Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2019, Vol. 13 Issue (3) : 517-530    https://doi.org/10.1007/s11705-018-1781-0
RESEARCH ARTICLE
Effect of TiO2 loading on the morphology and CO2/CH4 separation performance of PEBAX-based membranes
Navid Azizi1, Mojgan Isanejad1, Toraj Mohammadi1(), Reza M. Behbahani2
1. Research and Technology Center of Membrane Processes, Chemical Engineering Department, Iran University of Science and Technology (IUST), Narmak, Tehran, Iran
2. Gas Engineering Department, Petroleum University of Technology, Ahwaz, Iran
 Download: PDF(4062 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Membranes have attracted much attention as economical methods for industrial chemical processes. The effects of the titanium dioxide nanoparticle load on the morphology and CO2/CH4 separation performance of poly (ether-block-amide) (PEBAX-1657) mixed matrix membranes (MMMs) were investigated from pressures of 3–12 bar and temperatures of 30°C–60°C. The PEBAX membranes were characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, thermal gravimetric analysis, atomic force microscopy and tensile strength analysis. The incorporation of TiO2 nanoparticles into the polymeric MMMs improved the CO2/CH4 gas separation performance (both the permeability and selectivity) of the membranes. The CO2 permeability and ideal CO2/CH4 selectivity values of the nanocomposite membrane loaded with 8 wt-% TiO2 were 172.32 Barrer and 24.79, respectively whereas those of the neat membrane were 129.87 Barrer and 21.39, respectively.

Keywords mixed matrix membrane      TiO2 nanoparticles      PEBAX-1657      CO2/CH4 separation     
Corresponding Author(s): Toraj Mohammadi   
Online First Date: 21 March 2019    Issue Date: 22 August 2019
 Cite this article:   
Navid Azizi,Mojgan Isanejad,Toraj Mohammadi, et al. Effect of TiO2 loading on the morphology and CO2/CH4 separation performance of PEBAX-based membranes[J]. Front. Chem. Sci. Eng., 2019, 13(3): 517-530.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-018-1781-0
https://academic.hep.com.cn/fcse/EN/Y2019/V13/I3/517
Property Typical value
PE content /wt-% 60
Density /(g·cm?3) 1.14
Water absorption at 23°C and 24 h in water /% 120
Melting point /°C 204
Glass transition temperature /°C −56
Tensile-stress at break /MPa 32
Chemical structure
Tab.1  Physical properties of PEBAX-1657
Property Value
Average diameter /nm 21
Density /(g·cm?3) 4.26
Specific surface area /(m2·g−1) 35–65
Melting point /°C 1850
Tab.2  Physical properties of the TiO2 nanoparticles
Fig.1  Schematic view of the setup used to perform gas permeation experiments
Fig.2  Cross-sectional FESEM images of PEBAX-based membranes containing (a) 0, (b) 2, (c) 4, (d) 6, and (e) 8 wt-% TiO2 nanoparticles
Fig.3  XRD patterns of neat PEBAX, PEBAX/TiO2 4 wt-% and PEBAX/TiO2 8 wt-%
Fig.4  FTIR spectra of TiO2, neat PEBAX, PEBAX/TiO2 4 wt-% and PEBAX/TiO2 8 wt-%
Fig.5  TGA curves for neat PEBAX, PEBAX/TiO2 4 wt-% and PEBAX/TiO2 8 wt-% MMMs
Membrane Tensile strain /% Tensile modulus /MPa
Neat PEBAX-1657 257.8 162.3
PEBAX/TiO2 4 wt-% 238.4 153.5
PEBAX/TiO2 8 wt-% 217.7 142.9
Tab.3  Tensile analysis of the prepared membranes
Fig.6  AFM images of the prepared membranes: (a) Neat PEBAX-1657, (b) PEBAX/TiO2 4 wt-% and (c) PEBAX/TiO2 8 wt-%
Fig.7  CO2 and CH4 permeability values through the membranes with different TiO2 nanoparticle contents at 3 bar and 30°C
Fig.8  Ideal CO2/CH4 selectivities for the prepared membranes with different TiO2 nanoparticle content at 3 bar and 30°C
Fig.9  Effect of feed pressure on CO2 and CH4 permeability values for the neat PEBAX membrane and the MMMs containing 4 wt-% and 8 wt-% of TiO2
Fig.10  Effect of feed pressure on the ideal CO2/CH4 selectivity for the neat PEBAX membrane and the MMMs containing 4 wt-% and 8 wt-% of TiO2 at 30°C
Fig.11  Effect of feed temperature on CO2 and CH4 permeability values for the neat PEBAX membrane and the MMMs containing 4 wt-% and 8 wt-% of TiO2 at 3 bar
Fig.12  Effect of feed temperature on the ideal CO2/CH4 selectivities of the neat PEBAX membrane and the MMMs containing 4 wt-% and 8 wt-% of TiO2 at 3 bar
Membrane type Filler content /wt-% Pressure /bar Temperature /°C PCO2 /Barrer αCO2/ CH2 Ref.
PEBAX-1657/ ZIF-8 ? 2 25 449.0 14.7 [28]
PEBAX-1657/ SAPO-34 23 7 35 135.0 20.8 [30]
PEBAX-1657/MWNTs-NH2 33 7 35 361 15.5 [73]
PEBAX-1657/
PEG-400/ZnO
PEG-400:40
ZnO:4
3 25 94.5 24.2 [74]
PEBAX-1657/ ImGO 0.8 4 25 64.0 25.1 [56]
PEBAX-1657/ zeolite 4A 10 5 25 97.0 26.4 [75]
PEBAX-2533/ ZIF-8 15 2 25 574.0 10.4 [76]
PEBAX-1074/ PEG 50 5 35 36.4 26.0 [77]
PEBAX-2533/ ZIF-11 70 2 20 402.9 12.5 [60]
PEBAX-1657/ TiO2 8 3 30 172.3 24.8 This study
Tab.4  Comparison of CO2/CH4 separation efficiency of the membrane prepared in this study with other prepared membranes
Fig.13  Comparison of CO2/CH4 separation efficiency of the prepared membranes with Robeson’s upper bounds
1 S Couck, J F Denayer, G V Baron, T Rémy, J Gascon, F Kapteijn. An amine-functionalized MIL-53 metal-organic framework with large separation power for CO2 and CH4. Journal of the American Chemical Society, 2009, 131(18): 6326–6327
https://doi.org/10.1021/ja900555r
2 Y Zhang, J Sunarso, S Liu, R Wang. Current status and development of membranes for CO2/CH4 separation: A review. International Journal of Greenhouse Gas Control, 2013, 12: 84–107
https://doi.org/10.1016/j.ijggc.2012.10.009
3 N Azizi, T Mohammadi, R M Behbahani. Synthesis of a new nanocomposite membrane (PEBAX-1074/PEG-400/TiO2) in order to separate CO2 from CH4. Journal of Natural Gas Science and Engineering, 2017, 37: 39–51
https://doi.org/10.1016/j.jngse.2016.11.038
4 M Gholami, T Mohammadi, S Mosleh, M Hemmati. CO2/CH4 separation using mixed matrix membrane-based polyurethane incorporated with ZIF-8 nanoparticles. Chemical Papers, 2017, 71(10): 1839–1853
https://doi.org/10.1007/s11696-017-0177-9
5 V Bondar, B Freeman, I Pinnau. Gas transport properties of poly (ether-b-amide) segmented block copolymers. Journal of Polymer Science. Part B, Polymer Physics, 2000, 38(15): 2051–2062
https://doi.org/10.1002/1099-0488(20000801)38:15<2051::AID-POLB100>3.0.CO;2-D
6 H R Mahdavi, N Azizi, T Mohammadi. Performance evaluation of a synthesized and characterized Pebax1657/PEG1000/γ-Al2O3 membrane for CO2/CH4 separation using response surface methodology. Journal of Polymer Research, 2017, 24(5): 67
https://doi.org/10.1007/s10965-017-1228-1
7 N Azizi, H R Mahdavi, M Isanejad, T Mohammadi. Effects of low and high molecular mass PEG incorporation into different types of poly (ether-b-amide) copolymers on the permeation properties of CO2 and CH4. Journal of Polymer Research, 2017, 24(9): 141
https://doi.org/10.1007/s10965-017-1297-1
8 G R Hatfield, Y Guo, W E Killinger, R A Andrejak, P M Roubicek. Characterization of structure and morphology in two poly (ether-block-amide) copolymers. Macromolecules, 1993, 26(24): 6350–6353
https://doi.org/10.1021/ma00076a008
9 N Azizi, T Mohammadi, R M Behbahani. Synthesis of a PEBAX-1074/ZnO nanocomposite membrane with improved CO2 separation performance. Journal of Energy Chemistry, 2017, 26(3): 454–465
https://doi.org/10.1016/j.jechem.2016.11.018
10 M Di Lorenzo, M Pyda, B Wunderlich. Calorimetry of nanophase-separated poly (oligoamide-alt-oligoether)s. Journal of Polymer Science. Part B, Polymer Physics, 2001, 39(14): 1594–1604
https://doi.org/10.1002/polb.1131
11 E Konyukhova, A Buzin, Y K Godovsky. Melting of polyether block amide (Pebax): The effect of stretching. Thermochimica Acta, 2002, 391(1): 271–277
https://doi.org/10.1016/S0040-6031(02)00189-2
12 X Ren, J Ren, H Li, S Feng, M Deng. Poly (amide-6-b-ethylene oxide) multilayer composite membrane for carbon dioxide separation. International Journal of Greenhouse Gas Control, 2012, 8: 111–120
https://doi.org/10.1016/j.ijggc.2012.01.017
13 L Zhao, Y Chen, B Wang, C Sun, S Chakraborty, K Ramasubramanian, P K Dutta, W W Ho. Multilayer polymer/zeolite Y composite membrane structure for CO2 capture from flue gas. Journal of Membrane Science, 2016, 498: 1–13
https://doi.org/10.1016/j.memsci.2015.10.006
14 Y Chen, B Wang, L Zhao, P Dutta, W W Ho. New Pebax®/zeolite Y composite membranes for CO2 capture from flue gas. Journal of Membrane Science, 2015, 495: 415–423
https://doi.org/10.1016/j.memsci.2015.08.045
15 M Isanejad, T Mohammadi. Effect of amine modification on morphology and performance of poly (ether-block-amide)/fumed silica nanocomposite membranes for CO2/CH4 separation. Materials Chemistry and Physics, 2018, 205: 303–314
https://doi.org/10.1016/j.matchemphys.2017.11.018
16 N Azizi, T Mohammadi, R Mosayebi Behbahani. Comparison of permeability performance of PEBAX-1074/TiO2, PEBAX-1074/SiO2 and PEBAX-1074/Al2O3 nanocomposite membranes for CO2/CH4 separation. Chemical Engineering Research & Design, 2017, 117: 177–189
https://doi.org/10.1016/j.cherd.2016.10.018
17 Y Wang, H Li, G Dong, C Scholes, V Chen. Effect of fabrication and operation conditions on CO2 separation performance of PEO-PA block copolymer membranes. Industrial & Engineering Chemistry Research, 2015, 54(29): 7273–7283
https://doi.org/10.1021/acs.iecr.5b01234
18 L M Robeson. Correlation of separation factor versus permeability for polymeric membranes. Journal of Membrane Science, 1991, 62(2): 165–185
https://doi.org/10.1016/0376-7388(91)80060-J
19 L M Robeson. The upper bound revisited. Journal of Membrane Science, 2008, 320(1): 390–400
https://doi.org/10.1016/j.memsci.2008.04.030
20 D Bastani, N Esmaeili, M Asadollahi. Polymeric mixed matrix membranes containing zeolites as a filler for gas separation applications: A review. Journal of Industrial and Engineering Chemistry, 2013, 19(2): 375–393
https://doi.org/10.1016/j.jiec.2012.09.019
21 C Karthikeyan, S Nunes, L Prado, M Ponce, H Silva, B Ruffmann, K Schulte. Polymer nanocomposite membranes for DMFC application. Journal of Membrane Science, 2005, 254(1): 139–146
https://doi.org/10.1016/j.memsci.2004.12.048
22 L Wang, Y Li, S Li, P Ji, C Jiang. Preparation of composite poly(ether block amide) membrane for CO2 capture. Journal of Energy Chemistry, 2014, 23(6): 717–725
https://doi.org/10.1016/S2095-4956(14)60204-7
23 H R Mahdavi, N Azizi, M Arzani, T Mohammadi. Improved CO2/CH4 separation using a nanocomposite ionic liquid gel membrane. Journal of Natural Gas Science and Engineering, 2017, 46: 275–288
https://doi.org/10.1016/j.jngse.2017.07.024
24 N Azizi, M M Zarei. CO2/CH4 separation using prepared and characterized poly (ether-block-amide)/ZIF-8 mixed matrix membranes. Petroleum Science and Technology, 2017, 35(9): 869–874
https://doi.org/10.1080/10916466.2017.1283519
25 A Khoshkharam, N Azizi, R M Behbahani, M A Ghayyem. Separation of CO2 from CH4 using a synthesized Pebax-1657/ZIF-7 mixed matrix membrane. Petroleum Science and Technology, 2017, 35(7): 667–673
https://doi.org/10.1080/10916466.2016.1273242
26 L E José Cirilo Ignacio, L Ant, S Karl, B Emilio. PEBAX TM-silanized Al2O3 composite: Synthesis and characterization. Open Journal of Polymer Chemistry, 2012, 2012: 63–69
27 N Azizi, M Arzani, H R Mahdavi, T Mohammadi. Synthesis and characterization of poly(ether-block-amide) copolymers/multi-walled carbon nanotube nanocomposite membranes for CO2/CH4 separation. Korean Journal of Chemical Engineering, 2017, 34(9): 2459–2470
https://doi.org/10.1007/s11814-017-0152-8
28 A Jomekian, R M Behbahani, T Mohammadi, A Kargari. CO2/CH4 separation by high performance co-casted ZIF-8/Pebax 1657/PES mixed matrix membrane. Journal of Natural Gas Science and Engineering, 2016, 31: 562–574
https://doi.org/10.1016/j.jngse.2016.03.067
29 A Ghadimi, T Mohammadi, N Kasiri. A novel chemical surface modification for the fabrication of PEBA/SiO2 nanocomposite membranes to separate CO2 from syngas and natural gas streams. Industrial & Engineering Chemistry Research, 2014, 53(44): 17476–17486
https://doi.org/10.1021/ie503216p
30 D Zhao, J Ren, H Li, K Hua, M Deng. Poly(amide-6-b-ethylene oxide)/SAPO-34 mixed matrix membrane for CO2 separation. Journal of Energy Chemistry, 2014, 23(2): 227–234
https://doi.org/10.1016/S2095-4956(14)60140-6
31 F Moghadam, M R Omidkhah, E Vasheghani-Farahani, M Z Pedram, F Dorosti. The effect of TiO2 nanoparticles on gas transport properties of Matrimid5218-based mixed matrix membranes. Separation and Purification Technology, 2011, 77(1): 128–136
https://doi.org/10.1016/j.seppur.2010.11.032
32 C Y Liang, P Uchytil, R Petrychkovych, Y C Lai, K Friess, M Sipek, M M Reddy, S Y Suen. A comparison on gas separation between PES (polyethersulfone)/MMT (Na-montmorillonite) and PES/TiO2 mixed matrix membranes. Separation and Purification Technology, 2012, 92: 57–63
https://doi.org/10.1016/j.seppur.2012.03.016
33 A Khosravanian, M Dehghani, M Pazirofteh, M Asghari, A H Mohammadi, D Shahsavari. Grand canonical Monte Carlo and molecular dynamics simulations of the structural properties, diffusion and adsorption of hydrogen molecules through poly(benzimidazoles)/nanoparticle oxides composites. International Journal of Hydrogen Energy, 2018, 43(5): 2803–2816
https://doi.org/10.1016/j.ijhydene.2017.12.122
34 H Sun, C Ma, B Yuan, T Wang, Y Xu, Q Xue, P Li, Y Kong. Cardo polyimides/TiO2 mixed matrix membranes: Synthesis, characterization, and gas separation property improvement. Separation and Purification Technology, 2014, 122: 367–375
https://doi.org/10.1016/j.seppur.2013.11.030
35 Q Hu, E Marand, S Dhingra, D Fritsch, J Wen, G Wilkes. Poly (amide-imide)/TiO2 nano-composite gas separation membranes: Fabrication and characterization. Journal of Membrane Science, 1997, 135(1): 65–79
https://doi.org/10.1016/S0376-7388(97)00120-8
36 S Shishatskiy, J R Pauls, S P Nunes, K V Peinemann. Quaternary ammonium membrane materials for CO2 separation. Journal of Membrane Science, 2010, 359(1-2): 44–53
https://doi.org/10.1016/j.memsci.2009.09.006
37 M Isanejad, N Azizi, T Mohammadi. Pebax membrane for CO2/CH4 separation: Effects of various solvents on morphology and performance. Journal of Applied Polymer Science, 2017, 134(9): 44531–44540
https://doi.org/10.1002/app.44531
38 J A Thompson, K W Chapman, W J Koros, C W Jones, S Nair. Sonication-induced Ostwald ripening of ZIF-8 nanoparticles and formation of ZIF-8/polymer composite membranes. Microporous and Mesoporous Materials, 2012, 158: 292–299
https://doi.org/10.1016/j.micromeso.2012.03.052
39 L Xiang, Y Pan, G Zeng, J Jiang, J Chen, C Wang. Preparation of poly(ether-block-amide)/attapulgite mixed matrix membranes for CO2/N2 separation. Journal of Membrane Science, 2016, 500: 66–75
https://doi.org/10.1016/j.memsci.2015.11.017
40 T Fan, W Xie, X Ji, C Liu, X Feng, X Lu. CO2/N2 separation using supported ionic liquid membranes with green and cost-effective [Choline][Pro]/PEG200 mixtures. Chinese Journal of Chemical Engineering, 2016, 24(11): 1513–1521
https://doi.org/10.1016/j.cjche.2016.03.006
41 S Wang, Y Liu, S Huang, H Wu, Y Li, Z Tian, Z Jiang. Pebax-PEG-MWCNT hybrid membranes with enhanced CO2 capture properties. Journal of Membrane Science, 2014, 460: 62–70
https://doi.org/10.1016/j.memsci.2014.02.036
42 W Ho, K Sirkar. Membrane Handbook. Heidelberg: Springer Science & Business Media, 2012
43 J K Adewole, A L Ahmad, S Ismail, C P Leo, A S Sultan. Comparative studies on the effects of casting solvent on physico-chemical and gas transport properties of dense polysulfone membrane used for CO2/CH4 separation. Journal of Applied Polymer Science, 2015, 132(27): 42205–42215
https://doi.org/10.1002/app.42205
44 A F Ismail, K C Khulbe, T Matsuura. Gas Separation Membrane Materials and Structures. Gas Separation Membranes. Heidelberg: Springer, 2015, 37–192
45 R Surya Murali, A F Ismail, M A Rahman, S Sridhar. Mixed matrix membranes of Pebax-1657 loaded with 4A zeolite for gaseous separations. Separation and Purification Technology, 2014, 129: 1–8
https://doi.org/10.1016/j.seppur.2014.03.017
46 S Hassanajili, M Khademi, P Keshavarz. Influence of various types of silica nanoparticles on permeation properties of polyurethane/silica mixed matrix membranes. Journal of Membrane Science, 2014, 453: 369–383
https://doi.org/10.1016/j.memsci.2013.10.057
47 Y Qiu, J Ren, D Zhao, H Li, M Deng. Poly(amide-6-b-ethylene oxide)/[Bmim][Tf2N] blend membranes for carbon dioxide separation. Journal of Energy Chemistry, 2016, 25(1): 122–130
https://doi.org/10.1016/j.jechem.2015.10.009
48 A Ghadimi, M Amirilargani, T Mohammadi, N Kasiri, B Sadatnia. Preparation of alloyed poly(ether block amide)/poly (ethylene glycol diacrylate) membranes for separation of CO2/H2 (syngas application). Journal of Membrane Science, 2014, 458: 14–26
https://doi.org/10.1016/j.memsci.2014.01.048
49 J H Kim, Y M Lee. Gas permeation properties of poly(amide-6-b-ethylene oxide)-silica hybrid membranes. Journal of Membrane Science, 2001, 193(2): 209–225
https://doi.org/10.1016/S0376-7388(01)00514-2
50 C W Tu, S W Kuo. Using FTIR spectroscopy to study the phase transitions of poly (N-isopropylacrylamide) in tetrahydrofuran-d8/D2O. Journal of Polymer Research, 2014, 21(6): 476
https://doi.org/10.1007/s10965-014-0476-6
51 J Berg, J Tymoczko, L Stryer. Secondary structure: Polypeptide chains can fold into regular structures such as the alpha helix, the beta sheet, and turns and loops Biochemistry. New York: WH Freeman, 2002
52 N S Murthy. Hydrogen bonding, mobility, and structural transitions in aliphatic polyamides. Journal of Polymer Science. Part B, Polymer Physics, 2006, 44(13): 1763–1782
https://doi.org/10.1002/polb.20833
53 X Zheng, Q Lin, P Jiang, Y Li, J Li. Ionic liquids incorporating polyamide 6: Miscibility and physical properties. Polymers, 2018, 10(5): 562
https://doi.org/10.3390/polym10050562
54 L Schroeder, S L Cooper. Hydrogen bonding in polyamides. Journal of Applied Physics, 1976, 47(10): 4310–4317
https://doi.org/10.1063/1.322432
55 R S Murali, K P Kumar, A Ismail, S Sridhar. Nanosilica and H-Mordenite incorporated poly(ether-block-amide)-1657 membranes for gaseous separations. Microporous and Mesoporous Materials, 2014, 197: 291–298
https://doi.org/10.1016/j.micromeso.2014.07.001
56 Y Dai, X Ruan, Z Yan, K Yang, M Yu, H Li, W Zhao, G He. Imidazole functionalized graphene oxide/PEBAX mixed matrix membranes for efficient CO2 capture. Separation and Purification Technology, 2016, 166: 171–180
https://doi.org/10.1016/j.seppur.2016.04.038
57 N A H M Nordin, S M Racha, T Matsuura, N Misdan, N A A Sani, A F Ismail, A Mustafa. Facile modification of ZIF-8 mixed matrix membrane for CO2/CH4 separation: Synthesis and preparation. RSC Advances, 2015, 5(54): 43110–43120
https://doi.org/10.1039/C5RA02230D
58 N A H M Nordin, A F Ismail, A Mustafa, R S Murali, T Matsuura. Utilizing low ZIF-8 loading for an asymmetric PSf/ZIF-8 mixed matrix membrane for CO2/CH4 separation. RSC Advances, 2015, 5(38): 30206–30215
https://doi.org/10.1039/C5RA00567A
59 F Dorosti, M Omidkhah, R Abedini. Enhanced CO2/CH4 separation properties of asymmetric mixed matrix membrane by incorporating nano-porous ZSM-5 and MIL-53 particles into Matrimid®5218. Journal of Natural Gas Science and Engineering, 2015, 25: 88–102
https://doi.org/10.1016/j.jngse.2015.04.033
60 A Ehsani, M Pakizeh. Synthesis, characterization and gas permeation study of ZIF-11/Pebax® 2533 mixed matrix membranes. Journal of the Taiwan Institute of Chemical Engineers, 2016, 66: 414–423
https://doi.org/10.1016/j.jtice.2016.07.005
61 M M Rahman, V Filiz, S Shishatskiy, C Abetz, S Neumann, S Bolmer, M M Khan, V Abetz. PEBAX® with PEG functionalized POSS as nanocomposite membranes for CO2 separation. Journal of Membrane Science, 2013, 437: 286–297
https://doi.org/10.1016/j.memsci.2013.03.001
62 D Shekhawat, D R Luebke, H W Pennline. A review of carbon dioxide selective membranes: A topical report. Pittsburgh, PA: National Energy Technology Laboratory, United States Dwpartment of Energy, 2003
63 H Rabiee, A Ghadimi, T Mohammadi. Gas transport properties of reverse-selective poly(ether-b-amide6)/[Emim][BF4] gel membranes for CO2/light gases separation. Journal of Membrane Science, 2015, 476: 286–302
https://doi.org/10.1016/j.memsci.2014.11.037
64 H Rabiee, S Meshkat Alsadat, M Soltanieh, S A Mousavi, A Ghadimi. Gas permeation and sorption properties of poly(amide-12-b-ethyleneoxide)(Pebax1074)/SAPO-34 mixed matrix membrane for CO2/CH4 and CO2/N2 separation. Journal of Industrial and Engineering Chemistry, 2015, 27: 223–239
https://doi.org/10.1016/j.jiec.2014.12.039
65 S Takahashi, D Paul. Gas permeation in poly(ether imide) nanocomposite membranes based on surface-treated silica. Part 1: Without chemical coupling to matrix. Polymer, 2006, 47(21): 7519–7534
https://doi.org/10.1016/j.polymer.2006.08.029
66 S Matteucci, V A Kusuma, D Sanders, S Swinnea, B D Freeman. Gas transport in TiO2 nanoparticle-filled poly(1-trimethylsilyl-1-propyne). Journal of Membrane Science, 2008, 307(2): 196–217
https://doi.org/10.1016/j.memsci.2007.09.035
67 A Shariati, M Omidkhah, M Z Pedram. New permeation models for nanocomposite polymeric membranes filled with nonporous particles. Chemical Engineering Research & Design, 2012, 90(4): 563–575
https://doi.org/10.1016/j.cherd.2011.08.010
68 A F Ismail, T Kusworo, A Mustafa, H Hasbulla. Understanding the solution-diffusion mechanism in gas separation membrane for engineering students. Regional Conference on Engineering Education RCEE2005, 2005
69 E C Suloff. Sorption behavior of an aliphatic series of aldehydes in the presence of poly(ethylene terephthalate) blends containing aldehyde scavenging agents. Dissertation for the Doctoral Degree. Blacksburg, Virginia: Virginia Tech, 2002, 29–99
70 M Sadeghi, M Mehdi T, B Ghalei, M Shafiei. Preparation, characterization and gas permeation properties of a polycaprolactone based polyurethane-silica nanocomposite membrane. Journal of Membrane Science, 2013, 427: 21–29
https://doi.org/10.1016/j.memsci.2012.07.036
71 R Gharibi, A Ghadimi, H Yeganeh, B Sadatnia, M Gharedaghi. Preparation and evaluation of hybrid organic-inorganic poly (urethane-siloxane) membranes with build-in poly(ethylene glycol) segments for efficient separation of CO2/CH4 and CO2/H2. Journal of Membrane Science, 2018, 548: 572–582
https://doi.org/10.1016/j.memsci.2017.11.058
72 G Maier. Gas separation by polymer membranes: Beyond the border. Angewandte Chemie International Edition, 2013, 52(19): 4982–4984
https://doi.org/10.1002/anie.201302312
73 D Zhao, J Ren, H Li, X Li, M Deng. Gas separation properties of poly(amide-6-b-ethylene oxide)/amino modified multi-walled carbon nanotubes mixed matrix membranes. Journal of Membrane Science, 2014, 467: 41–47
https://doi.org/10.1016/j.memsci.2014.05.009
74 M H Jazebizadeh, S Khazraei. Investigation of methane and carbon dioxide gases permeability through PEBAX/PEG/ZnO nanoparticle mixed matrix membrane. Silicon, 2017, 9(5): 775–784
https://doi.org/10.1007/s12633-016-9435-7
75 R S Murali, A F Ismail, M A Rahman, S Sridhar. Mixed matrix membranes of Pebax-1657 loaded with 4A zeolite for gaseous separations. Separation and Purification Technology, 2014, 129: 1–8
https://doi.org/10.1016/j.seppur.2014.03.017
76 V Nafisi, M B Hägg. Development of dual layer of ZIF-8/PEBAX-2533 mixed matrix membrane for CO2 capture. Journal of Membrane Science, 2014, 459: 244–255
https://doi.org/10.1016/j.memsci.2014.02.002
77 S Feng, J Ren, K Hua, H Li, X Ren, M Deng. Poly(amide-12-b-ethylene oxide)/polyethylene glycol blend membranes for carbon dioxide separation. Separation and Purification Technology, 2013, 116: 25–34
https://doi.org/10.1016/j.seppur.2013.05.002
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed