Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2019, Vol. 13 Issue (3) : 543-553    https://doi.org/10.1007/s11705-018-1778-8
RESEARCH ARTICLE
Dealumination and desilication for Al-rich HZSM-5 zeolite via steam-alkaline treatment and its application in methanol aromatization
Yuehua Fang, Fan Yang, Xuan He, Xuedong Zhu()
State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
 Download: PDF(2450 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The hierarchical HZSM-5 was prepared via dealumination and desilication of commercial Al-rich HZSM-5, and characterized by X-ray diffraction, 27Al magic-angle spinning nuclear magnetic resonance, inductively coupled plasma mass spectrometry, scanning electron microscope, transmission electron microscope, N2 adsorption-desorption, NH3 temperature-programmed desorption, performed thermogravimetric and Raman spectrum. The results showed that partial framework of HZSM-5 was removed after steam treatment at 0.15 MPa, 500°C for 3 h. HZSM-5 with high specific surface area and much mesoporosity was obtained by the subsequent alkaline treatment. The regulation of acid quantity was achieved by altering the concentration of alkaline. Dealumination and desilication of Al-rich HZSM-5 zeolites became more effective using a combination of steam and alkaline treatments than using alkaline treatment alone. Methanol aromatization reaction was employed to evaluate the catalytic performance of treated HZSM-5 at 0.15 MPa, 450°C and MHSV of 1.5 h−1. The results indicated that after steam treatment, HZSM-5 further treated with 0.2 mol/L NaOH exhibits the best catalytic performance: the selectivity of aromatics reached 42.1% and the lifetime of catalyst attained 212 h, which are much better than untreated HZSM-5.

Keywords steam treatment      alkaline treatment      hierarchical ZSM-5      methanol aromatization     
Corresponding Author(s): Xuedong Zhu   
Online First Date: 25 February 2019    Issue Date: 22 August 2019
 Cite this article:   
Yuehua Fang,Fan Yang,Xuan He, et al. Dealumination and desilication for Al-rich HZSM-5 zeolite via steam-alkaline treatment and its application in methanol aromatization[J]. Front. Chem. Sci. Eng., 2019, 13(3): 543-553.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-018-1778-8
https://academic.hep.com.cn/fcse/EN/Y2019/V13/I3/543
Fig.1  XRD patterns of HZSM-5 samples with different treatments
Catalysts AlIV/%a) AlVI/%a) AlIV/AlVI
Z 93.3 6.7 14.0
SZ 86.8 13.2 6.6
SAZ0.2 82.2 17.8 4.6
AZ0.2 88.7 11.3 7.8
Tab.1  Relative amount of Al species in HZSM-5 samples with different treatments
Fig.2  27Al MAS NMR spectra of HZSM-5 samples with different treatments
Catalysts Si/Ala) Relative crystallinity SBETb) /(m2·g?1) Smesoc)/(m2·g?1) Vtotald) /(cm3·g?1) Vmicroc) /(cm3·g?1) Vmeso /(cm3·g?1)
Z 22.2 100 278 54 0.22 0.12 0.1
SZ 22 94.6 325 198 0.23 0.07 0.16
SAZ0.1 24.1 88.2 340 173 0.24 0.08 0.16
SAZ0.2 23.2 69.1 398 196 0.39 0.1 0.29
SAZ0.3 18.2 45.8 445 225 0.66 0.1 0.59
AZ0.2 18.7 77 351 120 0.37 0.12 0.25
Tab.2  Composition, relative crystallinity and physical properties of HZSM-5 samples with different treatments
Fig.3  SEM images of (a) Z, (b) SZ, (c) SAZ0.2, (d) SAZ0.3, and (e) AZ0.2
Fig.4  TEM images of (a) Z, and (b) SAZ0.2
Fig.5  N2 adsorption and desorption isotherms of (a) Z, (b) SZ, (c) SAZ0.1, (d) AZ0.2, (e) SAZ0.2, and (f) SAZ0.3
Fig.6  Pore size distributions of (a) Z, (b) SZ, (c) SAZ0.1, (d) AZ0.2, (e) SAZ0.2, and (f) SAZ0.3
Catalysts Weak acid sitesa) Strong acid sitesa) Total acid sitesa)
Z 0.25 0.33 0.58
SZ 0.11 0.15 0.27
SAZ0.1 0.11 0.17 0.29
SAZ0.2 0.18 0.17 0.36
SAZ0.3 0.28 0.22 0.50
AZ0.2 0.32 0.41 0.73
Tab.3  Acidic properties of ZSM-5 samples with different treatments (unit: mmol?g?1)
Fig.7  NH3-TPD profiles of (a) Z, (b) SZ, (c) SAZ0.1, (d) SAZ0.2, (e) SAZ0.3, and (f) AZ0.2
Catalysts Conversion /% Selectivity /%
M O P C5+ BTX Aromatics
Z 100 4.1 14.2 28.5 9.1 33.6 42.2
SZ 100 1.0 16.4 31.1 19.2 19.8 32.1
SAZ0.1 100 1.3 15.6 28 16.6 28.3 34.6
SAZ0.2 100 1.23 11.8 26.3 17.9 33.5 42.1
SAZ0.3 100 1.6 15 24.8 20 26.9 37.8
AZ0.2 100 3.5 14.4 25 14 33.9 43.2
Tab.4  Products distribution of MTA reaction over different catalystsa)
Fig.8  (a) Methanol conversion and (b) selectivity of aromatics versus time
Fig.9  TG profiles of the deactivated catalysts
Catalysts IvC-H ID1 ID2 ID3 IG ID1/IG Laa)
Z 0.05 0.18 0.22 0.08 0.48 0.37 11.8
SAZ0.2 0.16 0.25 0.17 0.15 0.27 0.93 4.7
SAZ0.3 0.21 0.22 0.15 0.05 0.37 0.60 7.4
AZ0.2 0.19 0.13 0.14 0.14 0.41 0.31 14.4
Tab.5  Raman spectrometry data of the deactivated catalysts
Fig.10  Raman spectra of the deactivated (a) Z, (b) SAZ0.2, (c) SAZ0.3, and (d) AZ0.2
1 Z Wen, T Xia, M Liu, Q Cao, Y Xu, K Zhu, X Zhu. Alkaline modification of ZSM-5 catalysts for methanol aromatization: The effect of the alkaline concentration. Frontiers of Chemical Science and Engineering, 2015, 9(4): 450–460, 460
https://doi.org/10.1007/s11705-015-1542-2
2 F Wang, W Xiao, L Gao, G Xiao. The growth mode of ZnO on HZSM-5 substrates by atomic layer deposition and its catalytic property in the synthesis of aromatics from methanol. Catalysis Science & Technology, 2016, 6(9): 3074–3086
https://doi.org/10.1039/C5CY01651G
3 X Shen, J Kang, W Niu, M Wang, Q Zhang, Y Wang. Impact of hierarchical pore structure on the catalytic performances of MFI zeolites modified by ZnO for the conversion of methanol to aromatics. Catalysis Science & Technology, 2017, 7(16): 3598–3612
https://doi.org/10.1039/C7CY01041A
4 L Xing, Z Wei, Z Wen, X Zhu. Catalytic study for methanol aromatization over hierarchical ZSM-5 zeolite synthesized by kaolin. Petroleum Science and Technology, 2017, 9(24): 1–6
https://doi.org/10.1080/10916466.2017.1381712
5 F Yang, J Zhong, X Liu, X Zhu. A novel catalytic alkylation process of syngas with benzene over the cerium modified platinum supported on HZSM-5 zeolite. Applied Energy, 2018, 226: 22–30
https://doi.org/10.1016/j.apenergy.2018.05.093
6 N Wang, W Qian, K Shen, C Su, F Wei. Bayberry-like ZnO/MFI zeolite as high performance methanol-to-aromatics catalyst. Chemical Communications, 2015, 52(10): 2011–2014
https://doi.org/10.1039/C5CC08471G
7 C Xu, B Jiang, Z Liao, J Wang, Z Huang, Y Yang. Effect of metal on the methanol to aromatics conversion over modified ZSM-5 in the presence of carbon dioxide. RSC Advances, 2017, 7(18): 10729–10736
https://doi.org/10.1039/C6RA27104A
8 S Ilias, A Bhan. Mechanism of the catalytic conversion of methanol to hydrocarbons. ACS Catalysis, 2013, 44(3): 18–31
https://doi.org/10.1021/cs3006583
9 D A Hickman, L D Schmidt. Syngas formation by direct catalytic oxidation of methane. Science, 1993, 259(5093): 343–346
https://doi.org/10.1126/science.259.5093.343
10 M Asadullah, S Ito, K Kunimori, M Yamada, K Tomishige. Biomass gasification to hydrogen and syngas at low temperature: Novel catalytic system using fluidized-bed reactor. Journal of Catalysis, 2002, 208(2): 255–259
https://doi.org/10.1006/jcat.2002.3575
11 I J Castellanos-Beltran, G P Assima, J M Lavoie. Effect of temperature in the conversion of methanol to olefins (MTO) sing an extruded SAPO-34 catalyst. Frontiers of Chemical Science and Engineering, 2018, 12(2): 1–13
https://doi.org/10.1007/s11705-018-1709-8
12 J S Martinez-Espin, M Mortén, T V W Janssens, S Svelle, P Beato, U Olsbye. New insights into catalyst deactivation and product distribution of zeolites in the methanol-to-hydrocarbons (MTH) reaction with methanol and dimethyl ether feeds. Catalysis Science & Technology, 2017, 7(13): 2700–2716
https://doi.org/10.1039/C7CY00129K
13 B Song, Y Li, G Cao, Z Sun, X Han. The effect of doping and steam treatment on the catalytic activities of nano-scale H-ZSM-5 in the methanol to gasoline reaction. Frontiers of Chemical Science and Engineering, 2017, 11(4): 1–11
14 Z Wei, K Zhu, L Xing, F Yang, Y Li, Y Xu, X Zhu. Steam-assisted transformation of natural kaolin to hierarchical ZSM-11 using tetrabutylphosphonium hydroxide as structure-directing agent: Synthesis, structural characterization and catalytic performance in the methanol-to-aromatics reaction. RSC Advances, 2017, 7(39): 24015–24021
https://doi.org/10.1039/C7RA03141F
15 Ø Mikkelsen, S Kolboe. The conversion of methanol to hydrocarbons over zeolite H-β. Microporous and Mesoporous Materials, 1999, 29(1-2): 173–184
https://doi.org/10.1016/S1387-1811(98)00329-1
16 R Ravishankar, D Bhattacharya, N E Jacob, S Sivasanker. Characterization and catalytic properties of zeolite MCM-22. Microporous Materials, 1995, 4(1): 83–93
https://doi.org/10.1016/0927-6513(94)00086-B
17 G T Kokotailo, S L Lawton, D H Olson, W M Meier. Structure of synthetic zeolite ZSM-5. Nature, 1978, 272(5652): 437–438
https://doi.org/10.1038/272437a0
18 Y Gao, B Zheng, G Wu, F Ma, C Liu. Effect of the Si/Al ratio on the performance of hierarchical ZSM-5 zeolites for methanol aromatization. RSC Advances, 2016, 6(87): 83581–83588
https://doi.org/10.1039/C6RA17084F
19 G Zhang, X Zhang, T Bai, T Chen, W Fan. Coking kinetics and influence of reaction-regeneration on acidity, activity and deactivation of Zn/HZSM-5 catalyst during methanol aromatization. Journal of Energy Chemistry, 2015, 24(1): 108–118
https://doi.org/10.1016/S2095-4956(15)60291-1
20 J Kim, M Choi, R Ryoo. Effect of mesoporosity against the deactivation of MFI zeolite catalyst during the methanol-to-hydrocarbon conversion process. Journal of Catalysis, 2010, 269(1): 219–228
https://doi.org/10.1016/j.jcat.2009.11.009
21 K Iwakai, T Tago, H Konno, Y Nakasaka, T Masuda. Preparation of nano-crystalline MFI zeolite via hydrothermal synthesis in water/surfactant/organic solvent using fumed silica as the Si source. Microporous and Mesoporous Materials, 2011, 141(1-3): 167–174
https://doi.org/10.1016/j.micromeso.2010.11.001
22 K Shen, N Wang, W Qian, Y Cui, F Wei. Atmospheric pressure synthesis of nanosized ZSM-5 with enhanced catalytic performance for methanol to aromatics reaction. Catalysis Science & Technology, 2014, 4(11): 3840–3844
https://doi.org/10.1039/C4CY01010H
23 Z Liu, D Wu, S Ren, X Chen, M Qiu, X Wu, C Yang, G Zeng, Y Sun. Solvent-free synthesis of c-axis oriented ZSM-5 crystals with enhanced methanol to gasoline catalytic activity. ChemCatChem, 2016, 8(21): 3317–3322
https://doi.org/10.1002/cctc.201600896
24 D Verboekend, J Pérez-Ramírez. Design of hierarchical zeolite catalysts by desilication. Catalysis Science & Technology, 2011, 1(6): 879–890
https://doi.org/10.1039/c1cy00150g
25 R Chal, C Gerardin, M Bulut, S Donk. Cheminform abstract: Overview and industrial assessment of synthesis strategies towards zeolites with mesopores. ChemCatChem, 2011, 3(1): 67–81
https://doi.org/10.1002/cctc.201000158
26 W Schwieger, A G Machoke, T Weissenberger, A Inayat, T Selvam, M Klumpp, A Inayat. Hierarchy concepts: Classification and preparation strategies for zeolite containing materials with hierarchical porosity. ChemInform, 2016, 45(12): 3353–3376
27 M Sun, C Chen, L Chen, B Su. Hierarchically porous materials: Synthesis strategies and emerging applications. Frontiers of Chemical Science and Engineering, 2016, 10(3): 301–347
https://doi.org/10.1007/s11705-016-1578-y
28 C Mei, P Wen, Z Liu, H Liu, Y Wang, W Yang, Z Xie, W Hua, Z Gao. Selective production of propylene from methanol: Mesoporosity development in high silica HZSM-5. Journal of Catalysis, 2008, 258(1): 243–249
https://doi.org/10.1016/j.jcat.2008.06.019
29 M Dyballa, U Obenaus, M Rosenberger, A Fischer, H Jakob, E Klemm, M Hunger. Post-synthetic improvement of H-ZSM-22 zeolites for the methanol-to-olefin conversion. Microporous and Mesoporous Materials, 2016, 233: 26–30
https://doi.org/10.1016/j.micromeso.2016.06.044
30 F Schmidt, M R Lohe, B Büchner, F Giordanino, F Bonino, S Kaskel. Improved catalytic performance of hierarchical ZSM-5 synthesized by desilication with surfactants. Microporous and Mesoporous Materials, 2013, 165: 148–157
https://doi.org/10.1016/j.micromeso.2012.07.045
31 C H L Tempelman, V O Rodrigues, E R H Eck, P C M M Magusin, E J M Hensen. Desilication and silylation of Mo/HZSM-5 for methane dehydroaromatization. Microporous and Mesoporous Materials, 2015, 203: 259–273
https://doi.org/10.1016/j.micromeso.2014.10.020
32 L H Ong, M Dömök, R Olindo, A C Veen, J A Lercher. Dealumination of HZSM-5 via steam-treatment. Microporous and Mesoporous Materials, 2012, 164: 9–20
https://doi.org/10.1016/j.micromeso.2012.07.033
33 L Zhao, B Shen, J Gao, C Xu. Investigation on the mechanism of diffusion in mesopore structured ZSM-5 and improved heavy oil conversion. Journal of Catalysis, 2008, 258(1): 228–234
https://doi.org/10.1016/j.jcat.2008.06.015
34 S Gopalakrishnan, A Zampieri, W Schwieger. Mesoporous ZSM-5 zeolites via alkali treatment for the direct hydroxylation of benzene to phenol with N2O. Journal of Catalysis, 2008, 260(1): 193–197
https://doi.org/10.1016/j.jcat.2008.09.002
35 J Xing, L Song, C Zhang, M Zhou, L Yue, X Li. Effect of acidity and porosity of alkali-treated ZSM-5 zeolite on eugenol hydrodeoxygenation. Catalysis Today, 2015, 258(1): 90–95
https://doi.org/10.1016/j.cattod.2015.04.014
36 R Qi, T Fu, W Wan, Z Li. Pore fabrication of nano-ZSM-5 zeolite by internal desilication and its influence on the methanol to hydrocarbon reaction. Fuel Processing Technology, 2016, 155: 191–199
https://doi.org/10.1016/j.fuproc.2016.05.046
37 S Svelle, L Sommer, K Barbera, P N R Vennestrøm, U Olsbye, K P Lillerud, S Bordiga, Y Pan, P Beato. How defects and crystal morphology control the effects of desilication. Catalysis Today, 2011, 168(1): 38–47
https://doi.org/10.1016/j.cattod.2010.12.013
38 J C Groen, W Zhu, S Brouwer, S J Huynink, F K Kapteijn, J A Moulijn, J Pérez-Ramírez. Direct demonstration of enhanced diffusion in mesoporous ZSM-5 zeolite obtained via controlled desilication. Journal of the American Chemical Society, 2007, 129(2): 355–360
https://doi.org/10.1021/ja065737o
39 J C Groen, L A A Peffer, J A Moulijn, J Pérez-Ramírez. Mechanism of hierarchical porosity development in MFI zeolites bydesilication: the role of aluminium as a pore-directing agent. Chemistry (Weinheim an der Bergstrasse, Germany), 2010, 11(17): 4983–4994
https://doi.org/10.1002/chem.200500045
40 J C Groen, C J Jansen, J A Moulijn, J Pérez-Ramírez. Optimal aluminum-assisted mesoporosity development in MFI zeolites by desilication. Journal of Physical Chemistry B, 2004, 35(45): 13062–13065
https://doi.org/10.1021/jp047194f
41 J C Groen, J A Moulijn, J Pérez-Ramírez. Desilication: On the controlled generation of mesoporosity in MFI zeolites. Journal of Materials Chemistry, 2006, 16(22): 2121–2131
https://doi.org/10.1039/B517510K
42 S Yang, C Yu, L Yu, S Miao, M Zou, C Jin, D Zhang, L Xu, S Huang. Bridging dealumination and desilication for the synthesis of hierarchical MFI zeolites. Angewandte Chemie, 2017, 129(41): 12553–12556
https://doi.org/10.1002/anie.201706566
43 W O Parker, A Jr Angelis, C Flego, R Millini, C Perego, S Zanardi. Unexpected destructive dealumination of zeolite beta by silylation. Journal of Physical Chemistry C, 2010, 114(18): 8459–8468
https://doi.org/10.1021/jp1010764
44 G W Wagner, R A Fry. Observation of distinct surface AlIV sites and phosphonate binding modes in g-alumina and concrete by high-field 27Al and 31P MAS NMR. Journal of Physical Chemistry C, 2009, 113(30): 13352–13357
https://doi.org/10.1021/jp902474z
45 Z Wei, L Chen, Q Cao, Z Wen, Z Zhou, Y Xu, X Zhu. Steamed Zn/ZSM-5 catalysts for improved methanol aromatization with high stability. Fuel Processing Technology, 2017, 162: 66–77
https://doi.org/10.1016/j.fuproc.2017.03.026
46 D Verboekend, S Mitchell, M Milina, J C Groen, J Pérez-Ramírez. Full compositional flexibility in the preparation of mesoporous MFI zeolites by desilication. Journal of Physical Chemistry C, 2011, 115(29): 14193–14203
https://doi.org/10.1021/jp201671s
47 Y Li, Z Wen, Z Wei, F Yang, X Zhu. Study on catalytic alkylation of benzene with methanol over ZSM-22 and ZSM-35. China Petroleum Processing and Petrochemical Technology, 2017, 19(4): 38–46 (in Chinese)
48 H Zhu, Z Liu, D Kong, Y Wang, Z Xie. Synthesis and catalytic performances of mesoporous zeolites templated by polyvinyl butyral gel as the mesopore directing agent. Journal of Physical Chemistry C, 2008, 112(44): 17257–17264
https://doi.org/10.1021/jp805766m
49 P Castaño, G Elordi, M Olazar, T A Aguayoa, B Pawelec, J Bilbao. Insights into the coke deposited on HZSM-5, Hb and HY zeolites during the cracking of polyethylene. Applied Catalysis B: Environmental, 2011, 104(1): 91–100
https://doi.org/10.1016/j.apcatb.2011.02.024
50 D Rojo-Gama, M Signorile, F Bonino, S Bordiga, U Olsbye, K P Lillerud, P Beato, S Svelle. Structure-deactivation relationships in zeolites during the methanol-to-hydrocarbons reaction: Cmplementary assessments of the coke content. Journal of Catalysis, 2017, 351: 33–48
https://doi.org/10.1016/j.jcat.2017.04.015
51 B M Vogelaar, A D Langeveld, S Eijsbouts, J A Moulijn. Analysis of coke deposition profiles in commercial spent hydroprocessing catalysts using Raman spectroscopy. Fuel, 2007, 86(7): 1122–1129
https://doi.org/10.1016/j.fuel.2006.10.002
52 A C Ferrari, J Robertson. Interpretation of Raman spectra of disordered and amorphous carbon. Physical Review. B, 2000, 61(20): 14095–14107
https://doi.org/10.1103/PhysRevB.61.14095
[1] Darui Wang, Hongmin Sun, Wei Liu, Zhenhao Shen, Weimin Yang. Hierarchical ZSM-5 zeolite with radial mesopores: Preparation, formation mechanism and application for benzene alkylation[J]. Front. Chem. Sci. Eng., 2020, 14(2): 248-257.
[2] Shuman Xu, Xiaoxiao Zhang, Dangguo Cheng, Fengqiu Chen, Xiaohong Ren. Effect of hierarchical ZSM-5 zeolite crystal size on diffusion and catalytic performance of n-heptane cracking[J]. Front. Chem. Sci. Eng., 2018, 12(4): 780-789.
[3] Baodong Song, Yongqiang Li, Gang Cao, Zhenhai Sun, Xu Han. The effect of doping and steam treatment on the catalytic activities of nano-scale H-ZSM-5 in the methanol to gasoline reaction[J]. Front. Chem. Sci. Eng., 2017, 11(4): 564-574.
[4] Zhenhao Wei,Tengfei Xia,Minghui Liu,Qingsheng Cao,Yarong Xu,Kake Zhu,Xuedong Zhu. Alkaline modification of ZSM-5 catalysts for methanol aromatization: The effect of the alkaline concentration[J]. Front. Chem. Sci. Eng., 2015, 9(4): 450-460.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed