqueous electrochemical cells. Journal of the Electrochemical Society, 1990, 137(7): 2009–2013
https://doi.org/10.1149/1.2086855
17 Tarascon J M, Guyomard D. New electrolyte compositions stable over the 0 to 5 V voltage range and compatible with the Li1+xMn2O4/carbon Li-ion cells. Solid State Ionics, 1994, 69(3–4): 293–305
https://doi.org/10.1016/0167-2738(94)90418-9
18 Peled E. The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems—the solid electrolyte interphase model. Journal of the Electrochemical Society, 1979, 126(12): 2047–2051
https://doi.org/10.1149/1.2128859
19 Peled E, Menkin S. Review—SEI: Past, present and future. Journal of the Electrochemical Society, 2017, 164(7): A1703–A1719
https://doi.org/10.1149/2.1441707jes
20 Hess S, Wohlfahrt-Mehrens M, Wachtler M. Flammability of Li-ion battery electrolytes: Flash point and self-extinguishing time measurements. Journal of the Electrochemical Society, 2015, 162(2): A3084–A3097
https://doi.org/10.1149/2.0121502jes
21 Krueger S, Kloepsch R, Li J, Nowak S, Passerini S, Winter M. How do reactions at the anode/electrolyte interface determine the cathode performance in lithium-ion batteries? Journal of the Electrochemical Society, 2013, 160(4): A542–A548
https://doi.org/10.1149/2.022304jes
22 Vetter J, Novák P, Wagner M R, Veit C, Möller K C, Besenhard J O, Winter M, Wohlfahrt-Mehrens M, Vogler C, Hammouche A. Ageing mechanisms in lithium-ion batteries. Journal of Power Sources, 2005, 147(1–2): 269–281
https://doi.org/10.1016/j.jpowsour.2005.01.006
23 Bresser D, Paillard E, Passerini S. Chapter 7–Lithium-ion batteries (LIBs) for medium- and large-scale energy storage: Emerging cell materials and components. Advances in Batteries for Medium and Large-Scale Energy Storage. Cambridge: Woodhead Publishing, 2015, 213–289
24 Wrodnigg G H, Besenhard J O, Winter M. Ethylene sulfite as electrolyte additive for lithium-ion cells with graphitic anodes. Journal of the Electrochemical Society, 1999, 146(2): 470–472
https://doi.org/10.1149/1.1391630
25 Wrodnigg G H, Wrodnigg T M, Besenhard J O, Winter M. Propylene sulfite as film-forming electrolyte additive in lithium ion batteries. Electrochemistry Communications, 1999, 1(3–4): 148–150
https://doi.org/10.1016/S1388-2481(99)00023-5
26 Simon B, Boeuve J P. Rechargeable lithium electrochemical cell. US Patent, 5626981, 1994–04–22
27 Aurbach D, Gamolsky K, Markovsky B, Gofer Y, Schmidt M, Heider U. On the use of vinylene carbonate (VC) as an additive to electrolyte solutions for Li-ion batteries. Electrochimica Acta, 2002, 47(9): 1423–1439
https://doi.org/10.1016/S0013-4686(01)00858-1
28 Santner H J, Korepp C, Winter M, Besenhard J O, Möller K C. In-situ FTIR investigations on the reduction of vinylene electrolyte additives suitable for use in lithium-ion batteries. Analytical and Bioanalytical Chemistry, 2004, 379(2): 266–271
https://doi.org/10.1007/s00216-004-2522-4 pmid: 14968287
29 Aurbach D, Gnanaraj J S, Geissler W, Schmidt M. Vinylene carbonate and Li salicylatoborate as additives in LiPF3(CF2CF3)3 solutions for rechargeable Li-ion batteries. Journal of the Electrochemical Society, 2004, 151(1): A23–A30
https://doi.org/10.1149/1.1631820
30 McMillan R, Slegr H, Shu Z X, Wang W. Fluoroethylene carbonate electrolyte and its use in lithium ion batteries with graphite anodes. Journal of Power Sources, 1999, 81–82: 20–26
https://doi.org/10.1016/S0378-7753(98)00201-8
31 Mogi R, Inaba M, Jeong S K, Iriyama Y, Abe T, Ogumi Z. Effects of some organic additives on lithium deposition in propylene carbonate. Journal of the Electrochemical Society, 2002, 149(12): A1578–A1583
https://doi.org/10.1149/1.1516770
32 Xu K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chemical Reviews, 2004, 104(10): 4303–4417
https://doi.org/10.1021/cr030203g pmid: 15669157
33 Xu K. Electrolytes and interphases in Li-ion batteries and beyond. Chemical Reviews, 2014, 114(23): 11503–11618
https://doi.org/10.1021/cr500003w pmid: 25351820
34 Zhang S S. A review on electrolyte additives for lithium-ion batteries. Journal of Power Sources, 2006, 162(2): 1379–1394
https://doi.org/10.1016/j.jpowsour.2006.07.074
35 Haregewoin A M, Wotango A S, Hwang B J. Electrolyte additives for lithium ion battery electrodes: Progress and perspectives. Energy & Environmental Science, 2016, 9(6): 1955–1988
https://doi.org/10.1039/C6EE00123H
36 Sasaki T, Abe T, Iriyama Y, Inaba M, Ogumi Z. Suppression of an alkyl dicarbonate formation in Li-ion cells. Journal of the Electrochemical Society, 2005, 152(10): A2046–A2050
https://doi.org/10.1149/1.2034517
37 Li B, Wang Y, Rong H, Wang Y, Liu J, Xing L, Xu M, Li W. A novel electrolyte with the ability to form a solid electrolyte interface on the anode and cathode of a LiMn2O4/graphite battery. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2013, 1(41): 12954–12961
https://doi.org/10.1039/c3ta13067c
38 Wang D Y, Sinha N N, Burns J C, Aiken C P, Petibon R, Dahn J R. A comparative study of vinylene carbonate and fluoroethylene carbonate additives for LiCoO2/graphite pouch cells. Journal of the Electrochemical Society, 2014, 161(4): A467–A472
https://doi.org/10.1149/2.001404jes
39 Zhong Q, Bonakdarpour A, Zhang M, Gao Y, Dahn J R. Synthesis and electrochemistry of LiNixMn2-xO4. Journal of the Electrochemical Society, 1997, 144(1): 205–213
https://doi.org/10.1149/1.1837386
40 Amine K. Olivine LiCoPO4 as 4.8 V electrode material for lithium batteries. Electrochemical and Solid-State Letters, 2000, 3(4): 178–179
https://doi.org/10.1149/1.1390994
41 Kunduraci M, Amatucci G G. Synthesis and characterization of nanostructured 4.7 V LixMn1.5Ni0.5O4 spinels for high-power lithium-ion batteries. Journal of the Electrochemical Society, 2006, 153(7): A1345–A1352
https://doi.org/10.1149/1.2198110
42 Wolfenstine J, Allen J. Ni3+/Ni2+ redox potential in LiNiPO4. Journal of Power Sources, 2005, 142(1–2): 389–390
https://doi.org/10.1016/j.jpowsour.2004.11.024
43 Yang L, Ravdel B, Lucht B L. Electrolyte reactions with the surface of high voltage LiNi0.5Mn1.5O4 cathodes for lithium-ion batteries. Electrochemical and Solid-State Letters, 2010, 13(8): A95–A97
https://doi.org/10.1149/1.3428515
44 Hu L, Zhang Z, Amine K. Fluorinated electrolytes for Li-ion battery: An FEC-based electrolyte for high voltage LiNi0.5Mn1.5O4/graphite couple. Electrochemistry Communications, 2013, 35: 76–79
https://doi.org/10.1016/j.elecom.2013.08.009
45 Aurbach D, Markovsky B, Salitra G, Markevich E, Talyossef Y, Koltypin M, Nazar L, Ellis B, Kovacheva D. Review on electrode-electrolyte solution interactions, related to cathode materials for Li-ion batteries. Journal of Power Sources, 2007, 165(2): 491–499
https://doi.org/10.1016/j.jpowsour.2006.10.025
46 Xia J, Petibon R, Xiong D, Ma L, Dahn J R. Enabling linear alkyl carbonate electrolytes for high voltage Li-ion cells. Journal of Power Sources, 2016, 328: 124–135
https://doi.org/10.1016/j.jpowsour.2016.08.015
47 Borodin O, Behl W, Jow T R. Oxidative stability and initial decomposition reactions of carbonate, sulfone, and alkyl phosphate-based electrolytes. Journal of Physical Chemistry C, 2013, 117(17): 8661–8682
https://doi.org/10.1021/jp400527c
48 Xu M, Zhou L, Dong Y, Chen Y, Garsuch A, Lucht B L. Improving the performance of graphite/LiNi0.5Mn1.5O4 cells at high voltage and elevated temperature with added lithium bis(oxalato) borate (LiBOB). Journal of the Electrochemical Society, 2013, 160(11): A2005–A2013
https://doi.org/10.1149/2.053311jes
49 Xia J, Ma L, Nelson K J, Nie M, Lu Z, Dahn J R. A study of Li-ion cells operated to 4.5 V and at 55 °C. Journal of the Electrochemical Society, 2016, 163(10): A2399–A2406
https://doi.org/10.1149/2.1211610jes
50 Cao X, He X, Wang J, Liu H, Röser S, Rad B R, Evertz M, Streipert B, Li J, Wagner R, Winter M, Cekic-Laskovic I. High voltage LiNi0.5Mn1.5O4/Li4Ti5O12 lithium ion cells at elevated temperatures: Carbonate-versus ionic liquid-based electrolytes. ACS Applied Materials & Interfaces, 2016, 8(39): 25971–25978
https://doi.org/10.1021/acsami.6b07687 pmid: 27618412
51 Abu-Lebdeh Y, Davidson I. High-voltage electrolytes based on adiponitrile for Li-ion batteries. Journal of the Electrochemical Society, 2009, 156(1): A60–A65
https://doi.org/10.1149/1.3023084
52 Xue L, Ueno K, Lee S Y, Angell C A. Enhanced performance of sulfone-based electrolytes at lithium ion battery electrodes, including the LiNi0.5Mn1.5O4 high voltage cathode. Journal of Power Sources, 2014, 262: 123–128
https://doi.org/10.1016/j.jpowsour.2014.03.099
53 Abouimrane A, Belharouak I, Amine K. Sulfone-based electrolytes for high-voltage Li-ion batteries. Electrochemistry Communications, 2009, 11(5): 1073–1076
https://doi.org/10.1016/j.elecom.2009.03.020
54 Zhang Z, Hu L, Wu H, Weng W, Koh M, Redfern P C, Curtiss L A, Amine K. Fluorinated electrolytes for 5 V lithium-ion battery chemistry. Energy & Environmental Science, 2013, 6(6): 1806–1810
https://doi.org/10.1039/c3ee24414h
55 Zhang X, Pugh J K, Ross P N. Computation of thermodynamic oxidation potentials of organic solvents using density functional theory. Journal of the Electrochemical Society, 2001, 148(5): E183–E188
https://doi.org/10.1149/1.1362546
56 Assary R S, Curtiss L A, Redfern P C, Zhang Z, Amine K. Computational studies of polysiloxanes: Oxidation potentials and decomposition reactions. Journal of Physical Chemistry C, 2011, 115(24): 12216–12223
https://doi.org/10.1021/jp2019796
57 Xu K, Ding S P, Jow T R. Toward reliable values of electrochemical stability limits for electrolytes. Journal of the Electrochemical Society, 1999, 146(11): 4172–4178
https://doi.org/10.1149/1.1392609
58 Zhang S S, Jow T R. Aluminum corrosion in electrolyte of Li-ion battery. Journal of Power Sources, 2002, 109(2): 458–464
https://doi.org/10.1016/S0378-7753(02)00110-6
59 Zhang X, Devine T M. Identity of passive film formed on aluminum in Li-ion battery electrolytes with LiPF6. Journal of the Electrochemical Society, 2006, 153(9): B344–B351
https://doi.org/10.1149/1.2214465
60 Xu K, Zhang S, Jow T R. Formation of the graphite/electrolyte interface by lithium bis(oxalato)borate. Electrochemical and Solid-State Letters, 2003, 6(6): A117–A120
https://doi.org/10.1149/1.1568173
61 Zhuang G V, Xu K, Jow T R, Ross P N Jr. Study of SEI layer formed on graphite anodes in PC/LiBOB electrolyte using IR spectroscopy. Electrochemical and Solid-State Letters, 2004, 7(8): A224–A227
https://doi.org/10.1149/1.1756855
62 Ma L, Glazier S L, Petibon R, Xia J, Peters J M, Liu Q, Allen J, Doig R N C, Dahn J R. A guide to ethylene carbonate-free electrolyte making for Li-ion cells. Journal of the Electrochemical Society, 2017, 164(1): A5008–A5018
https://doi.org/10.1149/2.0191701jes
63 Xia J, Nie M, Burns J C, Xiao A, Lamanna W M, Dahn J R. Fluorinated electrolyte for 4.5 V Li(Ni0.4Mn0.4Co0.2)O2/graphite Li-ion cells. Journal of Power Sources, 2016, 307: 340–350
https://doi.org/10.1016/j.jpowsour.2015.12.132
64 Xia J, Glazier S L, Petibon R, Dahn J R. Improving linear alkyl carbonate electrolytes with electrolyte additives. Journal of the Electrochemical Society, 2017, 164(6): A1239–A1250
https://doi.org/10.1149/2.1321706jes
65 Xia J, Liu Q, Hebert A, Hynes T, Petibon R, Dahn J R. Succinic anhydride as an enabler in ethylene carbonate-free linear alkyl carbonate electrolytes for high voltage Li-ion cells. Journal of the Electrochemical Society, 2017, 164(6): A1268–A1273
https://doi.org/10.1149/2.1341706jes
66 Lewandowski A, Kurc B, Stepniak I, Swiderska-Mocek A. Properties of Li-graphite and LiFePO4 electrodes in LiPF6-sulfolane electrolyte. Electrochimica Acta, 2011, 56(17): 5972–5978
https://doi.org/10.1016/j.electacta.2011.04.105
67 Lewandowski A, Kurc B, Swiderska-Mocek A, Kusa N. Graphite/LiFePO4 lithium-ion battery working at the heat engine coolant temperature. Journal of Power Sources, 2014, 266: 132–137
https://doi.org/10.1016/j.jpowsour.2014.04.083
68 Xia J, Self J, Ma L, Dahn J R. Sulfolane-based electrolyte for high voltage Li(Ni0.42Mn0.42Co0.16)O2 (NMC442)/graphite pouch cells. Journal of the Electrochemical Society, 2015, 162(8): A1424–A1431
https://doi.org/10.1149/2.0121508jes
69 Hilbig P, Ibing L, Wagner R, Winter M, Cekic-Laskovic I. Ethyl methyl sulfone-based electrolytes for lithium ion battery applications. Energies, 2017, 10(9): 1312
https://doi.org/10.3390/en10091312
70 Hu L, Xue Z, Amine K, Zhang Z. Fluorinated electrolytes for 5 V Li-ion chemistry: synthesis and evaluation of an additive for high-voltage LiNi0.5Mn1.5O4/graphite cell. Journal of the Electrochemical Society, 2014, 161(12): A1777–A1781
https://doi.org/10.1149/2.0141412jes
71 Im J, Lee J, Ryou M H, Lee Y M, Cho K Y. Fluorinated carbonate-based electrolyte for high-voltage Li(Ni0.5Mn0.3Co0.2)O2/graphite lithium-ion battery. Journal of the Electrochemical Society, 2017, 164(1): A6381–A6385
https://doi.org/10.1149/2.0591701jes
72 Kita F, Sakata H, Sinomoto S, Kawakami A, Kamizori H, Sonoda T, Nagashima H, Nie J, Pavlenko N V, Yagupolskii Y L. Characteristics of the electrolyte with fluoro organic lithium salts. Journal of Power Sources, 2000, 90(1): 27–32
https://doi.org/10.1016/S0378-7753(00)00443-2
73 Kalhoff J, Bresser D, Bolloli M, Alloin F, Sanchez J Y, Passerini S. Enabling LiTFSI-based electrolytes for safer lithium-ion batteries by using linear fluorinated carbonates as (Co)solvent. ChemSusChem, 2014, 7(10): 2939–2946
https://doi.org/10.1002/cssc.201402502 pmid: 25138922
74 Xiong D J, Bauer M, Ellis L D, Hynes T, Hyatt S, Hall D S, Dahn J R. Some physical properties of ethylene carbonate-free electrolytes. Journal of the Electrochemical Society, 2018, 165(2): A126–A131
https://doi.org/10.1149/2.0511802jes
75 Sun X, Angell C A. Doped sulfone electrolytes for high voltage Li-ion cell applications. Electrochemistry Communications, 2009, 11(7): 1418–1421
https://doi.org/10.1016/j.elecom.2009.05.020
76 Xu K, Angell C A. Sulfone-based electrolytes for lithium-ion batteries. Journal of the Electrochemical Society, 2002, 149(7): A920–A926
https://doi.org/10.1149/1.1483866
77 Lee S Y, Ueno K, Angell C A. Lithium salt solutions in mixed sulfone and sulfone-carbonate solvents: A walden plot analysis of the maximally conductive compositions. Journal of Physical Chemistry C, 2012, 116(45): 23915–23920
https://doi.org/10.1021/jp3067519
78 Xu K, Angell C A. High anodic stability of a new electrolyte solvent: Unsymmetric noncyclic aliphatic sulfone. Journal of the Electrochemical Society, 1998, 145(4): L70–L72
https://doi.org/10.1149/1.1838419
79 Wang Y, Xing L, Li W, Bedrov D. Why do sulfone-based electrolytes show stability at high voltages? insight from density functional theory. Journal of Physical Chemistry Letters, 2013, 4(22): 3992–3999
https://doi.org/10.1021/jz401726p
80 Brenner A. Note on an organic-electrolyte cell with a high voltage. Journal of the Electrochemical Society, 1971, 118(3): 461–462
https://doi.org/10.1149/1.2408081
81 Zhang T, de Meatza I, Qi X, Paillard E. Enabling steady graphite anode cycling with high voltage, additive-free, sulfolane-based electrolyte: Role of the binder. Journal of Power Sources, 2017, 356: 97–102
https://doi.org/10.1016/j.jpowsour.2017.04.073
82 Hochgatterer N S, Schweiger M R, Koller S, Raimann P R, Wöhrle T, Wurm C, Winter M. Silicon/graphite composite electrodes for high-capacity anodes: Influence of binder chemistry on cycling stability. Electrochemical and Solid-State Letters, 2008, 11(5): A76–A80
https://doi.org/10.1149/1.2888173
83 Nguyen C C, Yoon T, Seo D M, Guduru P, Lucht B L. Systematic investigation of binders for silicon anodes: Interactions of binder with silicon particles and electrolytes and effects of binders on solid electrolyte interphase formation. ACS Applied Materials & Interfaces, 2016, 8(19): 12211–12220
https://doi.org/10.1021/acsami.6b03357 pmid: 27135935
84 Kim N. Electrolyte for lithium ion battery to control swelling. US Patent, 20050233207A1, 2004–04–16
85 Hamamoto T, Abe K, Tsutomu T. Non-aqueous electrolyte and lithium secondary battery using the same. US Patent, 20070207389A1, 2007–09–06
86 Ma T, Xu G L, Li Y, Wang L, He X, Zheng J, Liu J, Engelhard M H, Zapol P, Curtiss L A, Jorne J, Amine K, Chen Z. Revisiting the corrosion of the aluminum current collector in lithium-ion batteries. Journal of Physical Chemistry Letters, 2017, 8(5): 1072–1077
https://doi.org/10.1021/acs.jpclett.6b02933 pmid: 28205444
87 Wu F, Xiang J, Li L, Chen J, Tan G, Chen R. Study of the electrochemical characteristics of sulfonyl isocyanate/sulfone binary electrolytes for use in lithium-ion batteries. Journal of Power Sources, 2012, 202: 322–331
https://doi.org/10.1016/j.jpowsour.2011.11.065
88 Fujii K, Seki S, Fukuda S, Kanzaki R, Takamuku T, Umebayashi Y, Ishiguro S. Anion conformation of low-viscosity room-temperature ionic liquid 1-ethyl-3-methylimidazolium bis(fluorosulfonyl) imide. Journal of Physical Chemistry B, 2007, 111(44): 12829–12833
https://doi.org/10.1021/jp074325e pmid: 17941662
89 Paillard E, Zhou Q, Henderson W A, Appetecchi G B, Montanino M, Passerini S. Electrochemical and physicochemical properties of PY14FSI-based electrolytes with LiFSI. Journal of the Electrochemical Society, 2009, 156(11): A891–A895
https://doi.org/10.1149/1.3208048
90 Gebresilassie G, Grugeon S, Gachot G, Armand M, Laruelle S. LiFSI vs. LiPF6 electrolytes in contact with lithiated graphite : Comparing thermal stabilities and identification of specific SEI-reinforcing additives. Electrochimica Acta, 2013, 102: 133–141
https://doi.org/10.1016/j.electacta.2013.03.171
91 Petibon R, Aiken C P, Ma L, Xiong D, Dahn J R. The use of ethyl acetate as a sole solvent in highly concentrated electrolyte for Li-ion batteries. Electrochimica Acta, 2015, 2015(154): 287–293
https://doi.org/10.1016/j.electacta.2014.12.093
92 Zhang T, Kaymaksiz S, de Meatza I, Paillard E. Practical sulfolane-based electrolytes: Choice of Li salt for graphite anode operation. Honolulu: ECS Meeting Abstracts, 2016, MA2016–02 537
93 Li L, Zhou S, Han H, Li H, Nie J, Armand M, Zhou Z, Huang X. Transport and electrochemical properties and spectral features of non-aqueous electrolytes containing LiFSI in linear carbonate solvents. Journal of the Electrochemical Society, 2011, 158(2): A74–A82
https://doi.org/10.1149/1.3514705
94 Abouimrane A, Ding J, Davidson I J. Liquid electrolyte based on lithium bis-fluorosulfonyl imide salt: Aluminum corrosion studies and lithium ion battery investigations. Journal of Power Sources, 2009, 189(1): 693–696
https://doi.org/10.1016/j.jpowsour.2008.08.077
95 Myung S T, Hitoshi Y, Sun Y K. Electrochemical behavior and passivation of current collectors in lithium-ion batteries. Journal of Materials Chemistry, 2011, 21(27): 9891–9911
https://doi.org/10.1039/c0jm04353b
96 Dalavi S, Xu M, Knight B, Lucht B L. Effect of added LiBOB on high voltage (LiNi0.5Mn1.5O4) spinel cathodes. Electrochemical and Solid-State Letters, 2012, 15(2): A28–A31
https://doi.org/10.1149/2.015202esl
97 Zhang S S. An unique lithium salt for the improved electrolyte of Li-ion battery. Electrochemistry Communications, 2006, 8(9): 1423–1428
https://doi.org/10.1016/j.elecom.2006.06.016
98 Nie M, Lucht B L. Role of lithium salt on solid electrolyte interface (SEI) formation and dtructure in lithium ion batteries. Journal of the Electrochemical Society, 2014, 161(6): A1001–A1006
https://doi.org/10.1149/2.054406jes
99 Knight B M. PC based electrolytes with LiDFOB as an alternative salt for lithium- ion batteries. Dissertation for the Doctoral Degree. Kinston, RI: Univeristy of Rhode Island, 2014
100 Chen Z, Qin Y, Liu J, Amine K. Lithium difluoro(oxalato)borate as additive to improve the thermal stability of lithiated graphite. Electrochemical and Solid-State Letters, 2009, 12(4): A69–A72
https://doi.org/10.1149/1.3070581
101 Lazar M L, Lucht B L. Carbonate free electrolyte for lithium ion batteries containing butyrolactone and methyl butyrate. Journal of the Electrochemical Society, 2015, 162(6): A928–A934
https://doi.org/10.1149/2.0601506jes
102 Ehteshami N, Paillard E. Ethylene carbonate-free, adiponitrile-based electrolytes compatible with graphite anodes. ECS Transactions, 2015, 77(1): 11–20
https://doi.org/10.1149/07701.0011ecst
103 Seki S, Takei K, Miyashiro H, Watanabe M. Physicochemical and electrochemical properties of glyme-LiN(SO2F)2 complex for safe lithium-ion secondary battery electrolyte. Journal of the Electrochemical Society, 2011, 158(6): A769–A774
https://doi.org/10.1149/1.3582822
104 Moon H, Tatara R, Mandai T, Ueno K, Yoshida K, Tachikawa N, Yasuda T, Dokko K, Watanabe M. Mechanism of Li ion desolvation at the interface of graphite electrode and glyme-Li salt solvate ionic liquids. Journal of Physical Chemistry C, 2014, 118(35): 20246–20256
https://doi.org/10.1021/jp506772f
105 Yamada Y, Furukawa K, Sodeyama K, Kikuchi K, Yaegashi M, Tateyama Y, Yamada A. Unusual stability of acetonitrile-based superconcentrated electrolytes for fast-charging lithium-ion batteries. Journal of the American Chemical Society, 2014, 136(13): 5039–5046
https://doi.org/10.1021/ja412807w pmid: 24654781
106 Yamada Y, Usui K, Chiang C H, Kikuchi K, Furukawa K, Yamada A. General observation of lithium intercalation into graphite in ethylene-carbonate-free superconcentrated electrolytes. ACS Applied Materials & Interfaces, 2014, 6(14): 10892–10899
https://doi.org/10.1021/am5001163 pmid: 24670260
107 Yamada Y, Yaegashi M, Abe T, Yamada A. A superconcentrated ether electrolyte for fast-charging Li-ion batteries. Electrochemistry Communications, 2013, 49(95): 11194–11196
https://doi.org/10.1039/c3cc46665e pmid: 24150285
108 Wang J, Yamada Y, Sodeyama K, Chiang C H, Tateyama Y, Yamada A. Superconcentrated electrolytes for a high-voltage lithium-ion battery. Nature Communications, 2016, 7: 12032
https://doi.org/10.1038/ncomms12032 pmid: 27354162
109 Yamada Y, Yamada A. Review—superconcentrated electrolytes for lithium batteries. Journal of the Electrochemical Society, 2015, 162(14): A2406–A2423
https://doi.org/10.1149/2.0041514jes
110 Yamada Y. Developing new functionalities of superconcentrated electrolytes for lithium-ion batteries. Electrochemistry, 2017, 85(9): 559–565
https://doi.org/10.5796/electrochemistry.85.559
111 Zheng J, Lochala J A, Kwok A, Deng Z D, Xiao J. Research progress towards understanding the unique interfaces between concentrated electrolytes and electrodes for energy storage applications. Advancement of Science, 2017, 4(8): 1700032
https://doi.org/10.1002/advs.201700032 pmid: 28852621
112 Lu D, Tao J, Yan P, Henderson W A, Li Q, Shao Y, Helm M L, Borodin O, Graff G L, Polzin B, Wang C M, Engelhard M, Zhang J G, De Yoreo J J, Liu J, Xiao J. Formation of reversible solid electrolyte interface on graphite surface from concentrated electrolytes. Nano Letters, 2017, 17(3): 1602–1609
https://doi.org/10.1021/acs.nanolett.6b04766 pmid: 28165750
113 Von Wald Cresce A, Borodin O, Xu K. Correlating Li+ solvation sheath structure with interphasial chemistry on graphite. Journal of Physical Chemistry C, 2012, 116(50): 26111–26117
https://doi.org/10.1021/jp303610t
114 Yamada Y, Takazawa Y, Miyazaki K, Abe T. Electrochemical lithium intercalation into graphite in dimethyl sulfoxide-based electrolytes: Effect of solvation structure of lithium ion. Journal of Physical Chemistry C, 2010, 114(26): 11680–11685
https://doi.org/10.1021/jp1037427
115 McOwen D W, Seo D M, Borodin O, Vatamanu J, Boyle P D, Henderson W A. Concentrated electrolytes: Decrypting electrolyte properties and reassessing Al corrosion mechanisms. Energy & Environmental Science, 2014, 7(1): 416–426
https://doi.org/10.1039/C3EE42351D
116 Moon H, Mandai T, Tatara R, Ueno K, Yamazaki A, Yoshida K, Seki S, Dokko K, Watanabe M. Solvent activity in electrolyte solutions controls electrochemical reactions in Li-Ion and Li-sulfur batteries. Journal of Physical Chemistry C, 2015, 119(8): 3957–3970
https://doi.org/10.1021/jp5128578
117 Aurbach D, Markovsky B, Weissman I, Levi E, Ein-Eli Y. On the correlation between surface chemistry and performance of graphite negative electrodes for Li ion batteries. Electrochimica Acta, 1999, 45(1–2): 67–86
https://doi.org/10.1016/S0013-4686(99)00194-2
118 Nie M, Abraham D P, Seo D M, Chen Y, Bose A, Lucht B L. Role of solution structure in solid electrolyte interphase formation on graphite with LiPF6 in propylene carbonate. Journal of Physical Chemistry C, 2013, 117(48): 25381–25389
https://doi.org/10.1021/jp409765w
119 Pan Y, Wang G, Lucht B L. Cycling performance and surface analysis of lithium bis(trifluoromethanesulfonyl)imide in propylene carbonate with graphite. Electrochimica Acta, 2016, 217: 269–273
https://doi.org/10.1016/j.electacta.2016.09.080
120 Watanabe M, Thomas M L, Zhang S, Ueno K, Yasuda T, Dokko K. Application of ionic liquids to energy storage and conversion materials and devices. Chemical Reviews, 2017, 117(10): 7190–7239
https://doi.org/10.1021/acs.chemrev.6b00504 pmid: 28084733
121 Lewandowski A, Świderska-Mocek A. Ionic liquids as electrolytes for Li-ion batteries-an overview of electrochemical studies. Journal of Power Sources, 2009, 194(2): 601–609
https://doi.org/10.1016/j.jpowsour.2009.06.089
122 Zhao Y, Bostrom T. Application of ionic liquids in solar cells and batteries: A review. Current Organic Chemistry, 2015, 19(6): 556–566
https://doi.org/10.2174/1385272819666150127002529
123 Howlett P C, MacFarlane D R, Hollenkamp A F. High lithium metal cycling efficiency in a room-temperature ionic liquid. Electrochemical and Solid-State Letters, 2004, 7(5): A97–A101
https://doi.org/10.1149/1.1664051
124 Grande L, von Zamory J, Koch S L, Kalhoff J, Paillard E, Passerini S. Homogeneous lithium electrodeposition with pyrrolidinium-based ionic liquid electrolytes. ACS Applied Materials & Interfaces, 2015, 7(10): 5950–5958
https://doi.org/10.1021/acsami.5b00209 pmid: 25714124
125 Holzapfel M, Jost C, Novák P. Stable cycling of graphite in an ionic liquid based electrolyte. Chemical Communications, 2004, (18): 2098–2099
https://doi.org/10.1039/B407526A pmid: 15367993
126 Ishikawa M, Sugimoto T, Kikuta M, Ishiko E, Kono M. Pure ionic liquid electrolytes compatible with a graphitized carbon negative electrode in rechargeable lithium-ion batteries. Journal of Power Sources, 2006, 162(1): 658–662
https://doi.org/10.1016/j.jpowsour.2006.02.077
127 Yamagata M, Tanaka K, Tsuruda Y, Fukuda S, Nakasuka S, Kono M, Ishikawa M. The first lithium-ion battery with ionic liquid electrolyte demonstrated in extreme environment of space. Electrochemistry, 2015, 83(10): 918–924
https://doi.org/10.5796/electrochemistry.83.918
128 Reiter J, Paillard E, Grande L, Winter M, Passerini S. Physicochemical properties of N-methoxyethyl-N-methylpyrrolidinum ionic liquids with perfluorinated anions. Electrochimica Acta, 2013, 91: 101–107
https://doi.org/10.1016/j.electacta.2012.12.086
129 Matsui Y, Yamagata M, Murakami S, Saito Y, Higashizaki T, Ishiko E, Kono M, Ishikawa M. Design of an electrolyte composition for stable and rapid charging-discharging of a graphite negative electrode in a bis(fluorosulfonyl)imide-based ionic liquid. Journal of Power Sources, 2015, 279: 766–773
https://doi.org/10.1016/j.jpowsour.2015.01.070
130 Moreno M, Simonetti E, Appetecchi G B, Carewska M, Montanino M, Kim G T, Loeffler N, Passerini S. Ionic liquid electrolytes for safer lithium batteries. Journal of the Electrochemical Society, 2017, 164(1): A6026–A6031
https://doi.org/10.1149/2.0051701jes
131 Lestriez B, Bahri S, Sandu I, Roué L, Guyomard D. On the binding mechanism of CMC in Si negative electrodes for Li-ion batteries. Electrochemistry Communications, 2007, 9(12): 2801–2806
https://doi.org/10.1016/j.elecom.2007.10.001
132 Mueller F, Bresser D, Paillard E, Winter M, Passerini S. Influence of the carbonaceous conductive network on the electrochemical performance of ZnFe2O4 nanoparticles. Journal of Power Sources, 2013, 236: 87–94
https://doi.org/10.1016/j.jpowsour.2013.02.051
133 Bresser D, Mueller F, Buchholz D, Paillard E, Passerini S. Embedding tin nanoparticles in micron-sized disordered carbon for lithium- and sodium-ion anodes. Electrochimica Acta, 2014, 128(10): 163–171
https://doi.org/10.1016/j.electacta.2013.09.007
134 Sen U K, Mitra S. High-rate and high-energy-density lithium-ion battery anode containing 2D MoS2 nanowall and cellulose binder. ACS Applied Materials & Interfaces, 2013, 5(4): 1240–1247
https://doi.org/10.1021/am3022015 pmid: 23360622
135 Bresser D, Paillard E, Kloepsch R, Krueger S, Fiedler M, Schmitz R, Baither D, Winter M, Passerini S. Carbon coated ZnFe2O4 nanoparticles for advanced lithium-ion anodes. Advanced Energy Materials, 2013, 3(4): 513–523
https://doi.org/10.1002/aenm.201200735
136 Kovalenko I, Zdyrko B, Magasinski A, Hertzberg B, Milicev Z, Burtovyy R, Luzinov I, Yushin G. A major constituent of brown algae for use in high-capacity Li-ion batteries. Science, 2011, 334(6052): 75–79
https://doi.org/10.1126/science.1209150 pmid: 21903777
137 Komaba S, Yabuuchi N, Ozeki T, Han Z J, Shimomura K, Yui H, Katayama Y, Miura T. Comparative study of sodium polyacrylate and poly(vinylidene fluoride) as binders for high capacity Si-graphite composite negative electrodes in Li-ion batteries. Journal of Physical Chemistry C, 2012, 116(1): 1380–1389
https://doi.org/10.1021/jp204817h
138 Inagaki M. Carbon coating for enhancing the functionalities of materials. Carbon, 2012, 50(9): 3247–3266
https://doi.org/10.1016/j.carbon.2011.11.045
139 Sharova V, Moretti A, Giffin G, Carvalho D, Passerini S. Evaluation of carbon-coated graphite as a negative electrode material for Li-ion batteries. C Journal of Carbon Research, 2017, 3(3): 22
https://doi.org/10.3390/c3030022
140 Menkin S, Golodnitsky D, Peled E. Artificial solid-electrolyte interphase (SEI) for improved cycleability and safety of lithium-ion cells for EV applications. Electrochemistry Communications, 2009, 11(9): 1789–1791
https://doi.org/10.1016/j.elecom.2009.07.019
141 Li F S, Wu Y S, Chou J, Winter M, Wu N L. A mechanically robust and highly ion-conductive polymer-blend coating for high-power and long-life lithium-ion battery anodes. Advanced Materials, 2015, 27(1): 130–137
https://doi.org/10.1002/adma.201403880 pmid: 25377527
142 Nobili F, Mancini M, Stallworth P E, Croce F, Greenbaum S G, Marassi R. Tin-coated graphite electrodes as composite anodes for Li-ion batteries. Effects of tin coatings thickness toward intercalation behavior. Journal of Power Sources, 2012, 198(15): 243–250
https://doi.org/10.1016/j.jpowsour.2011.09.075
143 Verma P, Novák P. Formation of artificial solid electrolyte interphase by grafting for improving Li-ion intercalation and preventing exfoliation of graphite. Carbon, 2012, 50(7): 2599–2614
https://doi.org/10.1016/j.carbon.2012.02.019
144 Ma L, Kim M S, Archer L A. Stable artificial solid electrolyte interphases for lithium batteries. Chemistry of Materials, 2017, 29(10): 4181–4189
https://doi.org/10.1021/acs.chemmater.6b03687
145 Fan L, Zhuang H L, Gao L, Lu Y, Archer L A. Regulating Li deposition at artificial solid electrolyte interphases. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2017, 5(7): 3483–3492
https://doi.org/10.1039/C6TA10204B
146 Li N W, Yin Y X, Yang C P, Guo Y G. An artificial solid electrolyte interphase layer for stable lithium metal anodes. Advanced Materials, 2016, 28(9): 1853–1858
https://doi.org/10.1002/adma.201504526 pmid: 26698171
147 Kang I S, Lee Y S, Kim D W. Improved cycling stability of lithium electrodes in rechargeable lithium batteries. Journal of the Electrochemical Society, 2014, 161(1): A53–A57
https://doi.org/10.1149/2.029401jes
148 Yang C, Chen J, Qing T, Fan X, Sun W, von Cresce A, Ding M S, Borodin O, Vatamanu J, Schroeder M A, Eidson N, Wang C, Xu K. 4.0 V aqueous Li-ion batteries. Joule, 2017, 1(1): 122–132
https://doi.org/10.1016/j.joule.2017.08.009
149 Guk H, Kim D, Choi S H, Chung D H, Han S S. Thermostable artificial solid-electrolyte interface layer covalently linked to graphite for lithium ion battery: Molecular dynamics simulations. Journal of the Electrochemical Society, 2016, 163(6): A917–A922
https://doi.org/10.1149/2.0611606jes
[1] Chao Wang, Jun Chen, Jihua He, Jing Jiang, Qinyong Zhang. Effect of electrolyte concentration on the tribological performance of MAO coatings on aluminum alloys[J]. Front. Chem. Sci. Eng., 2020, 14(6): 1065-1071.
[2] Wenming Li, Weijian Tang, Maoqin Qiu, Qiuge Zhang, Muhammad Irfan, Zeheng Yang, Weixin Zhang. Effects of gradient concentration on the microstructure and electrochemical performance of LiNi0.6Co0.2Mn0.2O2 cathode materials[J]. Front. Chem. Sci. Eng., 2020, 14(6): 988-996.
[3] Linghui Yu, Jiansong Miao, Yi Jin, Jerry Y.S. Lin. A comparative study on polypropylene separators coated with different inorganic materials for lithium-ion batteries[J]. Front. Chem. Sci. Eng., 2017, 11(3): 346-352.
[4] Stefania Moioli,Laura A. Pellegrini. Modeling the methyldiethanolamine-piperazine scrubbing system for CO2 removal: Thermodynamic analysis[J]. Front. Chem. Sci. Eng., 2016, 10(1): 162-175.
[5] XU Yunlong, TAO Lili, MA Hongyan, HUANG Huaqing. LiFePO/C cathode materials synthesized by co-precipitation and microwave heating [J]. Front. Chem. Sci. Eng., 2008, 2(4): 422-427.
[6] ZHANG Mei, CUI Zhenyu, ZHU Baoku, HAN Gaige, XU Youyi, ZHANG Aiqing. Preparation and properties of gel membrane containing porous PVDF-HFP matrix and cross-linked PEG for lithium ion conduction[J]. Front. Chem. Sci. Eng., 2008, 2(1): 89-94.
[7] YE Lin, ZHAO Yumei, FENG Zengguo, BAI Ying, WU Feng. Synthesis of copolymers of 3-acryloyloxymethyl-3′-methyloxetane and 3-(2-(2-(2-Methoxyethylenoxy)ethylenoxy)ethylenoxy)-3′-methyloxetane and their ionic conductivity properties[J]. Front. Chem. Sci. Eng., 2007, 1(4): 343-348.
[8] KE Yangchuan, SUN Mingzhuo, SONG Yanxin, YANG GuangFu. Preparation and properties of nano SiO2 core-shell structured additives and their nanocomposite with polypropylene[J]. Front. Chem. Sci. Eng., 2007, 1(1): 76-80.
[9] ZHONG Li, LUO Jingli, Karl Chuang. Fabrication and performance of PEN SOFCs with proton-conducting electrolyte[J]. Front. Chem. Sci. Eng., 2007, 1(1): 40-44.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed