Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2019, Vol. 13 Issue (2) : 274-295    https://doi.org/10.1007/s11705-018-1765-0
REVIEW ARTICLE
An overview of carbon nanotubes role in heavy metals removal from wastewater
Leila Ouni, Ali Ramazani(), Saeid Taghavi Fardood
Department of Chemistry, University of Zanjan, Zanjan, Iran
 Download: PDF(1535 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The scarcity of water, mainly in arid and semi-arid areas of the world is exerting exceptional pressure on sources and necessitates offering satisfactory water for human and different uses. Water recycle/reuse has confirmed to be successful and promising in reliable water delivery. For that reason, attention is being paid to the effective treatment of alternative resources of water (other than fresh water) which includes seawater, storm water, wastewater (e.g., dealt with sewage water), and industrial wastewater. Carbon nanotubes (CNTs) are called the technology of 21st century. Nowadays CNTs have been widely used for adsorption of heavy metals from water/wastewater due to their unique physical and chemical properties. This paper reviews some recent progress (from 2013 to 2018) in the application of CNTs for the adsorption of heavy metals in order to remove toxic pollutants from contaminated water. CNTs are expected to be a promising adsorbent in the future because of its high adsorption potential in comparison to many traditional adsorbents.

Keywords carbon nanotubes      heavy metals removal      water treatment     
Corresponding Author(s): Ali Ramazani   
Just Accepted Date: 10 July 2018   Online First Date: 18 February 2019    Issue Date: 22 May 2019
 Cite this article:   
Leila Ouni,Ali Ramazani,Saeid Taghavi Fardood. An overview of carbon nanotubes role in heavy metals removal from wastewater[J]. Front. Chem. Sci. Eng., 2019, 13(2): 274-295.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-018-1765-0
https://academic.hep.com.cn/fcse/EN/Y2019/V13/I2/274
Fig.1  Types of carbon nanotubes: (a) a SWCNT and (b) a MWCNT
Adsorbent Adsorbate Qm /(mg?g?1) Experimental conditions Interaction mechanism Best fitted isotherm model Ref.
Functionalized MWCNTs Zn(II) 1.05 pH 10, initial concentration= 1.1 mg/L, adsorbent mass= 0.09 mg, contact time= 120 min, T = 50°C, agitation speed= 120 r/min Electrostatic interaction Langmuir, Freundlich [158]
NN-mSiO2@MWCNTs Cu(II) 66.577 pH 6.2, initial concentration= 100 mg/L, adsorbent mass= 20 mg, contact time= 30 min, T = 25°C Chemisorption Langmuir [168]
SWCNT Hg(II) 40.16 pH 5, initial concentration= 30 mg/L, adsorbent mass (m/v) = 0.25 mg/mL, contact time= 1 h, T = 25°C Chemisorption Langmuir, Freundlich [169]
Thiol-derivatized SWNTs Hg(II) 131.58 pH 5, initial concentration= 30 mg/L, adsorbent mass (m/v) = 0.25 mg/mL, contact time= 1 h, T = 25°C Strong chemisorption, soft acid-soft base interactions Langmuir [169]
Raw MWCNTs As(V) 2.995 pH 4, initial concentration= 94 µg/dm3, adsorbent mass= 100 mg/dm3, contact time= 45 min, T = 25°C Electrostaticinteraction, chemisorption Langmuir?Freundlich )Sips( [174]
Oxidized MWCNTs As(V) 3.613 pH 4, initial concentration= 94 µg/dm3, adsorbent mass= 100 mg/dm3, contact time= 45 min, T = 25°C Chemisorption, electrostaticinteraction, specific adsorption Langmuir?Freundlich )Sips( [174]
e-MWCNTs As(V) 12.175 pH 4, initial concentration= 94 µg/dm3, adsorbent mass= 100 mg/dm3, contact time= 45 min, T = 25°C Chemisorption, electrostatic interaction, specific adsorption Freundlich [174]
MWCNTs Cu(II) 3.19 × 10−5 mol/g pH 5, initial concentration=2.36 × 10 ?4 mol/L,T = 30°C Electrostatic interaction, surface complexation, surface precipitation Langmuir [175]
SWNTs Cr(VI) 20.3 pH 4, initial concentration= 500 µg/L, adsorbent mass= 100 mg/L, contact time= 720 min Chemisorption, physisorption, electrostatic interaction Langmuir [176]
MWNTs Cr(VI) 2.48 pH 4, initial concentration= 500 µg/L, adsorbent mass= 100 mg/L, contact time= 720 min Chemisorption, physisorption, electrostatic interaction Langmuir [176]
MWCNT–HAP Co(II) 16.26 pH 6, initial concentration= 1.69×10−4 mol/L, adsorbent mass= 0.6 g/L, T = 20°C Surface complexation Langmuir [177]
Sulphur containingMWCNTs (S-MWCNTs) Hg(II) 72.8 µg/g pH 12.15, initial concentration= 100 ppb, contact time= 60 min Chemisorption, soft acid-soft base interactions, electrostatic interaction Freundlich [178]
Ag-MWCNTs Cu(II) 53.29 pH 6, initial concentration= 50 mg/L, adsorbent mass= 0.05 g, contact time= 100 min, T = 20?40°C, agitation speed= 180 r/min Chemisorption, ion exchange Langmuir [179]
Ag-MWCNTs Cd(II) 51.97 pH 7, initial concentration= 50 mg/L, adsorbent mass= 0.05 g, contact time= 100 min, T = 20?40°C, agitation speed= 180 r/min Chemisorption, ion exchange Langmuir [179]
CF-CNTs-A As(V) 16.84 pH 4, initial concentration= 5 mg/L, adsorbent mass= 0.2 g/L, contact time= 360 min, T = 25°C, agitation speed= 150 r/min Electrostatic interaction, surface complexation Freundlich [180]
CF-CNTs-A As(III) 16.21 pH 7.5, initial concentration= 5 mg/L, adsorbent mass= 0.2 g/L, contact time= 300 min, T = 25°C, agitation speed= 150 r/min Surface complexation Langmuir [180]
CF-CNTs As(V) 30.96 pH 4, initial concentration= 5 mg/L, adsorbent mass= 0.2 g/L, contact time= 360 min, T = 25°C, agitation speed= 150 r/min Electrostatic interaction, surface complexation Freundlich [180]
CF-CNTs As(III) 28.74 pH 7.5, initial concentration= 5 mg/L, adsorbent mass= 0.2 g/L, contact time= 300 min, T = 25°C, agitation speed= 150 r/min Surface complexation Langmuir [180]
CS/MWCNTs Cu(II) 454.55 pH 5.5, initial concentration= 100 mg/L, adsorbent mass= 0.05 g, contact time= 90 min Surfacecomplexation, van der Waals interactions Langmuir [129]
SWCNTs/WSh Pb(II) 185.18 pH 5, initial concentration= 50 mg/L, adsorbent mass= 1 g/L, contact time= 30 min, T = 25°C, agitation speed= 65 r/min Electrostaticinteractions, chemisorption, precipitation, Langmuir [161]
CNT As(III) As(V) 0.124
0.373
pH 7, initial concentration= 500 µg/L, adsorbent mass= 2.5 g/L, contact time= 240 min Electrostatic interactions Langmuir [162]
ZCNT As(III) As(V) 111.1
1666.7
pH 7, initial concentration= 500 µg/L, adsorbent mass= 2.5 g/L, contact time= 240 min Complexation, chemisorption, diffusion processes Langmuir [162]
NCs Cr(VI) 264.5 pH 2, initial concentration= 100 mg/L, adsorbent mass= 2.5 g/L, contact time= 240 min, T = 30°C, agitation speed= 100 r/min Electrostaticinteractions, chemisorption, intraparticle diffusion, external diffusion Langmuir [170]
NCs Cd(II) 229.9 pH 7.5, initial concentration= 100 mg/L, adsorbent mass= 2.5 g/L, contact time= 240 min, T = 30°C, agitation speed= 100 r/min Electrostaticinteractions, complexation, chemisorption, intraparticle diffusion, external diffusion Langmuir [170]
MWCNTs Hg(II) 5.479 pH 6, initial concentration= 100 mg/L, adsorbent mass= 0.02 g, contact time= 90 min, agitation speed= 110 r/min Ion exchange, physisorption, chemisorption, external diffusion Langmuir [181]
MWCNT-OX Hg(II) 27.32 pH 6, initial concentration= 100 mg/L, adsorbent mass= 0.02 g, contact time= 90 min, agitation speed= 110 r/min Ion exchange, physisorption, chemisorption, complexation, external diffusion Langmuir [181]
CNT-I Hg(II) 123.45 pH 6, initial concentration= 100 mg/L, adsorbent mass= 0.02 g, contact time= 105 min, agitation speed= 110 r/min Ion exchange, physisorption, chemisorption, complexation, external diffusion, soft-soft interaction Langmuir [181]
Sulfur incorporatedMWCNT (CNT-S) Hg(II) 151.51 pH 6, initial concentration= 100 mg/L, adsorbent mass= 0.02 g, contact time= 105 min, agitation speed= 110 r/min Ion exchange, physisorption, chemisorption, complexation, external diffusion, soft acid-soft base interaction Langmuir [181]
Amino and thiolated functionalized MWCNTs Hg(II) 84.66 pH 6, initial concentration= 10 mg/L, adsorbent mass= 400 mg/L, contact time= 60 min, T = 25°C, agitation speed= 200 r/min Physisorption, soft acid-soft base interaction Langmuir [182]
p-MWCNTs Cu(II) NA
36.82 based on D-R model
pH 5, initial concentration= 20 mg/L Physical adsorption Freundlich [183]
Sulfonated MWCNTs (s-MWCNTs) Cu(II) NA
43.16 based on D-R model
pH 5, initial concentration= 20 mg/L Electrostaticinteractions, physisorption, inner-spheresurface complexation Freundlich [183]
Raw MWCNTs Hg(II) 32.4 pH 4.3, initial concentration= 4.0 mg/L, agitation speed= 200 r/min Electrostatic interactions, complexation, chemisorption, intraparticle diffusion Langmuir [184]
OH-MWCNTs
(with a phenolic hydroxyl functional group)
Hg(II) 120.1 pH 4.3, initial concentration= 4.0 mg/L, agitation speed= 200 r/min Electrostatic interactions, complexation, chemisorption, external diffusion, intraparticle diffusion Langmuir [184]
COOH-MWCNTs Hg(II) 127.6 pH 4.3, initial concentration= 4.0 mg/L, agitation speed= 200 r/min Electrostatic interactions, complexation, chemisorption, external diffusion, intraparticle diffusion Langmuir [184]
As-produced MWCNT Pb(II)
Cu(II)
Cr(VI)
Cd(II)
Ni(II)
48.0
45.0
43.0
39.0
35.0
pH 5.5, initial concentration= 20 mg/L, adsorbent mass= 1 g/L, contact time= 120 min, agitation speed= 200 r/min Chemisorption,
electrostaticinteractions
Langmuir, Freundlich [154]
Oxidized MWCNT Pb(II)
Cu(II)
Cr(VI)
Cd(II)
Ni(II)
75.0
70.4
67.0
66.0
59.2
pH 5.5, initial concentration= 20 mg/L, adsorbent mass= 1 g/L, contact time= 120 min, agitation speed= 200 r/min Chemisorption,
electrostaticinteractions
Langmuir, Freundlich [154]
Oxidized MWCNT Cu(II) 200.0 pH 6, initial concentration= 50 mg/L, adsorbent mass=0.03 g, contact time= 75 min, T = 25°C Chemisorption, electrostatic interaction Langmuir [163]
Raw MWCNTs Sr(II) 3.13 pH 6, initial concentration= 30 mg/L, contact time= 24 h, T = 25°C, agitation speed= 150 r/min NA Langmuir [166]
Oxidized MWCNTs Sr(II) 10.87 pH 6, initial concentration= 30 mg/L, contact time= 24 h, T = 25°C, agitation speed= 150 r/min Chemisorption Langmuir [166]
MWCNT/SMP (Hybrid) Sr(II) 14.92 pH 6, initial concentration= 30 mg/L, contact time= 24 h, T = 25°C, agitation speed= 150 r/min Chemisorption Langmuir [166]
MnO2-CNTs Hg(II) 58.82 pH 5?7, initial concentration= 10 mg/L, adsorbent mass= 0.02 g/20 mL, contact time= 80 min, T = 25°C, agitation speed= 180 r/min Electrostaticinteractions, physisorption Freundlich [172]
Al2O3/MWCNTs Cd (II) 27.21 pH 7, initial concentration= 1 mg/L, adsorbent mass= 1 g/L, contact time= 240 min, T = 25°C, agitation speed= 150 r/min Electrostatic interactions, physisorption, surface complexation, surface precipitation, van der Waals interactions Langmuir [185]
MWCNTs Cr(VI) 13.2 NA Electrostatic interactions Langmuir [186]
IL-oxi-MWCNTs Cr(VI) 85.83 pH 2.5?4.0, initial concentration= 20 mg/L, adsorbent mass= 0.15 g, contact time= 40 min, agitation speed= 150 r/min Electrostatic interactions, cation-π interaction, anion-π interaction Freundlich [186]
Raw CNTs Cd(II) 1.66 pH 7, initial concentration= 1 mg/L, adsorbent mass= 50 mg, contact time= 120 min, agitation speed= 150 r/min Electrostatic interactions Langmuir [187]
O-MWCNTs Pb(II)
Cd(II)
Cu(II)
Zn(II)
76.7
32.2
15.3
13.6
pH 5, initial concentration= 40 mg/L
adsorbent mass= 5 mg,
contact time= 30 min, , T = 25°C
Electrostatic interaction Langmuir [188]
Acid modified CNTs Cd(II) 4.35 pH 7, initial concentration= 1 mg/L
adsorbent mass= 50 mg,
contact time= 120 min, agitation speed= 150 r/min
Electrostatic interactions, chemisorption, ion exchange Langmuir [189]
MWCNTs Hg(II) 25.641 pH 7, initial concentration= 0.1 mg/L, adsorbent mass= 0.5 g/L, contact time= 120 min, T = 25°C, agitation speed= 150 r/min Chemisorption Freundlich, Langmuir [190]
MWCNT-TA Cu(II) 30.85 pH 6, initial concentration= 50 mg/L, adsorbent mass= 0.01 g, contact time= 240 min, T = 25°C, agitation speed= 220 r/min Charge interaction Langmuir [191]
Raw CNTs Cr(VI) 3.115 pH 4, initial concentration= 1 mg/L, adsorbent mass= 75 mg, contact time= 240 min, agitation speed= 200 r/min Electrostatic interactions Langmuir [52]
Acid modified CNTs Cr (VI) 1.314 pH 3, initial concentration= 1 mg/L, adsorbent mass= 75 mg, contact time= 240 min, agitation speed= 200 r/min Electrostatic interactions Langmuir [52]
MWCNTs-NCO Pb(II)
Pb-201
196.10 pH 6, initial concentration= 10 mg/L, adsorbent mass= 5 mg, contact time= 30 min, T = 25°C Electrostatic interactions Langmuir [126]
As-synthesized CNTs Cu(II) 55.25 pH 7, initial concentration= 800 mg/L, adsorbent mass= 50 mg, contact time= 300 min, T = 25°C Chemisorption, diffusion-based process Langmuir, Freundlich [152]
Acid-treated CNTs Cu(II) 82.64 pH 7, initial concentration= 800 mg/L, adsorbent mass= 50 mg, contact time= 300 min, T = 25°C Chemisorption, diffusion-based process Langmuir, Freundlich [152]
Chitosan-treated CNTs Cu(II) 120.48 pH 7, initial concentration= 800 mg/L, adsorbent mass= 50 mg, contact time= 300 min, T = 25°C Chemisorption, diffusion-based process Langmuir, Freundlich [152]
Acid–chitosan CNTs Cu(II) 158.73 pH 7, initial concentration= 800 mg/L, adsorbent mass= 50 mg, contact time= 300 min, T = 25°C Chemisorption, diffusion-based process Langmuir, Freundlich [152]
PPy/O-MWCNTs Pb(II)
Ni(II)
Cd(II)
408.2
409.4
392.0
pH 6, initial concentration= 100 mg/L, adsorbent mass= 60 mg/L, contact time= 60 min, T = 30°C, agitation speed= 200 r/min Chemisorption,
physisorption
Langmuir [153]
Fe3O4/O-MWCNTs Pb(II) 67.25 pH 5, initial concentration= 200 mg/L, adsorbent mass= 1 g/L, contact time= 360 min, T = 25°C Chemisorption,
electrostatic interactions, complexation, chemical bonds’ interactions
Langmuir [155]
Fe3O4/O-MWCNTs Zn(II) 3.759 pH 5, initial concentration= 30 mg/L, adsorbent mass= 1 g/L, contact time= 360 min, T = 25°C Chemisorption,
electrostatic interactions, complexation, chemical bonds’ interactions
Langmuir [155]
KM-CNTs As(III) 23.40 pH 3, initial concentration= 1 mg/L, adsorbent mass= 20 mg, contact time= 55 min, agitation speed= 180 r/min Chemisorption, complexation, ion exchange, electrostaticinteraction Freundlich [164]
KB-CNTs As(III) 14.23 pH 6, initial concentration= 1 mg/L, adsorbent mass= 20 mg, contact time= 55 min, agitation speed= 180 r/min Chemisorption, complexation, ion exchange, electrostatic interaction Langmuir [164]
PAMAM/CNTs Ni(II)
Co(II)
Zn(II)
As(III)
3900
3800
3650
3500
pH 7, initial concentration= 100 mg/L, adsorbent mass= 0.03 g/L, contact time= 15 min, T = 25°C, agitation speed= 14000 r/min Chelating, chemisorption, electrostatic interactions, van der Waals, encapsulating interactions, complexation Langmuir [165]
NaAlg-CNTs Co(II) 456.5 pH 6.8, initial concentration= 400 mg/L, adsorbent mass= 0.1 g, contact time= 540 min, T = 21°C Electrostatic interactions, π−π electron-donor/acceptor interactions Freundlich [192]
NaAlg-HAp-CNT nanocomposite beads Co(II) 1111.1 pH 6.8, initial concentration= 400 mg/L, adsorbent mass= 0.1 g ,contact time= 540 min, T = 21°C Electrostatic interactions, π−π electron-donor/acceptor interactions Freundlich [192]
N2H4-SH-Fe3O4/O-MWCNTs Pb(II)
Zn(II)
40.0
21.28
pH 6, initial concentration= 40 mg/L, adsorbent mass= 10 mg, contact time= 30 min Chemisorption, physisorption Freundlich [193]
pTSA-Pani@GO-CNT Cr(VI) 142.85 pH 2, initial concentration= 200 mg/L, adsorbent mass= 0.02 g, contact time= 500 min, T = 30°C Electrostatic interactions, hydrophobic interactions, π−π skating interactions Langmuir [150]
PAMAM/CNTs Cu(II)
Pb(II)
3333
4870
pH 7, initial concentration= 100 mg/L, adsorbent mass= 0.03 g/L, T = 25°C Chelating, electrostatic interactions, van der Waals, encapsulating interactions, complexation Langmuir [151]
MWCNTs Cd(II) 43.103 pH 8?9, initial concentration= 50 mg/L, adsorbent mass= 20 mg, contact time= 60 min, T = 45°C, agitation speed= 250 r/min Chemisorption, electrostaticinteraction, Langmuir [156]
MWCNTs-COOH Cd(II) 212.766 pH 8?9, initial concentration= 50 mg/L, adsorbent mass= 20 mg, contact time= 60 min, T = 45°C, agitation speed= 250 r/min Chemisorption, electrostaticinteraction, Dubinin–Radushkevich [156]
MWCNTs-f Cd(II) 400 pH 8?9, initial concentration= 50 mg/L, adsorbent mass= 20 mg, contact time= 60 min, T = 45°C, agitation speed= 250 r/min Chemisorption, electrostaticinteraction, Temkin [156]
NiO/CNT Pb(II) 24.63 pH 7, initial concentration= 20 mg/L, adsorbent mass= 0.1 mg, contact time= 10 min van der Waals interaction, electrostatic attraction, chemisorption Freundlich [194]
Acidified functionalized MWCNTs Pb(II)
Cu(II)
Cd(II) Ni(II)
166
123
101
95
pH 9, initial concentration= 100 mg/L, adsorbent mass= 0.5 g, contact time= 10 h, agitation speed= 200 r/min Chemisorption, complexation, ion exchange, Langmuir, Freundlich [195]
MWCNTs Hg(II) 71.1 pH 7, initial concentration= 100 µg/L, adsorbent mass= 0.5 g/L, contact time= 90 min, T = 20°C, agitation speed= 245 r/min Chemisorption, electrostaticinteraction Freundlich,
Dubinin?Radushkevich
[196]
MWCNTs-OH Hg(II) 78.9 pH 7, initial concentration= 100 µg/L, adsorbent mass= 0.5 g/L, contact time= 90 min, T = 20°C, agitation speed= 245 r/min Chemisorption, electrostaticinteraction Freundlich,
Dubinin?Radushkevich
[196]
MWCNTs-COOH Hg(II) 134.0 pH 7, initial concentration= 100 µg/L, adsorbent mass= 0.5 g/L, contact time= 90 min, T = 20°C, agitation speed= 245 r/min Chemisorption, electrostaticinteraction Freundlich,
Dubinin?Radushkevch
[196]
MWCNTs-NH2 Hg(II) 205.0 pH 7, initial concentration= 100 µg/L, adsorbent mass= 0.5 g/L, contact time= 90 min, T = 20°C, agitation speed= 245 r/min Chemisorption, electrostatic interaction Freundlich, Dubinin?Radushkevich [196]
Fe3O4/CNT Pb(II) 21.55 pH 6, initial concentration= 20 mg/L, adsorbent mass= 0.10 g, contact time= 40 min, T = 25°C Chemisorption,
physisorption
Langmuir, Freundlich [197]
Tab.1  Adsorption of heavy metals using non-modified and functionalized CNTs, and their maximum adsorption capacities*
Fig.2  Schematic diagram of the acid modification of CNTs by various methods and the major mechanism for adsorption of divalent metal ions on the modified CNTs surface
Fig.3  Adsorption mechanism of metal ions by functionalized CNT with increasing the solution pH
Fig.4  Adsorption mechanism of Hg(II) with the (a) CNT-OX, (b) CNT-I, (c) CNT-S
Fig.5  Schematic diagram of the proposed mechanism for adsorption of (a) As(V) and (b) As(III) on the CF-CNTs
1 PMarques, M Rosa, HPinheiro. pH effects on the removal of Cu2+, Cd2+ and Pb2+ from aqueous solution by waste brewery biomass. Bioprocess and Biosystems Engineering, 2000, 23(2): 135–141
https://doi.org/10.1007/PL00009118
2 RDubey, R Xavier. Study on removal of toxic metals using various adsorbents from aqueous environment: A review. Scinzer Journal of Engineering, 2015, 1(1): 30–36
3 NZahra. Lead removal from water by low cost adsorbents: A review. Pakistan Journal of Analytical & Environmental Chemistry, 2012, 13(1): 8
4 HSadegh, R Shahryari-ghoshekandi, ITyagi, SAgarwal, V KGupta. Kinetic and thermodynamic studies for alizarin removal from liquid phase using poly-2-hydroxyethyl methacrylate (PHEMA). Journal of Molecular Liquids, 2015, 207: 21–27
https://doi.org/10.1016/j.molliq.2015.03.014
5 VGupta, I Tyagi, HSadegh, RShahryari-Ghoshekandi, AMakhlouf, BMaazinejad. Nanoparticles as adsorbent: A positive approach for removal of noxious metal ions: A review. Science. Technology and Development, 2015, 34(3): 195–214
https://doi.org/10.3923/std.2015.195.214
6 STaghavi Fardood, KAtrak, ARamazani. Green synthesis using tragacanth gum and characterization of Ni-Cu-Zn ferrite nanoparticles as a magnetically separable photocatalyst for organic dyes degradation from aqueous solution under visible light. Journal of Materials Science Materials in Electronics, 2017, 28(14): 10739–10746
https://doi.org/10.1007/s10854-017-6850-5
7 STaghavi Fardood, ZGolfar, ARamazani. Novel sol-gel synthesis and characterization of superparamagnetic magnesium ferrite nanoparticles using tragacanth gum as a magnetically separable photocatalyst for degradation of reactive blue 21 dye and kinetic study. Journal of Materials Science Materials in Electronics, 2017, 28(22): 17002–17008
https://doi.org/10.1007/s10854-017-7622-y
8 M EShayegan, M Sorbiun, ARamazani, STaghavi Fardood. Plant-mediated synthesis of zinc oxide and copper oxide nanoparticles by using ferulago angulata (schlecht) boiss extract and comparison of their photocatalytic degradation of Rhodamine B (RhB) under visible light irradiation. Journal of Materials Science Materials in Electronics, 2017, 29(2): 1333–1340
https://doi.org/10.1007/s10854-017-8039-3
9 MSorbiun, M E Shayegan, A Ramazani, STaghavi Fardood. Biosynthesis of Ag, ZnO and bimetallic Ag/ZnO alloy nanoparticles by aqueous extract of oak fruit hull (Jaft) and investigation of photocatalytic activity of ZnO and bimetallic Ag/ZnO for degradation of basic violet 3 dye. Journal of Materials Science Materials in Electronics, 2018, 29(4): 2806–2814
https://doi.org/10.1007/s10854-017-8209-3
10 JDuruibe, M Ogwuegbu, JEgwurugwu. Heavy metal pollution and human biotoxic effects. International Journal of Physical Sciences, 2007, 2(5): 112–118
11 LJärup. Hazards of heavy metal contamination. British Medical Bulletin, 2003, 68(1): 167–182
https://doi.org/10.1093/bmb/ldg032
12 FZahir, S J Rizwi, S K Haq, R H Khan. Low dose mercury toxicity and human health. Environmental Toxicology and Pharmacology, 2005, 20(2): 351–360
https://doi.org/10.1016/j.etap.2005.03.007
13 NLangford, R Ferner. Toxicity of mercury. Journal of Human Hypertension, 1999, 13(10): 651–656
https://doi.org/10.1038/sj.jhh.1000896
14 SBabel, T A Kurniawan. Low-cost adsorbents for heavy metals uptake from contaminated water: A review. Journal of Hazardous Materials, 2003, 97(1): 219–243
https://doi.org/10.1016/S0304-3894(02)00263-7
15 C BErnhart. A critical review of low-level prenatal lead exposure in the human: 1. Effects on the fetus and newborn. Reproductive Toxicology (Elmsford, N.Y.), 1992, 6(1): 9–19
https://doi.org/10.1016/0890-6238(92)90017-N
16 V KGupta, I Tyagi, SAgarwal, HSadegh, RShahryari-ghoshekandi, MYari, O Yousefi-nejat. Experimental study of surfaces of hydrogel polymers HEMA, HEMA-EEMA-MA, and PVA as adsorbent for removal of azo dyes from liquid phase. Journal of Molecular Liquids, 2015, 206: 129–136
https://doi.org/10.1016/j.molliq.2015.02.015
17 XWang, Y Guo, LYang, MHan, J Zhao, XCheng. Nanomaterials as sorbents to remove heavy metal ions in wastewater treatment. Journal of Environmental & Analytical Toxicology, 2012, 2(7): 1000154
https://doi.org/10.4172/2161-0525.1000154
18 GZhao, J Li, XRen, CChen, X Wang. Few-layered graphene oxide nanosheets as superior sorbents for heavy metal ion pollution management. Environmental Science & Technology, 2011, 45(24): 10454–10462
https://doi.org/10.1021/es203439v
19 CLu, H Chiu. Adsorption of zinc (II) from water with purified carbon nanotubes. Chemical Engineering Science, 2006, 61(4): 1138–1145
https://doi.org/10.1016/j.ces.2005.08.007
20 MTuzen, M Soylak. Multiwalled carbon nanotubes for speciation of chromium in environmental samples. Journal of Hazardous Materials, 2007, 147(1): 219–225
https://doi.org/10.1016/j.jhazmat.2006.12.069
21 STaghavi Fardood, ARamazani, SMoradi, A PAzimzadeh. Green synthesis of zinc oxide nanoparticles using arabic gum and photocatalytic degradation of direct blue 129 dye under visible light. Journal of Materials Science Materials in Electronics, 2017, 28(18): 13596–13601
https://doi.org/10.1007/s10854-017-7199-5
22 MSorbiun, M E Shayegan, A Ramazani, STaghavi Fardood. Green synthesis of zinc oxide and copper oxide nanoparticles using aqueous extract of oak fruit hull (jaft) and comparing their photocatalytic degradation of basic violet 3. International Journal of Environmental of Research, 2018, 12(1): 29–37
https://doi.org/10.1007/s41742-018-0064-4
23 CLuke. Photometric determination of antimony and thallium in lead. Analytical Chemistry, 1959, 31(10): 1680–1682
https://doi.org/10.1021/ac60154a041
24 KShah, K Gupta, BSengupta. Selective separation of copper and zinc from spent chloride brass pickle liquors using solvent extraction and metal recovery by precipitation-stripping. Journal of Environmental Chemical Engineering, 2017, 5(5): 5260–5269
https://doi.org/10.1016/j.jece.2017.09.061
25 NReynier, L Coudert, J FBlais, GMercier, SBesner. Treatment of contaminated soil leachate by precipitation, adsorption and ion exchange. Journal of Environmental Chemical Engineering, 2015, 3(2): 977–985
https://doi.org/10.1016/j.jece.2015.03.002
26 J LMeans, D A Crerar, M P Borcsik, J O Duguid. Adsorption of Co and selected actinides by Mn and Fe oxides in soils and sediments. Geochimica et Cosmochimica Acta, 1978, 42(12): 1763–1773
https://doi.org/10.1016/0016-7037(78)90233-8
27 T.Nozaki Indirect colorimetric determination of Thallium. Journal of the Chemical Society of Japan. Pure Chemistry Section, 1956, 77: 493–498
28 FStrelow, A Victor. Quantitative separation of Al, Ga, In, and Tl by cation exchange chromatography in hydrochloric acid-acetone. Talanta, 1972, 19(9): 1019–1023
https://doi.org/10.1016/0039-9140(72)80038-9
29 AMatthews, J P Kiley. The determination of thallium in silicate rocks, marine sediments and sea water. Analytica Chimica Acta, 1969, 48(1): 25–34
https://doi.org/10.1016/S0003-2670(01)85238-7
30 FFu, Q Wang. Removal of heavy metal ions from wastewaters: A review. Journal of Environmental Management, 2011, 92(3): 407–418
https://doi.org/10.1016/j.jenvman.2010.11.011
31 TSato, K Sato. Liquid-liquid extraction of indium (III) from aqueous acid solutions by acid organophosphorus compounds. Hydrometallurgy, 1992, 30(1-3): 367–383
https://doi.org/10.1016/0304-386X(92)90094-G
32 YZhang, B Jin, BMa, XFeng. Separation of indium from lead smelting hazardous dust via leaching and solvent extraction. Journal of Environmental Chemical Engineering, 2017, 5(3): 2182–2188
https://doi.org/10.1016/j.jece.2017.04.034
33 EBidari, M Irannejad, MGharabaghi. Solvent extraction recovery and separation of cadmium and copper from sulphate solution. Journal of Environmental Chemical Engineering, 2013, 1(4): 1269–1274
https://doi.org/10.1016/j.jece.2013.09.016
34 C YCheng, K R Barnard, W Zhang, ZZhu, YPranolo. Recovery of nickel, cobalt, copper and zinc in sulphate and chloride solutions using synergistic solvent extraction. Chinese Journal of Chemical Engineering, 2016, 24(2): 237–248
https://doi.org/10.1016/j.cjche.2015.06.002
35 YYamini, P Ashtari, AKhanchi, MGhannadi-Maragheh, MShamsipur. Preconcentration of trace amounts of uranium in water samples on octadecyl silica membrane disks modified by bis (2-ethylhexyl) hydrogen phosphate and its determination by alpha-spectrometry without electrodeposition. Journal of Radioanalytical and Nuclear Chemistry, 1999, 242(3): 783–786
https://doi.org/10.1007/BF02347395
36 MShamsipur, Y Yamini, PAshtari, A RKhanchi, MGhannadi-Marageh. A rapid method for the extraction and separation of uranium from thorium and other accompanying elements using octadecyl silica membrane disks modified by tri-n-octyl phosphine oxide. Separation Science and Technology, 2000, 35(7): 1011–1019
https://doi.org/10.1081/SS-100100207
37 PAshtari, K Wang, XYang, S JAhmadi. Preconcentration and separation of ultra-trace beryllium using quinalizarine-modified magnetic microparticles. Analytica Chimica Acta, 2009, 646(1): 123–127
https://doi.org/10.1016/j.aca.2009.05.004
38 TKnyazkova, A Kavitskaya. Improved performance of reverse osmosis with dynamic layers onto membranes in separation of concentrated salt solutions. Desalination, 2000, 131(1-3): 129–136
https://doi.org/10.1016/S0011-9164(00)90013-4
39 M EErsahin, H Ozgun, R KDereli, IOzturk, KRoest, J Bvan Lier. A review on dynamic membrane filtration: Materials, applications and future perspectives. Bioresource Technology, 2012, 122: 196–206
https://doi.org/10.1016/j.biortech.2012.03.086
40 JKhosravi, A Alamdari. Copper removal from oil-field brine by coprecipitation. Journal of Hazardous Materials, 2009, 166(2): 695–700
https://doi.org/10.1016/j.jhazmat.2008.11.079
41 BAl-Rashdi, C Somerfield, NHilal. Heavy metals removal using adsorption and nanofiltration techniques. Separation and Purification Reviews, 2011, 40(3): 209–259
https://doi.org/10.1080/15422119.2011.558165
42 EElsehly, N Chechenin, AMakunin, EVorobyeva, HMotaweh. Oxidized carbon nanotubes filters for iron removal from aqueous solutions. International Journal of New Technologies in Science and Engineering, 2015, 2(2): 14–18
43 HHossini, A Rezaee, GMohamadiyan. Hexavalent chromium removal from aqueous solution using functionalized multi-walled carbon nanotube: Optimization of parameters by response surface methodology. Health Scope, 2015, 4(1): e19892
https://doi.org/10.17795/jhealthscope-19892
44 TMohammadi, A Razmi, MSadrzadeh. Effect of operating parameters on Pb2+ separation from wastewater using electrodialysis. Desalination, 2004, 167: 379–385
https://doi.org/10.1016/j.desal.2004.06.150
45 MBarakat. New trends in removing heavy metals from industrial wastewater. Arabian Journal of Chemistry, 2011, 4(4): 361–377
https://doi.org/10.1016/j.arabjc.2010.07.019
46 EDeliyanni, E Peleka, KMatis. Removal of zinc ion from water by sorption onto iron-based nanoadsorbent. Journal of Hazardous Materials, 2007, 141(1): 176–184
https://doi.org/10.1016/j.jhazmat.2006.06.105
47 IMobasherpour, E Salahi, MEbrahimi. Removal of divalent nickel cations from aqueous solution by multi-walled carbon nano tubes: Equilibrium and kinetic processes. Research on Chemical Intermediates, 2012, 38(9): 2205–2222
https://doi.org/10.1007/s11164-012-0537-6
48 CLiu, R Bai, QSan Ly. Selective removal of copper and lead ions by diethylenetriamine-functionalized adsorbent: Behaviors and mechanisms. Water Research, 2008, 42(6): 1511–1522
https://doi.org/10.1016/j.watres.2007.10.031
49 VGupta, O Moradi, ITyagi, SAgarwal, HSadegh, RShahryari-Ghoshekandi, AMakhlouf, MGoodarzi, AGarshasbi. Study on the removal of heavy metal ions from industry waste by carbon nanotubes: effect of the surface modification: A review. Critical Reviews in Environmental Science and Technology, 2016, 46(2): 93–118
https://doi.org/10.1080/10643389.2015.1061874
50 Y HLi, Z Di, JDing, DWu, Z Luan, YZhu. Adsorption thermodynamic, kinetic and desorption studies of Pb2+ on carbon nanotubes. Water Research, 2005, 39(4): 605–609
https://doi.org/10.1016/j.watres.2004.11.004
51 MImamoglu, O Tekir. Removal of copper (II) and lead (II) ions from aqueous solutions by adsorption on activated carbon from a new precursor hazelnut husks. Desalination, 2008, 228(1-3): 108–113
https://doi.org/10.1016/j.desal.2007.08.011
52 Ihsanullah, F A Al-Khaldi, B Abu-Sharkh, A MAbulkibash, M IQureshi, TLaoui, M AAtieh. Effect of acid modification on adsorption of hexavalent chromium (Cr (VI)) from aqueous solution by activated carbon and carbon nanotubes. Desalination and Water Treatment, 2016, 57(16): 7232–7244
https://doi.org/10.1080/19443994.2015.1021847
53 HHasar. Adsorption of nickel (II) from aqueous solution onto activated carbon prepared from almond husk. Journal of Hazardous Materials, 2003, 97(1): 49–57
https://doi.org/10.1016/S0304-3894(02)00237-6
54 KKadirvelu, K Thamaraiselvi, CNamasivayam. Adsorption of nickel (II) from aqueous solution onto activated carbon prepared from coirpith. Separation and Purification Technology, 2001, 24(3): 497–505
https://doi.org/10.1016/S1383-5866(01)00149-6
55 MSekar, V Sakthi, SRengaraj. Kinetics and equilibrium adsorption study of lead (II) onto activated carbon prepared from coconut shell. Journal of Colloid and Interface Science, 2004, 279(2): 307–313
https://doi.org/10.1016/j.jcis.2004.06.042
56 HShamsijazeyi, T Kaghazchi. Investigation of nitric acid treatment of activated carbon for enhanced aqueous mercury removal. Journal of Industrial and Engineering Chemistry, 2010, 16(5): 852–858
https://doi.org/10.1016/j.jiec.2010.03.012
57 MGoyal, M Bhagat, RDhawan. Removal of mercury from water by fixed bed activated carbon columns. Journal of Hazardous Materials, 2009, 171(1): 1009–1015
https://doi.org/10.1016/j.jhazmat.2009.06.107
58 FDi Natale, A Erto, ALancia, DMusmarra. Mercury adsorption on granular activated carbon in aqueous solutions containing nitrates and chlorides. Journal of Hazardous Materials, 2011, 192(3): 1842–1850
https://doi.org/10.1016/j.jhazmat.2011.07.021
59 BBiškup, B Subotić. Removal of heavy metal ions from solutions using zeolites. III. Influence of sodium ion concentration in the liquid phase on the kinetics of exchange processes between cadmium ions from solution and sodium ions from zeolite A. Separation Science and Technology, 2005, 39(4): 925–940
https://doi.org/10.1081/SS-120028454
60 J YBottero, J Rose, M RWiesner. Nanotechnologies: Tools for sustainability in a new wave of water treatment processes. Integrated Environmental Assessment and Management, 2006, 2(4): 391–395
https://doi.org/10.1002/ieam.5630020411
61 K CJusti, V T Fávere, M C Laranjeira, A Neves, R APeralta. Kinetics and equilibrium adsorption of Cu (II), Cd (II), and Ni (II) ions by chitosan functionalized with 2 [-bis-(pyridylmethyl) aminomethyl]-4-methyl-6-formylphenol. Journal of Colloid and Interface Science, 2005, 291(2): 369–374
https://doi.org/10.1016/j.jcis.2005.05.017
62 W WNgah, L Teong, MHanafiah. Adsorption of dyes and heavy metal ions by chitosan composites: A review. Carbohydrate Polymers, 2011, 83(4): 1446–1456
https://doi.org/10.1016/j.carbpol.2010.11.004
63 A HHawari, C N Mulligan. Biosorption of lead (II), cadmium (II), copper (II) and nickel (II) by anaerobic granular biomass. Bioresource Technology, 2006, 97(4): 692–700
https://doi.org/10.1016/j.biortech.2005.03.033
64 PBrown, I A Jefcoat, D Parrish, SGill, EGraham. Evaluation of the adsorptive capacity of peanut hull pellets for heavy metals in solution. Advances in Environmental Research, 2000, 4(1): 19–29
https://doi.org/10.1016/S1093-0191(00)00004-6
65 C VDiniz, F M Doyle, V S Ciminelli. Effect of pH on the adsorption of selected heavy metal ions from concentrated chloride solutions by the chelating resin Dowex M-4195. Separation Science and Technology, 2002, 37(14): 3169–3185
https://doi.org/10.1081/SS-120006155
66 ÖYavuz, Y Altunkaynak, FGüzel. Removal of copper, nickel, cobalt and manganese from aqueous solution by kaolinite. Water Research, 2003, 37(4): 948–952
https://doi.org/10.1016/S0043-1354(02)00409-8
67 E JKim, C S Lee, Y Y Chang, Y S Chang. Hierarchically structured manganese oxide-coated magnetic nanocomposites for the efficient removal of heavy metal ions from aqueous systems. ACS Applied Materials & Interfaces, 2013, 5(19): 9628–9634
https://doi.org/10.1021/am402615m
68 FEkmekyapar, A Aslan, Y KBayhan, ACakici. Biosorption of copper (II) by nonliving lichen biomass of Cladonia rangiformis Hoffm. Journal of Hazardous Materials, 2006, 137(1): 293–298
https://doi.org/10.1016/j.jhazmat.2006.02.003
69 FEkmekyapar, A Aslan, YBayhan, ACakici. Biosorption of Pb (II) by nonliving lichen biomass of Cladonia rangiformis Hoffm. International Journal of Environmental of Research, 2012, 6(2): 417–424
70 QLi, S Wu, GLiu, XLiao, X Deng, DSun, YHu, Y Huang. Simultaneous biosorption of cadmium (II) and lead (II) ions by pretreated biomass of Phanerochaete chrysosporium. Separation and Purification Technology, 2004, 34(1): 135–142
https://doi.org/10.1016/S1383-5866(03)00187-4
71 YHo, G McKay. The sorption of lead (II) ions on peat. Water Research, 1999, 33(2): 578–584
https://doi.org/10.1016/S0043-1354(98)00207-3
72 NFiol, I Villaescusa, MMartínez, NMiralles, JPoch, J Serarols. Sorption of Pb (II), Ni (II), Cu (II) and Cd (II) from aqueous solution by olive stone waste. Separation and Purification Technology, 2006, 50(1): 132–140
https://doi.org/10.1016/j.seppur.2005.11.016
73 OKarnitz Jr, L V A Gurgel, J C P De Melo, V R Botaro, T M S Melo, R P de Freitas Gil, L F Gil. Adsorption of heavy metal ion from aqueous single metal solution by chemically modified sugarcane bagasse. Bioresource Technology, 2007, 98(6): 1291–1297
https://doi.org/10.1016/j.biortech.2006.05.013
74 HAn, B Park, DKim. Crab shell for the removal of heavy metals from aqueous solution. Water Research, 2001, 35(15): 3551–3556
https://doi.org/10.1016/S0043-1354(01)00099-9
75 JHuang, Y Li, YCao, FPeng, Y Cao, QShao, HLiu, Z Guo. Hexavalent chromium removal over magnetic carbon nanoadsorbent: Synergistic effect of fluorine and nitrogen Co-doping. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2018, 6(27): 13062–13074
https://doi.org/10.1039/C8TA02861C
76 KGong, Q Hu, LYao, MLi, D Sun, QShao, BQiu, Z Guo. Ultrasonic pretreated sludge derived stable magnetic active carbon for Cr (VI) removal from wastewater. ACS Sustainable Chemistry & Engineering, 2018, 6(6): 7283–7291
https://doi.org/10.1021/acssuschemeng.7b04421
77 KGong, Q Hu, YXiao, XCheng, HLiu, N Wang, BQiu, ZGuo. Triple layered core–shell ZVI@ carbon@ polyaniline composite enhanced electron utilization in Cr (VI) reduction. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2018, 6(24): 11119–11128
https://doi.org/10.1039/C8TA03066A
78 Y PWang, P Zhou, S ZLuo, X PLiao, BWang, Q Shao, XGuo, ZGuo. Controllable synthesis of monolayer poly (acrylic acid) on channel surface of mesoporous alumina for Pb (II) adsorption. Langmuir, 2018, 34(26): 7859–7868
https://doi.org/10.1021/acs.langmuir.8b00789
79 JHuang, Y Cao, QShao, XPeng, Z Guo. Magnetic nanocarbon adsorbents with enhanced hexavalent chromium removal: Morphology dependence of fibrillar vs. particulate structures. Industrial & Engineering Chemistry Research, 2017, 56(38): 10689–10701
https://doi.org/10.1021/acs.iecr.7b02835
80 Y PWang, P Zhou, S ZLuo, SGuo, J Lin, QShao, XGuo, Z Liu, JShen, BWang, Z Guo. In situ polymerized poly (acrylic acid)/alumina nanocomposites for Pb2+ adsorption. Advances in Polymer Technology, 2018, doi: https://doi.org/10.1002/adv.21969
81 YMa, L Lv, YGuo, YFu, Q Shao, TWu, SGuo, K Sun, XGuo, E KWujcik, ZGuo. Porous lignin based poly (acrylic acid)/organo-montmorillonite nanocomposites: Swelling behaviors and rapid removal of Pb (II) ions. Polymer, 2017, 128: 12–23
https://doi.org/10.1016/j.polymer.2017.09.009
82 H HAbdel G., G AAli, O AFouad, S AMakhlouf. Enhancement of adsorption efficiency of methylene blue on Co3O4/SiO2 nanocomposite. Desalination and Water Treatment, 2015, 53(11): 2980–2989
https://doi.org/10.1080/19443994.2013.871343
83 MArias, M Barral, JMejuto. Enhancement of copper and cadmium adsorption on kaolin by the presence of humic acids. Chemosphere, 2002, 48(10): 1081–1088
https://doi.org/10.1016/S0045-6535(02)00169-8
84 M MRao, A Ramesh, G P CRao, KSeshaiah. Removal of copper and cadmium from the aqueous solutions by activated carbon derived from Ceiba pentandra hulls. Journal of Hazardous Materials, 2006, 129(1): 123–129
85 C YCao, Z M Cui, C Q Chen, W G Song, W Cai. Ceria hollow nanospheres produced by a template-free microwave-assisted hydrothermal method for heavy metal ion removal and catalysis. Journal of Physical Chemistry C, 2010, 114(21): 9865–9870
https://doi.org/10.1021/jp101553x
86 KNakamoto, M Ohshiro, TKobayashi. Mordenite zeolite-Polyethersulfone composite fibers developed for decontamination of heavy metal ions. Journal of Environmental Chemical Engineering, 2017, 5(1): 513–525
https://doi.org/10.1016/j.jece.2016.12.031
87 MMudasir, K Karelius, N HAprilita, E TWahyuni. Adsorption of mercury (II) on dithizone-immobilized natural zeolite. Journal of Environmental Chemical Engineering, 2016, 4(2): 1839–1849
https://doi.org/10.1016/j.jece.2016.03.016
88 T CNguyen, P Loganathan, T VNguyen, SVigneswaran, JKandasamy, RNaidu. Simultaneous adsorption of Cd, Cr, Cu, Pb, and Zn by an iron-coated Australian zeolite in batch and fixed-bed column studies. Chemical Engineering Journal, 2015, 270: 393–404
https://doi.org/10.1016/j.cej.2015.02.047
89 XRen, C Chen, MNagatsu, XWang. Carbon nanotubes as adsorbents in environmental pollution management: A review. Chemical Engineering Journal, 2011, 170(2): 395–410
https://doi.org/10.1016/j.cej.2010.08.045
90 S TYang, X Wang, GJia, YGu, T Wang, HNie, CGe, H Wang, YLiu. Long-term accumulation and low toxicity of single-walled carbon nanotubes in intravenously exposed mice. Toxicology Letters, 2008, 181(3): 182–189
https://doi.org/10.1016/j.toxlet.2008.07.020
91 LQin, Q Huang, ZWei, LWang, Z Wang. The influence of hydroxyl-functionalized multi-walled carbon nanotubes and pH levels on the toxicity of lead to daphnia magna. Environmental Toxicology and Pharmacology, 2014, 38(1): 199–204
https://doi.org/10.1016/j.etap.2014.05.016
92 CHu, L Zhang, WWang, YCui, M Li. Evaluation of the combined toxicity of multi-walled carbon nanotubes and sodium pentachlorophenate on the earthworm Eisenia fetida using avoidance bioassay and comet assay. Soil Biology & Biochemistry, 2014, 70: 123–130
https://doi.org/10.1016/j.soilbio.2013.12.018
93 XDeng, G Jia, HWang, HSun, X Wang, SYang, TWang, Y Liu. Translocation and fate of multi-walled carbon nanotubes in vivo. Carbon, 2007, 45(7): 1419–1424
https://doi.org/10.1016/j.carbon.2007.03.035
94 P NAlagappan, JHeimann, LMorrow, EAndreoli, A RBarron. Easily regenerated readily deployable absorbent for heavy metal removal from contaminated water. Scientific Reports, 2017, 7(1): 6682
https://doi.org/10.1038/s41598-017-06734-7
95 TWang, J Weissman, GRamesh, RVaradarajan, JBenemann. Parameters for removal of toxic heavy metals by water milfoil (Myriophyllum spicatum). Bulletin of Environmental Contamination and Toxicology, 1996, 57(5): 779–786
https://doi.org/10.1007/s001289900257
96 KBhattacharya, S P Mukherjee, A Gallud, S CBurkert, SBistarelli, SBellucci, MBottini, AStar, B Fadeel. Biological interactions of carbon-based nanomaterials: From coronation to degradation. Nanomedicine; Nanotechnology, Biology, and Medicine, 2016, 12(2): 333–351
https://doi.org/10.1016/j.nano.2015.11.011
97 SIijima. Helical microtubules of graphitic carbon. Nature, 1991, 354(6348): 56–58
https://doi.org/10.1038/354056a0
98 HSadegh, G A Ali, V K Gupta, A S H Makhlouf, R Shahryari-ghoshekandi, M NNadagouda, MSillanpää, EMegiel. The role of nanomaterials as effective adsorbents and their applications in wastewater treatment. Journal of Nanostructure in Chemistry, 2017, 7(1): 1–14
https://doi.org/10.1007/s40097-017-0219-4
99 MWiesner, J Y Bottero. Environmental Nanotechnology. New York: McGraw-Hill Professional Publishing, 2007
100 Z HKhan, M Husain. Carbon nanotube and its possible applications. Indian Journal of Engineering and Materials Sciences, 2005, 12(6): 529–551
101 KSun, P Xie, ZWang, TSu, Q Shao, JRyu, XZhang, JGuo, A Shankar, JLi, RFan, D Cao, ZGuo. Flexible polydimethylsiloxane/multi-walled carbon nanotubes membranous metacomposites with negative permittivity. Polymer, 2017, 125: 50–57
https://doi.org/10.1016/j.polymer.2017.07.083
102 QLuo, H Ma, FHao, QHou, J Ren, LWu, ZYao, Y Zhou, NWang, KJiang, HLin, Z Guo. Carbon nanotube based inverted flexible perovskite solar cells with all-inorganic charge contacts. Advanced Functional Materials, 2017, 27(42): 1703068
https://doi.org/10.1002/adfm.201703068
103 ZWu, S Gao, LChen, DJiang, QShao, B Zhang, ZZhai, CWang, M Zhao, YMa, XZhang, LWeng, M Zhang, ZGuo. Electrically insulated epoxy nanocomposites reinforced with synergistic core–shell SiO2@ MWCNTs and montmorillonite bifillers. Macromolecular Chemistry and Physics, 2017, 218(23): 1700357
https://doi.org/10.1002/macp.201700357
104 KZhang, G H Li, L M Feng, N Wang, JGuo, KSun, K X Yu, J B Zeng, T Li, ZGuo, MWang. Ultralow percolation threshold and enhanced electromagnetic interference shielding in poly (L-lactide)/multi-walled carbon nanotube nanocomposites with electrically conductive segregated networks. Journal of Materials Chemistry. C, Materials for Optical and Electronic Devices, 2017, 5(36): 9359–9369
https://doi.org/10.1039/C7TC02948A
105 XGuan, G Zheng, KDai, CLiu, X Yan, CShen, ZGuo. Carbon nanotubes-adsorbed electrospun PA66 nanofiber bundles with improved conductivity and robust flexibility. ACS Applied Materials & Interfaces, 2016, 8(22): 14150–14159
https://doi.org/10.1021/acsami.6b02888
106 YHe, S Yang, HLiu, QShao, Q Chen, CLu, YJiang, CLiu, Z Guo. Reinforced carbon fiber laminates with oriented carbon nanotube epoxy nanocomposites: Magnetic field assisted alignment and cryogenic temperature mechanical properties. Journal of Colloid and Interface Science, 2018, 517: 40–51
https://doi.org/10.1016/j.jcis.2018.01.087
107 CHu, Z Li, YWang, JGao, K Dai, GZheng, CLiu, C Shen, HSong, ZGuo. Comparative assessment of the strain-sensing behaviors of polylactic acid nanocomposites: Reduced graphene oxide or carbon nanotubes. Journal of Materials Chemistry. C, Materials for Optical and Electronic Devices, 2017, 5(9): 2318–2328
https://doi.org/10.1039/C6TC05261D
108 YLi, B Zhou, GZheng, XLiu, T Li, CYan, CCheng, KDai, C Liu, CShen, ZGuo. Continuously prepared highly conductive and stretchable SWNT/MWNT synergistically composited electrospun thermoplastic polyurethane yarns for wearable sensing. Journal of Materials Chemistry. C, Materials for Optical and Electronic Devices, 2018, 6(9): 2258–2269
https://doi.org/10.1039/C7TC04959E
109 BZhou, Y Li, KDai, GZheng, CLiu, Y Ma, J XZhang, NWang, C Shen, ZGuo. Continuously fabricated transparent conductive polycarbonate/carbon nanotube nanocomposite film for switchable thermochromic applications. Journal of Materials Chemistry. C, Materials for Optical and Electronic Devices, 2018, 6(31): 8360–8371
https://doi.org/10.1039/C8TC01779D
110 CLin, L Hu, CCheng, KSun, X Guo, QShao, JLi, N Wang, ZGuo. Nano-TiNb2O7/carbon nanotubes composite anode for enhanced lithium-ion storage. Electrochimica Acta, 2018, 260: 65–72
https://doi.org/10.1016/j.electacta.2017.11.051
111 MZhao, L Meng, LMa, LMa, X Yang, YHuang, J ERyu, AShankar, TLi, C Yan, ZGuo. Layer-by-layer grafting CNTs onto carbon fibers surface for enhancing the interfacial properties of epoxy resin composites. Composites Science and Technology, 2018, 154: 28–36
https://doi.org/10.1016/j.compscitech.2017.11.002
112 FZheng, D L Baldwin, L S Fifield, N C Anheier, C L Aardahl, J W Grate. Single-walled carbon nanotube paper as a sorbent for organic vapor preconcentration. Analytical Chemistry, 2006, 78(7): 2442–2446
https://doi.org/10.1021/ac051524q
113 QZhou, W Wang, JXiao. Preconcentration and determination of nicosulfuron, thifensulfuron-methyl and metsulfuron-methyl in water samples using carbon nanotubes packed cartridge in combination with high performance liquid chromatography. Analytica Chimica Acta, 2006, 559(2): 200–206
https://doi.org/10.1016/j.aca.2005.11.079
114 PLiang, Q Ding, FSong. Application of multiwalled carbon nanotubes as solid phase extraction sorbent for preconcentration of trace copper in water samples. Journal of Separation Science, 2005, 28(17): 2339–2343
https://doi.org/10.1002/jssc.200500154
115 PLiang, Y Liu, LGuo, JZeng, H Lu. Multiwalled carbon nanotubes as solid-phase extraction adsorbent for the preconcentration of trace metal ions and their determination by inductively coupled plasma atomic emission spectrometry. Journal of Analytical Atomic Spectrometry, 2004, 19(11): 1489–1492
https://doi.org/10.1039/b409619c
116 Y HLi, S Wang, ZLuan, JDing, C Xu, DWu. Adsorption of cadmium (II) from aqueous solution by surface oxidized carbon nanotubes. Carbon, 2003, 41(5): 1057–1062
https://doi.org/10.1016/S0008-6223(02)00440-2
117 HTavallali, V Fakhraee. Preconcentration and determination of trace amounts of Cd2+ using multiwalled carbon nanotubes by solid phase extraction-flame atomic absorption spectrometry. International Journal of Chemtech Research, 2011, 3(3): 1628–1634
118 YPu, X Yang, HZheng, DWang, Y Su, JHe. Adsorption and desorption of thallium (I) on multiwalled carbon nanotubes. Chemical Engineering Journal, 2013, 219: 403–410
https://doi.org/10.1016/j.cej.2013.01.025
119 HTavallali. Preconcentration and determination of trace amounts of Ag+ and Pb2+ using multiwalled carbon nanotubes by solid phase extraction-flame atomic absorption spectrometry. International Journal of Chemtech Research, 2013, 5(1): 105–108
120 MOuyang, J L Huang, C M Lieber. One-dimensional energy dispersion of single-walled carbon nanotubes by resonant electron scattering. Physical Review Letters, 2002, 88(6): 066804
https://doi.org/10.1103/PhysRevLett.88.066804
121 XWan, J Dong, DXing. Optical properties of carbon nanotubes. Physical Review. B, 1998, 58(11): 6756–6759
https://doi.org/10.1103/PhysRevB.58.6756
122 CChen, X Wang. Adsorption of Ni (II) from aqueous solution using oxidized multiwall carbon nanotubes. Industrial & Engineering Chemistry Research, 2006, 45(26): 9144–9149
https://doi.org/10.1021/ie060791z
123 S MAl-Hakami, A BKhalil, TLaoui, M AAtieh. Fast disinfection of Escherichia coli bacteria using carbon nanotubes interaction with microwave radiation. Bioinorganic Chemistry and Applications, 2013, 2013: 1–9
https://doi.org/10.1155/2013/458943
124 P XHou, C Liu, H MCheng. Purification of carbon nanotubes. Carbon, 2008, 46(15): 2003–2025
https://doi.org/10.1016/j.carbon.2008.09.009
125 C LNgo, Q T Le, T T Ngo, D N Nguyen, M T Vu. Surface modification and functionalization of carbon nanotube with some organic compounds. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2013, 4(3): 035017
126 LOuni, M Mirzaei, PAshtari, ARamazani, MRahimi, FBolourinovin. Isocyanate functionalized multiwalled carbon nanotubes for separation of lead from cyclotron production of thallium-201. Journal of Radioanalytical and Nuclear Chemistry, 2016, 310(2): 633–643
https://doi.org/10.1007/s10967-016-4928-9
127 Y YHuang, E M Terentjev. Dispersion of carbon nanotubes: Mixing, sonication, stabilization, and composite properties. Polymers, 2012, 4(1): 275–295
https://doi.org/10.3390/polym4010275
128 DTasis, N Tagmatarchis, ABianco, MPrato. Chemistry of carbon nanotubes. Chemical Reviews, 2006, 106(3): 1105–1136
https://doi.org/10.1021/cr050569o
129 S RPopuri, R Frederick, C YChang, S SFang, C CWang, L CLee. Removal of copper (II) ions from aqueous solutions onto chitosan/carbon nanotubes composite sorbent. Desalination and Water Treatment, 2014, 52(4-6): 691–701
https://doi.org/10.1080/19443994.2013.826779
130 BKoh, W Cheng. Mechanisms of carbon nanotube aggregation and the reversion of carbon nanotube aggregates in aqueous medium. Langmuir, 2014, 30(36): 10899–10909
https://doi.org/10.1021/la5014279
131 ZEs’haghi, M A Golsefidi, A Saify, A ATanha, ZRezaeifar, ZAlian-Nezhadi. Carbon nanotube reinforced hollow fiber solid/liquid phase microextraction: A novel extraction technique for the measurement of caffeic acid in Echinacea purpurea herbal extracts combined with high-performance liquid chromatography. Journal of Chromatography. A, 2010, 1217(17): 2768–2775
https://doi.org/10.1016/j.chroma.2010.02.054
132 LFu, A Yu. Carbon nanotubes based thin films: Fabrication, characterization and applications. Reviews on Advanced Materials Science, 2014, 36: 40–61
133 CChen, B Liang, AOgino, XWang, M Nagatsu. Oxygen functionalization of multiwall carbon nanotubes by microwave-excited surface-wave plasma treatment. Journal of Physical Chemistry C, 2009, 113(18): 7659–7665
https://doi.org/10.1021/jp9012015
134 L GNair, A S Mahapatra, N Gomathi, KJoseph, SNeogi, C RNair. Radio frequency plasma mediated dry functionalization of multiwall carbon nanotube. Applied Surface Science, 2015, 340: 64–71
https://doi.org/10.1016/j.apsusc.2015.02.036
135 PMishra, S Islam. Surface modification of MWCNTs by O2 plasma treatment and its exposure time dependent analysis by SEM, TEM and vibrational spectroscopy. Superlattices and Microstructures, 2013, 64: 399–407
https://doi.org/10.1016/j.spmi.2013.10.010
136 CSaka. Overview on the surface functionalization mechanism and determination of surface functional groups of plasma treated carbon nanotubes. Critical Reviews in Analytical Chemistry, 2018, 48(1): 1–14
https://doi.org/10.1080/10408347.2017.1356699
137 D JBabu, S Yadav, THeinlein, GCherkashinin, J JSchneider. Schneider Jr J. Carbon dioxide plasma as a versatile medium for purification and functionalization of vertically aligned carbon nanotubes. Journal of Physical Chemistry C, 2014, 118(22): 12028–12034
https://doi.org/10.1021/jp5027515
138 STalapatra, A Zambano, SWeber, AMigone. Gases do not adsorb on the interstitial channels of closed-ended single-walled carbon nanotube bundles. Physical Review Letters, 2000, 85(1): 138–141
https://doi.org/10.1103/PhysRevLett.85.138
139 OByl, P Kondratyuk, S TForth, S AFitzGerald, LChen, J K Johnson, J T Yates. Adsorption of CF4 on the internal and external surfaces of opened single-walled carbon nanotubes: A vibrational spectroscopy study. Journal of the American Chemical Society, 2003, 125(19): 5889–5896
https://doi.org/10.1021/ja020949g
140 MMuris, N Dupont-Pavlovsky, MBienfait, PZeppenfeld. Where are the molecules adsorbed on single-walled nanotubes? Surface Science, 2001, 492(1): 67–74
https://doi.org/10.1016/S0039-6028(01)01362-0
141 AFujiwara, K Ishii, HSuematsu, HKataura, YManiwa, SSuzuki, YAchiba. Gas adsorption in the inside and outside of single-walled carbon nanotubes. Chemical Physics Letters, 2001, 336(3): 205–211
https://doi.org/10.1016/S0009-2614(01)00111-7
142 MMuris, N Dufau, MBienfait, NDupont-Pavlovsky, YGrillet, JPalmari. Methane and krypton adsorption on single-walled carbon nanotubes. Langmuir, 2000, 16(17): 7019–7022
https://doi.org/10.1021/la991670p
143 D SRawat, M M Calbi, A D Migone. Equilibration time: Kinetics of gas adsorption on closed-and open-ended single-walled carbon nanotubes. Journal of Physical Chemistry C, 2007, 111(35): 12980–12986
https://doi.org/10.1021/jp072786u
144 HWang, A Zhou, FPeng, HYu, L Chen. Adsorption characteristic of acidified carbon nanotubes for heavy metal Pb (II) in aqueous solution. Materials Science and Engineering A, 2007, 466(1): 201–206
https://doi.org/10.1016/j.msea.2007.02.097
145 HUlbricht, J Kriebel, GMoos, THertel. Desorption kinetics and interaction of Xe with single-wall carbon nanotube bundles. Chemical Physics Letters, 2002, 363(3): 252–260
https://doi.org/10.1016/S0009-2614(02)01175-2
146 MBabaa, I Stepanek, KMasenelli-Varlot, NDupont-Pavlovsky, EMcRae, PBernier. Opening of single-walled carbon nanotubes: Evidence given by krypton and xenon adsorption. Surface Science, 2003, 531(1): 86–92
https://doi.org/10.1016/S0039-6028(03)00442-4
147 S AKosa, G Al-Zhrani, M ASalam. Removal of heavy metals from aqueous solutions by multi-walled carbon nanotubes modified with 8-hydroxyquinoline. Chemical Engineering Journal, 2012, 181: 159–168
https://doi.org/10.1016/j.cej.2011.11.044
148 VChandra, J Park, YChun, J WLee, I CHwang, K SKim. Water-dispersible magnetite-reduced graphene oxide composites for arsenic removal. ACS Nano, 2010, 4(7): 3979–3986
https://doi.org/10.1021/nn1008897
149 NSaeidi, M Parvini, ZNiavarani. High surface area and mesoporous graphene/activated carbon composite for adsorption of Pb (II) from wastewater. Journal of Environmental Chemical Engineering, 2015, 3(4): 2697–2706
https://doi.org/10.1016/j.jece.2015.09.023
150 M OAnsari, R Kumar, S AAnsari, S PAnsari, MBarakat, AAlshahrie, M HCho. Anion selective pTSA doped polyaniline@graphene oxide-multiwalled carbon nanotube composite for Cr (VI) and Congo red adsorption. Journal of Colloid and Interface Science, 2017, 496: 407–415
https://doi.org/10.1016/j.jcis.2017.02.034
151 BHayati, A Maleki, FNajafi, HDaraei, FGharibi, GMcKay. Super high removal capacities of heavy metals (Pb2+ and Cu2+) using CNT dendrimer. Journal of Hazardous Materials, 2017, 336: 146–157
https://doi.org/10.1016/j.jhazmat.2017.02.059
152 M ATofighy, T Mohammadi. Copper ions removal from aqueous solutions using acid-chitosan functionalized carbon nanotubes sheets. Desalination and Water Treatment, 2016, 57(33): 15384–15396
https://doi.org/10.1080/19443994.2015.1072738
153 RKanthapazham, C Ayyavu, DMahendiradas. Removal of Pb2+, Ni2+ and Cd2+ ions in aqueous media using functionalized MWCNT wrapped polypyrrole nanocomposite. Desalination and Water Treatment, 2016, 57(36): 16871–16885
154 MLasheen, I Y El-Sherif, D Y Sabry, S El-Wakeel, MEl-Shahat. Removal of heavy metals from aqueous solution by multiwalled carbon nanotubes: Equilibrium, isotherms, and kinetics. Desalination and Water Treatment, 2015, 53(13): 3521–3530
https://doi.org/10.1080/19443994.2013.873880
155 LJiang, H Yu, XZhou, XHou, Z Zou, SLi, CLi, X Yao. Preparation, characterization, and adsorption properties of magnetic multi-walled carbon nanotubes for simultaneous removal of lead (II) and zinc (II) from aqueous solutions. Desalination and Water Treatment, 2016, 57(39): 18446–18462
https://doi.org/10.1080/19443994.2015.1090924
156 MAlimohammady, M Jahangiri, FKiani, HTahermansouri. A new modified MWCNTs with 3-aminopyrazole as a nanoadsorbent for Cd(II) removal from aqueous solutions. Journal of Environmental Chemical Engineering, 2017, 5(4): 3405–3417
https://doi.org/10.1016/j.jece.2017.06.045
157 NMubarak, R Alicia, EAbdullah, JSahu, A A Haslija, J Tan. Statistical optimization and kinetic studies on removal of Zn2+ using functionalized carbon nanotubes and magnetic biochar. Journal of Environmental Chemical Engineering, 2013, 1(3): 486–495
https://doi.org/10.1016/j.jece.2013.06.011
158 W KPark, Y Yoon, SKim, SYoo, Y Do, J WKang, D HYoon, W SYang. Feasible water flow filter with facilely functionalized Fe3O4-non-oxidative graphene/CNT composites for arsenic removal. Journal of Environmental Chemical Engineering, 2016, 4(3): 3246–3252
https://doi.org/10.1016/j.jece.2016.06.028
159 S SVarghese, S H Varghese, S Swaminathan, K KSingh, VMittal. Two-dimensional materials for sensing: Graphene and beyond. Electronics (Basel), 2015, 4(3): 651–687
https://doi.org/10.3390/electronics4030651
160 CMu, J Song, BWang, CZhang, JXiang, FWen, Z Liu. Two-dimensional materials and one-dimensional carbon nanotube composites for microwave absorption. Nanotechnology, 2017, 29(2): 025704
https://doi.org/10.1088/1361-6528/aa9a2a
161 SSaadat, A Karimi-Jashni, M MDoroodmand. Synthesis and characterization of novel single-walled carbon nanotubes-doped walnut shell composite and its adsorption performance for lead in aqueous solutions. Journal of Environmental Chemical Engineering, 2014, 2(4): 2059–2067
https://doi.org/10.1016/j.jece.2014.08.024
162 NSankararamakrishnan, AGupta, S RVidyarthi. Enhanced arsenic removal at neutral pH using functionalized multiwalled carbon nanotubes. Journal of Environmental Chemical Engineering, 2014, 2(2): 802–810
https://doi.org/10.1016/j.jece.2014.02.010
163 SSobhanardakani, R Zandipak, MCheraghi. Adsorption of Cu2+ ions from aqueous solutions using oxidized multi-walled carbon nanotubes. Avicenna Journal of Environmental Health Engineering, 2015, 2(1): e790
https://doi.org/10.17795/ajehe790
164 M KAlOmar, M A Alsaadi, M Hayyan, SAkib, M AHashim. Functionalization of CNTs surface with phosphonuim based deep eutectic solvents for arsenic removal from water. Applied Surface Science, 2016, 389: 216–226
https://doi.org/10.1016/j.apsusc.2016.07.079
165 BHayati, A Maleki, FNajafi, HDaraei, FGharibi, GMcKay. Synthesis and characterization of PAMAM/CNT nanocomposite as a super-capacity adsorbent for heavy metal (Ni2+, Zn2+, As3+, Co2+) removal from wastewater. Journal of Molecular Liquids, 2016, 224(Part A): 1032–1040
166 NAsadollahi, R Yavari, HGhanadzadeh. Preparation, characterization and analytical application of stannic molybdophosphate immobilized on multiwalled carbon nanotubes as a new adsorbent for the removal of strontium from wastewater. Journal of Radioanalytical and Nuclear Chemistry, 2015, 303(3): 2445–2455
167 O C SAl Hamouz, I OAdelabu, T ASaleh. Novel cross-linked melamine based polyamine/CNT composites for lead ions removal. Journal of Environmental Management, 2017, 192: 163–170
https://doi.org/10.1016/j.jenvman.2017.01.056
168 WYang, P Ding, LZhou, JYu, X Chen, FJiao. Preparation of diamine modified mesoporous silica on multi-walled carbon nanotubes for the adsorption of heavy metals in aqueous solution. Applied Surface Science, 2013, 282: 38–45
https://doi.org/10.1016/j.apsusc.2013.05.028
169 N MBandaru, N Reta, HDalal, A VEllis, JShapter, N HVoelcker. Enhanced adsorption of mercury ions on thiol derivatized single wall carbon nanotubes. Journal of Hazardous Materials, 2013, 261: 534–541
https://doi.org/10.1016/j.jhazmat.2013.07.076
170 NSankararamakrishnan, MJaiswal, NVerma. Composite nanofloral clusters of carbon nanotubes and activated alumina: An efficient sorbent for heavy metal removal. Chemical Engineering Journal, 2014, 235: 1–9
https://doi.org/10.1016/j.cej.2013.08.070
171 RSaadi, Z Saadi, RFazaeli, N EFard. Monolayer and multilayer adsorption isotherm models for sorption from aqueous media. Korean Journal of Chemical Engineering, 2015, 32(5): 787–799
https://doi.org/10.1007/s11814-015-0053-7
172 H KMoghaddam, MPakizeh. Experimental study on mercury ions removal from aqueous solution by MnO2/CNTs nanocomposite adsorbent. Journal of Industrial and Engineering Chemistry, 2015, 21: 221–229
https://doi.org/10.1016/j.jiec.2014.02.028
173 ADada, A Olalekan, AOlatunya, ODada. Langmuir, Freundlich, Temkin and Dubinin-Radushkevich isotherms studies of equilibrium sorption of Zn2+ unto phosphoric acid modified rice husk. IOSR Journal of Applied Chemistry, 2012, 3(1): 38–45
https://doi.org/10.9790/5736-0313845
174 Z SVeličković, A DMarinković, Z JBajić, J MMarković, A APerić-Grujić, P SUskokovic, M DRistic. Oxidized and ethylenediamine-functionalized multi-walled carbon nanotubes for the separation of low concentration arsenate from water. Separation Science and Technology, 2013, 48(13): 2047–2058
https://doi.org/10.1080/01496395.2013.790446
175 XRen, J Li, XTan, XWang. Comparative study of graphene oxide, activated carbon and carbon nanotubes as adsorbents for copper decontamination. Dalton Transactions (Cambridge, England), 2013, 42(15): 5266–5274
https://doi.org/10.1039/c3dt32969k
176 CJung, J Heo, JHan, NHer, S J Lee, J Oh, JRyu, YYoon. Hexavalent chromium removal by various adsorbents: Powdered activated carbon, chitosan, and single/multi-walled carbon nanotubes. Separation and Purification Technology, 2013, 106: 63–71
https://doi.org/10.1016/j.seppur.2012.12.028
177 ZLiu, L Chen, ZZhang, YLi, Y Dong, YSun. Synthesis of multi-walled carbon nanotube–hydroxyapatite composites and its application in the sorption of Co (II) from aqueous solutions. Journal of Molecular Liquids, 2013, 179: 46–53
https://doi.org/10.1016/j.molliq.2012.12.011
178 KPillay, E Cukrowska, NCoville. Improved uptake of mercury by sulphur-containing carbon nanotubes. Microchemical Journal, 2013, 108: 124–130
https://doi.org/10.1016/j.microc.2012.10.014
179 D VRamana, J S Yu, K Seshaiah. Silver nanoparticles deposited multiwalled carbon nanotubes for removal of Cu (II) and Cd (II) from water: Surface, kinetic, equilibrium, and thermal adsorption properties. Chemical Engineering Journal, 2013, 223: 806–815
https://doi.org/10.1016/j.cej.2013.03.001
180 BChen, Z Zhu, JMa, YQiu, J Chen. Surfactant assisted Ce-Fe mixed oxide decorated multiwalled carbon nanotubes and their arsenic adsorption performance. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2013, 1(37): 11355–11367
https://doi.org/10.1039/c3ta11827d
181 AGupta, S Vidyarthi, NSankararamakrishnan. Enhanced sorption of mercury from compact fluorescent bulbs and contaminated water streams using functionalized multiwalled carbon nanotubes. Journal of Hazardous Materials, 2014, 274: 132–144
https://doi.org/10.1016/j.jhazmat.2014.03.020
182 MHadavifar, N Bahramifar, HYounesi, QLi. Adsorption of mercury ions from synthetic and real wastewater aqueous solution by functionalized multi-walled carbon nanotube with both amino and thiolated groups. Chemical Engineering Journal, 2014, 237: 217–228
https://doi.org/10.1016/j.cej.2013.10.014
183 YGe, Z Li, DXiao, PXiong, NYe. Sulfonated multi-walled carbon nanotubes for the removal of copper (II) from aqueous solutions. Journal of Industrial and Engineering Chemistry, 2014, 20(4): 1765–1771
https://doi.org/10.1016/j.jiec.2013.08.030
184 P HChen, C F Hsu, D D W Tsai, Y M Lu, W J Huang. Adsorption of mercury from water by modified multi-walled carbon nanotubes: Adsorption behaviour and interference resistance by coexisting anions. Environmental Technology, 2014, 35(15): 1935–1944
https://doi.org/10.1080/09593330.2014.886627
185 JLiang, J Liu, XYuan, HDong, G Zeng, HWu, HWang, J Liu, SHua, SZhang, ZYu, X He, YHe. Facile synthesis of alumina-decorated multi-walled carbon nanotubes for simultaneous adsorption of cadmium ion and trichloroethylene. Chemical Engineering Journal, 2015, 273: 101–110
https://doi.org/10.1016/j.cej.2015.03.069
186 A S KKumar, S JJiang, W LTseng. Effective adsorption of chromium (VI)/Cr (III) from aqueous solution using ionic liquid functionalized multiwalled carbon nanotubes as a super sorbent. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3(13): 7044–7057
https://doi.org/10.1039/C4TA06948J
187 F AAl-Khaldi, BAbu-Sharkh, A MAbulkibash, M AAtieh. Cadmium removal by activated carbon, carbon nanotubes, carbon nanofibers, and carbon fly ash: A comparative study. Desalination and Water Treatment, 2015, 53(5): 1417–1429
188 XMa, S T Yang, H Tang, YLiu, HWang. Competitive adsorption of heavy metal ions on carbon nanotubes and the desorption in simulated biofluids. Journal of Colloid and Interface Science, 2015, 448: 347–355
https://doi.org/10.1016/j.jcis.2015.02.042
189 F AAl Khaldi, BAbusharkh, MKhaled, M AAtieh, MNasser, T ASaleh, SAgarwal, ITyagi, V KGupta. Adsorptive removal of cadmium (II) ions from liquid phase using acid modified carbon-based adsorbents. Journal of Molecular Liquids, 2015, 204: 255–263
https://doi.org/10.1016/j.molliq.2015.01.033
190 KYaghmaeian, R K Mashizi, S Nasseri, A HMahvi, MAlimohammadi, SNazmara. Removal of inorganic mercury from aquatic environments by multi-walled carbon nanotubes. Journal of Environmental Health Science & Engineering, 2015, 13(1): 55
https://doi.org/10.1186/s40201-015-0209-8
191 X HZhao, F P Jiao, J G Yu, Y Xi, X YJiang, X QChen. Removal of Cu (II) from aqueous solutions by tartaric acid modified multi-walled carbon nanotubes. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2015, 476: 35–41
https://doi.org/10.1016/j.colsurfa.2015.03.016
192 FKarkeh-abadi, S Saber-Samandari. The impact of functionalized CNT in the network of sodium alginate-based nanocomposite beads on the removal of Co (II) ions from aqueous solutions. Journal of Hazardous Materials, 2016, 312: 224–233
https://doi.org/10.1016/j.jhazmat.2016.03.074
193 LJiang, S Li, HYu, ZZou, X Hou, FShen, CLi, X Yao. Amino and thiol modified magnetic multi-walled carbon nanotubes for the simultaneous removal of lead, zinc, and phenol from aqueous solutions. Applied Surface Science, 2016, 369: 398–413
https://doi.org/10.1016/j.apsusc.2016.02.067
194 T NDiva, K Zare, FTaleshi, MYousefi. Synthesis, characterization, and application of nickel oxide/CNT nanocomposites to remove Pb2+ from aqueous solution. Journal of Nanostructure in Chemistry, 2017, 7(3): 273–281
https://doi.org/10.1007/s40097-017-0239-0
195 AFarghali, H A Tawab, S A Moaty, R Khaled. Functionalization of acidified multi-walled carbon nanotubes for removal of heavy metals in aqueous solutions. Journal of Nanostructure in Chemistry, 2017, 7(2): 101–111
https://doi.org/10.1007/s40097-017-0227-4
196 DZhang, Y Yin, JLiu. Removal of Hg2+ and methylmercury in waters by functionalized multi-walled carbon nanotubes: Adsorption behavior and the impacts of some environmentally relevant factors. Chemical Speciation and Bioavailability, 2017, 29(1): 161–169
https://doi.org/10.1080/09542299.2017.1378596
197 FElmi, T Hosseini, M STaleshi, FTaleshi. Kinetic and thermodynamic investigation into the lead adsorption process from wastewater through magnetic nanocomposite Fe3O4/CNT. Nanotechnology for Environmental Engineering, 2017, 2(1): 13
https://doi.org/10.1007/s41204-017-0023-x
198 N TAbdel Ghani, G AEl Chaghaby, F SHelal. Individual and competitive adsorption of phenol and nickel onto multiwalled carbon nanotubes. Journal of Advanced Research, 2015, 6(3): 405–415
https://doi.org/10.1016/j.jare.2014.06.001
199 SKhedr, M Shouman, NFathy, AAttia. Effect of physical and chemical activation on the removal of hexavalent chromium ions using palm tree branches. ISRN Environmental Chemistry, 2014, 2014: 1–11
https://doi.org/10.1155/2014/705069
200 F ADawodu, K G Akpomie. Simultaneous adsorption of Ni (II) and Mn (II) ions from aqueous solution unto a Nigerian kaolinite clay. Journal of Materials Research and Technology, 2014, 3(2): 129–141
https://doi.org/10.1016/j.jmrt.2014.03.002
201 NMubarak, J Sahu, EAbdullah, NJayakumar. Removal of heavy metals from wastewater using carbon nanotubes. Separation and Purification Reviews, 2014, 43(4): 311–338
https://doi.org/10.1080/15422119.2013.821996
202 G PRao, C Lu, FSu. Sorption of divalent metal ions from aqueous solution by carbon nanotubes: A review. Separation and Purification Technology, 2007, 58(1): 224–231
https://doi.org/10.1016/j.seppur.2006.12.006
[1] Bin Xu, Toshiro Kaneko, Toshiaki Kato. Improvement in growth yield of single-walled carbon nanotubes with narrow chirality distribution by pulse plasma CVD[J]. Front. Chem. Sci. Eng., 2019, 13(3): 485-492.
[2] Ali Akbari, Nasser Arsalani, Bagher Eftekhari-Sis, Mojtaba Amini, Gholamreza Gohari, Esmaiel Jabbari. Cube-octameric silsesquioxane (POSS)-capped magnetic iron oxide nanoparticles for the efficient removal of methylene blue[J]. Front. Chem. Sci. Eng., 2019, 13(3): 563-573.
[3] Kai Wang, Jinbo Pang, Liwei Li, Shengzhe Zhou, Yuhao Li, Tiezhu Zhang. Synthesis of hydrophobic carbon nanotubes/reduced graphene oxide composite films by flash light irradiation[J]. Front. Chem. Sci. Eng., 2018, 12(3): 376-382.
[4] Sophie L. Pirard, Sigrid Douven, Jean-Paul Pirard. Large-scale industrial manufacturing of carbon nanotubes in a continuous inclined mobile-bed rotating reactor via the catalytic chemical vapor deposition process[J]. Front. Chem. Sci. Eng., 2017, 11(2): 280-289.
[5] Gautam SEN, G. Usha RANI, Sumit MISHRA. Microwave assisted synthesis of poly(2-hydroxyethylmethacrylate) grafted agar (Ag-g-P(HEMA)) and its application as a flocculant for wastewater treatment[J]. Front Chem Sci Eng, 2013, 7(3): 312-321.
[6] Hideyuki KATSUMATA, Yuta ODA, Satoshi KANECO, Tohru SUZUKI, Kiyohisa OHTA. Determination of aniline derivatives in water samples after preconcentration with oxidized multiwalled carbon nanotubes as solid-phase extraction disk[J]. Front Chem Sci Eng, 2012, 6(3): 270-275.
[7] Elena SMIRNOVA, Alexander GUSEV, Olga ZAYTSEVA, Olga SHEINA, Alexey TKACHEV, Elena KUZNETSOVA, Elena LAZAREVA, Galina ONISHCHENKO, Alexey FEOFANOV, Mikhail KIRPICHNIKOV. Uptake and accumulation of multiwalled carbon nanotubes change the morphometric and biochemical characteristics of Onobrychis arenaria seedlings[J]. Front Chem Sci Eng, 2012, 6(2): 132-138.
[8] Jing ZHANG, Chengchang JIA, Zhizhong JIA, Jillian LADEGARD, Yanhong GU, Junhui NIE. Strengthening mechanisms in carbon nanotube reinforced bioglass composites[J]. Front Chem Sci Eng, 2012, 6(2): 126-131.
[9] Jing DONG, Huilong WANG. A study on rapid acid chrome black (MB 7) spectrophotometric determination of ClO2 and catalytic degradation of 2,6-dinitro-p-cresol (DNPC) by ClO2[J]. Front Chem Sci Eng, 2011, 5(2): 245-251.
[10] QI Jingyao, LI Xin, LI Ying, ZHU Jianhua, QIANG Liangsheng. Selective removal of Cu(II) from contaminated water using molecularly imprinted polymer[J]. Front. Chem. Sci. Eng., 2008, 2(1): 109-114.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed