Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2019, Vol. 13 Issue (2) : 296-309    https://doi.org/10.1007/s11705-018-1783-y
REVIEW ARTICLE
Phosphorene: Current status, challenges and opportunities
Anandarup Goswami1, Manoj B. Gawande2()
1. Division of Chemistry, Department of Sciences and Humanities, Vignan’s Foundation for Science, Technology and Research (VFSTR), Vadlamudi, Guntur-522213, Andhra Pradesh, India
2. Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University Olomouc, ?lechtitel? 27, 783 71 Olomouc, Czech Republic
 Download: PDF(1669 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The field of 2-dimensional (2D) materials has witnessed a sharp growth since its inception and can majorly be attributed to the substantial technical and scientific developments, leading to significant improvements in their syntheses, characterization and applications. In the list of 2D materials, the relatively newer addition is phosphorene, which ideally consists of a single layer of black phosphorous. Keeping in mind the past, and ongoing research activities, this short account offers a brief overview of the present status and the associated challenges in the field of phosphorene-related research, with special emphasis on their syntheses, properties, applications and future opportunities.

Keywords phosphorene      black phosphorous      anisotropy      single layer      thermoelectric      chemical vapor deposition      catalysis      battery      supercapacitor     
Corresponding Author(s): Manoj B. Gawande   
Online First Date: 28 February 2019    Issue Date: 22 May 2019
 Cite this article:   
Anandarup Goswami,Manoj B. Gawande. Phosphorene: Current status, challenges and opportunities[J]. Front. Chem. Sci. Eng., 2019, 13(2): 296-309.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-018-1783-y
https://academic.hep.com.cn/fcse/EN/Y2019/V13/I2/296
Fig.1  (a) Comparison of the 2D materials in terms of number of published articles during a decade (The vertical axis is in log scale. Key words: graphene, hexagonal boron nitride, phosphorene, mxenes, MoS2 or WS2 or MoSe2 or WSe2 or MoTe2, silicene or germanene; Search engine: Google Scholar); (b) Crystal structure of phosphorene (side and top view); (c) Structures of three predicted polymorphs of phosphorene; (d) Crystal structures of monolayer of MoS2 (left) and graphene (right). Images c adapted with permission from the ref. [15] Copyright 2015 Nature Publishing Group, and the ref. [16]. Copyright 2015 American Chemical Society
Fig.2  Phosphorene: (a) Crystal structure, (b) electronic band structure, (c) AFM image, HR-TEM of (d) side view and (g) top view, (e) electron energy loss spectroscopy spectrum, (f) side view and top view of atomic structure, (h) SAED, (i) optical micrograph, and (j) Raman spectra. (a) Reproduced with permission from the ref. [25], Copyright 2017, American Chemical Society. (b) Reproduced with permission from Copyright 2015, American Chemical Society. (c) Reproduced with permission from the ref. [14], Copyright 2014, American Chemical Society. (d) Reproduced with permission from the ref. [21], Copyright 2015, AIP Publishing LLC. (e–h) Reproduced with permission from the ref. [20], Copyright 2016, IOP Science. (i) Reproduced with permission from the ref. [26], Copyright 2017, Macmillan Publishers limited. (j) Reproduced with permission from the ref. [27], Copyright 2015, Macmillan Publishers limited
Fig.3  Common synthetic methods for the preparation of phosphorene
Fig.4  Schematic of diverse applications of phosphorene. Reproduced with permission from the ref. [20], Copyright 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
1 B ABhanvase, V B Pawade. Chapter 15: Advanced nanomaterials for green energy: Current status and future perspectives. In: Nanomaterials for Green Energy. Amsterdam: Elsevier, 2018, 457–472
2 MChild, O Koskinen, LLinnanen, CBreyer. Sustainability guardrails for energy scenarios of the global energy transition. Renewable & Sustainable Energy Reviews, 2018, 91: 321–334
https://doi.org/10.1016/j.rser.2018.03.079
3 R PFeynman. There’s plenty of room at the bottom. Journal of Microelectromechanical Systems, 1992, 1(1): 60–66
https://doi.org/10.1109/84.128057
4 RFeynman. Infinitesimal machinery. Journal of Microelectromechanical Systems, 1993, 2(1): 4–14
https://doi.org/10.1109/84.232589
5 K EDrexler. Nanotechnology: From feynman to funding. Bulletin of Science, Technology & Society, 2004, 24(1): 21–27
https://doi.org/10.1177/0270467604263113
6 RMas-Balleste, C Gomez-Navarro, JGomez-Herrero, FZamora. 2D materials: To graphene and beyond. Nanoscale, 2011, 3(1): 20–30
https://doi.org/10.1039/C0NR00323A
7 MChhowalla, Z Liu, HZhang. Two-dimensional transition metal dichalcogenide (TMD) nanosheets. Chemical Society Reviews, 2015, 44(9): 2584–2586
https://doi.org/10.1039/C5CS90037A
8 G RBhimanapati, ZLin, V Meunier, YJung, JCha, S Das, DXiao, YSon, M S Strano, V R Cooper, et al. Recent advances in two-dimensional materials beyond graphene. ACS Nano, 2015, 9(12): 11509–11539
https://doi.org/10.1021/acsnano.5b05556
9 ZYang, J Hao. Recent progress in black phosphorusbased heterostructures for device applications. Small Methods, 2017, 2(2): 1700296
https://doi.org/10.1002/smtd.201700296
10 P WBridgman. Two new modifications of phosphorus. Journal of the American Chemical Society, 1914, 36(7): 1344–1363
https://doi.org/10.1021/ja02184a002
11 C MPark, H J Sohn. Black phosphorus and its composite for lithium rechargeable batteries. Advanced Materials, 2007, 19(18): 2465–2468
https://doi.org/10.1002/adma.200602592
12 AKhandelwal, K Mani, M HKarigerasi, ILahiri. Phosphorene—the two-dimensional black phosphorous: Properties, synthesis and applications. Materials Science and Engineering B, 2017, 221: 17–34
https://doi.org/10.1016/j.mseb.2017.03.011
13 MAkhtar, G Anderson, RZhao, AAlruqi, J EMroczkowska, GSumanasekera, J BJasinski. Recent advances in synthesis, properties, and applications of phosphorene. npj 2D Materials and Applications, 2017, 1(1): 5
14 HLiu, A T Neal, Z Zhu, ZLuo, XXu, D Tománek, P DYe. Phosphorene: An unexplored 2D semiconductor with a high hole mobility. ACS Nano, 2014, 8(4): 4033–4041
https://doi.org/10.1021/nn501226z
15 AJain, A J H McGaughey. Strongly anisotropic in-plane thermal transport in single-layer black phosphorene. Scientific Reports, 2015, 5(1): 8501
https://doi.org/10.1038/srep08501
16 MWu, H Fu, LZhou, KYao, X C Zeng. Nine new phosphorene polymorphs with non-honeycomb structures: A much extended family. Nano Letters, 2015, 15(5): 3557–3562
https://doi.org/10.1021/acs.nanolett.5b01041
17 ABrown, S Rundqvist. Refinement of the crystal structure of black phosphorus. Acta Crystallographica, 1965, 19(4): 684–685
https://doi.org/10.1107/S0365110X65004140
18 A SRodin, A Carvalho, A HCastro N. Strain-induced gap modification in black phosphorus. Physical Review Letters, 2014, 112(17): 176801
https://doi.org/10.1103/PhysRevLett.112.176801
19 SAppalakondaiah, G Vaitheeswaran, SLebègue, N EChristensen, ASvane. Effect of van der Waals interactions on the structural and elastic properties of black phosphorus. Physical Review. B, 2012, 86(3): 035105
https://doi.org/10.1103/PhysRevB.86.035105
20 JPang, A Bachmatiuk, YYin, BTrzebicka, LZhao, L Fu, GMendes Rafael, TGemming, ZLiu, H Rummeli M. Applications of phosphorene and black phosphorus in energy conversion and storage devices. Advanced Energy Materials, 2017, 8(8): 1702093
https://doi.org/10.1002/aenm.201702093
21 R JWu, M Topsakal, TLow, M CRobbins, NHaratipour, J SJeong, R MWentzcovitch, S JKoester, K AMkhoyan. Atomic and electronic structure of exfoliated black phosphorus. Journal of Vacuum Science & Technology. A, Vacuum, Surfaces, and Films, 2015, 33(6): 060604
https://doi.org/10.1116/1.4926753
22 XFeng, G Binghui, CJing, NArokia, L XLinhuo, MHongyu, MHuihua, ZChongyang, XWeiwei, LZhengrui, et al. Scalable shear-exfoliation of high-quality phosphorene nanoflakes with reliable electrochemical cycleability in nano batteries. 2D Materials, 2016, 3(2): 025005
23 Z XGan, L L Sun, X L Wu, M Meng, J CShen, P KChu. Tunable photoluminescence from sheet-like black phosphorus crystal by electrochemical oxidation. Applied Physics Letters, 2015, 107(2): 021901
https://doi.org/10.1063/1.4926727
24 ZSun, H Xie, STang, X FYu, ZGuo, J Shao, HZhang, HHuang, HWang, K Chu P. Ultrasmall black phosphorus quantum dots: Synthesis and use as photothermal agents. Angewandte Chemie International Edition, 2015, 54(39): 11526–11530
https://doi.org/10.1002/anie.201506154
25 J SKang, M Ke, YHu. Ionic intercalation in two-dimensional van der waals materials: In situ characterization and electrochemical control of the anisotropic thermal conductivity of black phosphorus. Nano Letters, 2017, 17(3): 1431–1438
https://doi.org/10.1021/acs.nanolett.6b04385
26 LLi, J Kim, CJin, G JYe, D YQiu, F Hda Jornada, ZShi, L Chen, ZZhang, et al. Direct observation of the layer-dependent electronic structure in phosphorene. Nature Nanotechnology, 2016, 12(1): 21–25
https://doi.org/10.1038/nnano.2016.171
27 AFavron, E Gaufrès, FFossard, A LPhaneuf-L’Heureux, N Y WTang, P LLévesque, ALoiseau, RLeonelli, SFrancoeur, RMartel. Photooxidation and quantum confinement effects in exfoliated black phosphorus. Nature Materials, 2015, 14(8): 826–832
https://doi.org/10.1038/nmat4299
28 XLing, H Wang, SHuang, FXia, M S Dresselhaus. The renaissance of black phosphorus. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(15): 4523–4530
https://doi.org/10.1073/pnas.1416581112
29 A CFerrari, J C Meyer, V Scardaci, CCasiraghi, MLazzeri, FMauri, SPiscanec, DJiang, K SNovoselov, SRoth, A K Geim. Raman spectrum of graphene and graphene layers. Physical Review Letters, 2006, 97(18): 187401
https://doi.org/10.1103/PhysRevLett.97.187401
30 A NRudenko, S Yuan, M IKatsnelson. Toward a realistic description of multilayer black phosphorus: From GW approximation to large-scale tight-binding simulations. Physical Review. B, 2015, 92(8): 085419
https://doi.org/10.1103/PhysRevB.92.085419
31 JQiao, X Kong, Z XHu, FYang, W Ji. High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nature Communications, 2014, 5(1): 4475
https://doi.org/10.1038/ncomms5475
32 JWiktor, A Pasquarello. Absolute deformation potentials of two-dimensional materials. Physical Review. B, 2016, 94(24): 245411
https://doi.org/10.1103/PhysRevB.94.245411
33 C VNguyen, N Ngoc H, C ADuque, DQuoc K, NVan H, LVan T, HVinh P. Linear and nonlinear magneto-optical properties of monolayer phosphorene. Journal of Applied Physics, 2017, 121(4): 045107
https://doi.org/10.1063/1.4974951
34 DÇakır, HSahin, F MPeeters. Tuning of the electronic and optical properties of single-layer black phosphorus by strain. Physical Review. B, 2014, 90(20): 205421
https://doi.org/10.1103/PhysRevB.90.205421
35 PYasaei, B Kumar, TForoozan, CWang, M Asadi, DTuschel, J EIndacochea, FKlie R, ASalehi-Khojin. Highquality black phosphorus atomic layers by liquid-phase exfoliation. Advanced Materials, 2015, 27(11): 1887–1892
https://doi.org/10.1002/adma.201405150
36 M ZRahman, C W Kwong, K Davey, S ZQiao. 2D phosphorene as a water splitting photocatalyst: Fundamentals to applications. Energy & Environmental Science, 2016, 9(3): 709–728
https://doi.org/10.1039/C5EE03732H
37 JWu, N Mao, LXie, HXu, J Zhang. Identifying the crystalline orientation of black phosphorus using angle-resolved polarized raman spectroscopy. Angewandte Chemie International Edition, 2015, 54(8): 2366–2369
https://doi.org/10.1002/anie.201410108
38 TLow, A S Rodin, A Carvalho, YJiang, HWang, F Xia, A HCastro N. Tunable optical properties of multilayer black phosphorus thin films. Physical Review. B, 2014, 90(7): 075434
https://doi.org/10.1103/PhysRevB.90.075434
39 D E CCorbrjdge. Infrared analysis of phosphorus compounds. Journal of Applied Chemistry (London), 1956, 6(10): 456–465
https://doi.org/10.1002/jctb.5010061007
40 D E CCorbridge, E JLowe. The infra-red spectra of some inorganic phosphorus compounds. Journal of the Chemical Society (Resumed), 1954: 493–502
41 FXia, H Wang, YJia. Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nature Communications, 2014, 5(1): 4458
https://doi.org/10.1038/ncomms5458
42 SChen, L Wang, QWu, XLi, Y Zhao, HLai, LYang, T Sun, YLi, XWang, Z Hu. Advanced non-precious electrocatalyst of the mixed valence CoOx nanocrystals supported on N-doped carbon nanocages for oxygen reduction. Science China. Chemistry, 2015, 58(1): 180–186
https://doi.org/10.1007/s11426-014-5279-4
43 D JLate. Temperature dependent phonon shifts in few-layer black phosphorus. ACS Applied Materials & Interfaces, 2015, 7(10): 5857–5862
https://doi.org/10.1021/am509056b
44 C-GAndres, V Leonardo, PElsa, O IJoshua, K LNarasimha-Acharya, I BSofya, J GDirk, BMichele, A SGary, J VAlvarez, et al.Isolation and characterization of few-layer black phosphorus. 2D Materials, 2014, 1(2): 025001
45 HTerrones, E D Corro, S Feng, J MPoumirol, DRhodes, DSmirnov, N RPradhan, ZLin, M A T Nguyen, A L Elías, et al. New first order raman-active modes in few layered transition metal dichalcogenides. Scientific Reports, 2014, 4(1): 4215
https://doi.org/10.1038/srep04215
46 XLuo, X Lu, CCong, TYu, Q Xiong, SYing Q. Stacking sequence determines Raman intensities of observed interlayer shear modes in 2D layered materials—A general bond polarizability model. Scientific Reports, 2015, 5(1): 14565
https://doi.org/10.1038/srep14565
47 LBritnell, R M Ribeiro, A Eckmann, RJalil, B DBelle, AMishchenko, Y JKim, R VGorbachev, TGeorgiou, S VMorozov, et al. Strong light-matter interactions in heterostructures of atomically thin films. Science, 2013, 340(6138): 1311–1314
https://doi.org/10.1126/science.1235547
48 SDai, Z Fei, QMa, A SRodin, MWagner, A SMcLeod, M KLiu, WGannett, WRegan, KWatanabe, et al. Tunable phonon polaritons in atomically thin van der waals crystals of boron nitride. Science, 2014, 343(6175): 1125–1129
https://doi.org/10.1126/science.1246833
49 SDong, A Zhang, KLiu, JJi, Y G Ye, X G Luo, X H Chen, X Ma, YJie, CChen, et al. Ultralow-frequency collective compression mode and strong interlayer coupling in multilayer black phosphorus. Physical Review Letters, 2016, 116(8): 087401
https://doi.org/10.1103/PhysRevLett.116.087401
50 XLing, L Liang, SHuang, A APuretzky, D BGeohegan, B GSumpter, JKong, V Meunier, M SDresselhaus. Low-frequency interlayer breathing modes in few-layer black phosphorus. Nano Letters, 2015, 15(6): 4080–4088
https://doi.org/10.1021/acs.nanolett.5b01117
51 XLuo, X Lu, G K WKoon, A HCastro N, BÖzyilmaz, QXiong, S YQuek. Large frequency change with thickness in interlayer breathing mode—significant interlayer interactions in few layer black phosphorus. Nano Letters, 2015, 15(6): 3931–3938
https://doi.org/10.1021/acs.nanolett.5b00775
52 J DWood, S A Wells, D Jariwala, K SChen, ECho, V K Sangwan, X Liu, L JLauhon, T JMarks, M CHersam. Effective passivation of exfoliated black phosphorus transistors against ambient degradation. Nano Letters, 2014, 14(12): 6964–6970
https://doi.org/10.1021/nl5032293
53 R ADoganov, E C T O’Farrell, S P Koenig, Y Yeo, AZiletti, ACarvalho, D KCampbell, D FCoker, KWatanabe, TTaniguchi, et al. Transport properties of pristine few-layer black phosphorus by van der Waals passivation in an inert atmosphere. Nature Communications, 2015, 6(1): 6647
https://doi.org/10.1038/ncomms7647
54 MKöpf, N Eckstein, DPfister, CGrotz, IKrüger, MGreiwe, THansen, HKohlmann, TNilges. Access and in situ growth of phosphorene-precursor black phosphorus. Journal of Crystal Growth, 2014, 405: 6–10
https://doi.org/10.1016/j.jcrysgro.2014.07.029
55 SLange, P Schmidt, TAu Nilges. Sn3P7@black phosphorus: An easy access to black phosphorus. Inorganic Chemistry, 2007, 46(10): 4028–4035
https://doi.org/10.1021/ic062192q
56 TNilges, M Kersting, TPfeifer. A fast low-pressure transport route to large black phosphorus single crystals. Journal of Solid State Chemistry, 2008, 181(8): 1707–1711
https://doi.org/10.1016/j.jssc.2008.03.008
57 LKou, C Chen, S CSmith. Phosphorene: Fabrication, properties, and applications. Journal of Physical Chemistry Letters, 2015, 6(14): 2794–2805
https://doi.org/10.1021/acs.jpclett.5b01094
58 PAvouris, C Dimitrakopoulos. Graphene: Synthesis and applications. Materials Today, 2012, 15(3): 86–97
https://doi.org/10.1016/S1369-7021(12)70044-5
59 BTian, B Tian, BSmith, M CScott, QLei, R Hua, YTian, YLiu. Facile bottom-up synthesis of partially oxidized black phosphorus nanosheets as metal-free photocatalyst for hydrogen evolution. Proceedings of the National Academy of Sciences, 2018, 115(17): 201800069
60 YZhang, Y W Tan, H L Stormer, P Kim. Experimental observation of the quantum Hall effect and Berrys phase in graphene. Nature, 2005, 438(7065): 201–204
https://doi.org/10.1038/nature04235
61 MYi, Z Shen. A review on mechanical exfoliation for the scalable production of graphene. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3(22): 11700–11715
https://doi.org/10.1039/C5TA00252D
62 HLi, J Wu, ZYin, HZhang. Preparation and applications of mechanically exfoliated single-layer and multilayer MoS2 and WSe2 Nanosheets. Accounts of Chemical Research, 2014, 47(4): 1067–1075
https://doi.org/10.1021/ar4002312
63 KZhang, Y Feng, FWang, ZYang, J Wang. Two dimensional hexagonal boron nitride (2D-hBN): Synthesis, properties and applications. Journal of Materials Chemistry. C, Materials for Optical and Electronic Devices, 2017, 5(46): 11992–12022
https://doi.org/10.1039/C7TC04300G
64 LLi, Y Yu, G JYe, QGe, X Ou, HWu, DFeng, X H Chen, Y Zhang. Black phosphorus field-effect transistors. Nature Nanotechnology, 2014, 9(5): 372–377
https://doi.org/10.1038/nnano.2014.35
65 JKang, J D Wood, S A Wells, J H Lee, X Liu, K SChen, M CHersam. Solvent exfoliation of electronic-grade, two-dimensional black phosphorus. ACS Nano, 2015, 9(4): 3596–3604
https://doi.org/10.1021/acsnano.5b01143
66 LChen, G Zhou, ZLiu, XMa, J Chen, ZZhang, XMa, F Li, H MCheng, WRen. Scalable clean exfoliation of high-quality few-layer black phosphorus for a flexible lithium ion battery. Advanced Materials, 2015, 28(3): 510–517
https://doi.org/10.1002/adma.201503678
67 PJoensen, R F Frindt, S R Morrison. Single-layer MoS2. Materials Research Bulletin, 1986, 21(4): 457–461
https://doi.org/10.1016/0025-5408(86)90011-5
68 G CGuo, D Wang, X LWei, QZhang, HLiu, W M Lau, L M Liu. First-principles study of phosphorene and graphene heterostructure as anode materials for rechargeable Li batteries. Journal of Physical Chemistry Letters, 2015, 6(24): 5002–5008
https://doi.org/10.1021/acs.jpclett.5b02513
69 YKim, Y Park, AChoi, N SChoi, JKim, J Lee, HRyu J, MOh S, TLee K. An amorphous red phosphorus/carbon composite as a promising anode material for sodium ion batteries. Advanced Materials, 2013, 25(22): 3045–3049
https://doi.org/10.1002/adma.201204877
70 JKang, S A Wells, J D Wood, J H Lee, X Liu, C RRyder, JZhu, J R Guest, C A Husko, M C Hersam. Stable aqueous dispersions of optically and electronically active phosphorene. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(42): 11688–11693
https://doi.org/10.1073/pnas.1602215113
71 DAkinwande, N Petrone, JHone. Two-dimensional flexible nanoelectronics. Nature Communications, 2014, 5(1): 5678
https://doi.org/10.1038/ncomms6678
72 FBozso, P Avouris. Adsorption of phosphorus on Si(111): Structure and chemical reactivity. Physical Review. B, 1991, 43(2): 1847–1850
https://doi.org/10.1103/PhysRevB.43.1847
73 TNiu. New properties with old materials: Layered black phosphorous. Nano Today, 2017, 12: 7–9
https://doi.org/10.1016/j.nantod.2016.08.013
74 JZeng, P Cui, ZZhang. Half layer by half layer growth of a blue phosphorene monolayer on a gan(001) substrate. Physical Review Letters, 2017, 118(4): 046101
https://doi.org/10.1103/PhysRevLett.118.046101
75 XLiu, J D Wood, K S Chen, E Cho, M CHersam. In situ thermal decomposition of exfoliated two-dimensional black phosphorus. Journal of Physical Chemistry Letters, 2015, 6(5): 773–778
https://doi.org/10.1021/acs.jpclett.5b00043
76 N APiro, J S Figueroa, J T McKellar, C C Cummins. Triple-bond reactivity of diphosphorus molecules. Science, 2006, 313(5791): 1276–1279
https://doi.org/10.1126/science.1129630
77 FPresel, C A Tache, H Tetlow, DCurcio, PLacovig, LKantorovich, SLizzit, ABaraldi. Spectroscopic fingerprints of carbon monomers and dimers on ir(111): Experiment and theory. Journal of Physical Chemistry C, 2017, 121(21): 11335–11345
https://doi.org/10.1021/acs.jpcc.7b00973
78 LXu, Y Jin, ZWu, QYuan, Z Jiang, YMa, WHuang. Transformation of carbon monomers and dimers to graphene islands on co(0001): Thermodynamics and kinetics. Journal of Physical Chemistry C, 2013, 117(6): 2952–2958
https://doi.org/10.1021/jp400111s
79 AZiletti, A Carvalho, D KCampbell, D FCoker, A HCastro N. Oxygen defects in phosphorene. Physical Review Letters, 2015, 114(4): 046801
https://doi.org/10.1103/PhysRevLett.114.046801
80 YCai, G Zhang, Y WZhang. Electronic properties of phosphorene/graphene and phosphorene/hexagonal boron nitride heterostructures. Journal of Physical Chemistry C, 2015, 119(24): 13929–13936
https://doi.org/10.1021/acs.jpcc.5b02634
81 M SWhittingham. Lithium batteries and cathode materials. Chemical Reviews, 2004, 104(10): 4271–4302
https://doi.org/10.1021/cr020731c
82 J BGoodenough, K SPark. The Li-ion rechargeable battery: A perspective. Journal of the American Chemical Society, 2013, 135(4): 1167–1176
https://doi.org/10.1021/ja3091438
83 JJiang, J R Dahn. Effects of solvents and salts on the thermal stability of LiC6. Electrochimica Acta, 2004, 49(26): 4599–4604
https://doi.org/10.1016/j.electacta.2004.05.014
84 WLi, Y Yang, GZhang, Y WZhang. Ultrafast and directional diffusion of lithium in phosphorene for high-performance lithium-ion battery. Nano Letters, 2015, 15(3): 1691–1697
https://doi.org/10.1021/nl504336h
85 JSun, G Zheng, H WLee, NLiu, H Wang, HYao, WYang, Y Cui. Formation of stable phosphorus-carbon bond for enhanced performance in black phosphorus nanoparticle-graphite composite battery anodes. Nano Letters, 2014, 14(8): 4573–4580
https://doi.org/10.1021/nl501617j
86 AManthiram, Y Fu, S HChung, CZu, Y S Su. Rechargeable lithium-sulfur batteries. Chemical Reviews, 2014, 114(23): 11751–11787
https://doi.org/10.1021/cr500062v
87 H JPeng, J Q Huang, X B Cheng, Q Zhang. Lithium-sulfur batteries: Review on high loading and high energy lithium-sulfur batteries. Advanced Energy Materials, 2017, 7(24): 1770141
https://doi.org/10.1002/aenm.201770141
88 XFan, W Sun, FMeng, AXing, J Liu. Advanced chemical strategies for lithium-sulfur batteries: A review. Green Energy & Environment, 2018, 3(1): 2–19
https://doi.org/10.1016/j.gee.2017.08.002
89 WKang, N Deng, JJu, QLi, D Wu, XMa, LLi, M Naebe, BCheng. A review of recent developments in rechargeable lithium-sulfur batteries. Nanoscale, 2016, 8(37): 16541–16588
https://doi.org/10.1039/C6NR04923K
90 GZhou, S Pei, LLi, D WWang, SWang, K Huang, L CYin, FLi, H M Cheng. A Graphene-pure sulfur sandwich structure for ultrafast, long life lithium-sulfur batteries. Advanced Materials, 2013, 26(4): 625–631
https://doi.org/10.1002/adma.201302877
91 YZhang, H Wang, ZLuo, H TTan, BLi, S Sun, ZLi, YZong, Z Xu, YYang, K AKhor, QYan. Lithium storage: An air-stable densely packed phosphorene-graphene composite toward advanced lithium storage properties. Advanced Energy Materials, 2016, 6(12): 1600453
https://doi.org/10.1002/aenm.201600453
92 JZhao, Y Yang, R SKatiyar, ZChen. Phosphorene as a promising anchoring material for lithium-sulfur batteries: A computational study. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2016, 4(16): 6124–6130
https://doi.org/10.1039/C6TA00871B
93 JSun, Y Sun, MPasta, GZhou, Y Li, WLiu, FXiong, YCui. Entrapment of polysulfides by a black-phosphorus-modified separator for lithium-sulfur batteries. Advanced Materials, 2016, 28(44): 9797–9803
https://doi.org/10.1002/adma.201602172
94 J YHwang, S T Myung, Y K Sun. Sodium-ion batteries: Present and future. Chemical Society Reviews, 2017, 46(12): 3529–3614
https://doi.org/10.1039/C6CS00776G
95 CVaalma, D Buchholz, MWeil, SPasserini. A cost and resource analysis of sodium-ion batteries. Nature Reviews. Materials, 2018, 3(4): 18013
https://doi.org/10.1038/natrevmats.2018.13
96 JSun, H W Lee, M Pasta, HYuan, GZheng, YSun, Y Li, YCui. A phosphorene-graphene hybrid material as a high-capacity anode for sodium-ion batteries. Nature Nanotechnology, 2015, 10(11): 980–985
https://doi.org/10.1038/nnano.2015.194
97 WZhang, J Mao, SLi, ZChen, Z Guo. Phosphorus-based alloy materials for advanced potassium-ion battery anode. Journal of the American Chemical Society, 2017, 139(9): 3316–3319
https://doi.org/10.1021/jacs.6b12185
98 XRen, P Lian, DXie, YYang, Y Mei, XHuang, ZWang, X Yin. Properties, preparation and application of black phosphorus/phosphorene for energy storage: A review. Journal of Materials Science, 2017, 52(17): 10364–10386
https://doi.org/10.1007/s10853-017-1194-3
99 XWang, Y Chen, O GSchmidt, CYan. Engineered nanomembranes for smart energy storage devices. Chemical Society Reviews, 2016, 45(5): 1308–1330
https://doi.org/10.1039/C5CS00708A
100 PSimon, Y Gogotsi. Materials for electrochemical capacitors. Nature Materials, 2008, 7(11): 845–854
https://doi.org/10.1038/nmat2297
101 Z SWu, K Parvez, XFeng, KMüllen. Graphene-based in-plane micro-supercapacitors with high power and energy densities. Nature Communications, 2013, 4(1): 2487
https://doi.org/10.1038/ncomms3487
102 XChen, G Xu, XRen, ZLi, X Qi, KHuang, HZhang, ZHuang, JZhong. A black/red phosphorus hybrid as an electrode material for high-performance Li-ion batteries and supercapacitors. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(14): 6581–6588
https://doi.org/10.1039/C7TA00455A
103 BParida, S Iniyan, RGoic. A review of solar photovoltaic technologies. Renewable & Sustainable Energy Reviews, 2011, 15(3): 1625–1636
https://doi.org/10.1016/j.rser.2010.11.032
104 ARoige, J O Ossó, I Martín, CVoz, POrtega, J MLópez-González, RAlcubilla, L FVega. Microscale characterization of surface recombination at the vicinity of laser-processed regions in c-Si solar cells. IEEE Journal of Photovoltaics, 2016, 6(2): 426–431
https://doi.org/10.1109/JPHOTOV.2016.2514710
105 Y JChen, M J Zhang, S Yuan, YQiu, X BWang, XJiang, ZGao, Y Lin, FPan. Insight into interfaces and junction of polycrystalline silicon solar cells by kelvin probe force microscopy. Nano Energy, 2017, 36: 303–312
https://doi.org/10.1016/j.nanoen.2017.04.045
106 O AAbdulrazzaq, VSaini, SBourdo, EDervishi, A SBiris. Organic solar cells: A review of materials, limitations, and possibilities for improvement. Particulate Science and Technology, 2013, 31(5): 427–442
https://doi.org/10.1080/02726351.2013.769470
107 SYang, W Fu, ZZhang, HChen, C Z Li. Recent advances in perovskite solar cells: Efficiency, stability and lead-free perovskite. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(23): 11462–11482
https://doi.org/10.1039/C7TA00366H
108 JGong, K Sumathy, QQiao, ZZhou. Review on dye-sensitized solar cells (DSSCs): Advanced techniques and research trends. Renewable & Sustainable Energy Reviews, 2017, 68: 234–246
https://doi.org/10.1016/j.rser.2016.09.097
109 LViti, J Hu, DCoquillat, WKnap, A Tredicucci, APolitano, SVitiello M . Black phosphorus terahertz photodetectors. Advanced Materials, 2015, 27(37): 5567–5572
https://doi.org/10.1002/adma.201502052
110 GLong, D Maryenko, JShen, SXu, J Hou, ZWu, W KWong, THan, J Lin, YCai, et al. Achieving ultrahigh carrier mobility in two-dimensional hole gas of black phosphorus. Nano Letters, 2016, 16(12): 7768–7773
https://doi.org/10.1021/acs.nanolett.6b03951
111 SCui, H Pu, S AWells, ZWen, S Mao, JChang, M CHersam, JChen. Ultrahigh sensitivity and layer-dependent sensing performance of phosphorene-based gas sensors. Nature Communications, 2015, 6(1): 8632
https://doi.org/10.1038/ncomms9632
112 YCai, G Zhang, Y WZhang. Layer-dependent band alignment and work function of few-layer phosphorene. Scientific Reports, 2014, 4(1): 6677
https://doi.org/10.1038/srep06677
113 SLin, S Liu, ZYang, YLi, W Ng T, ZXu, QBao, J Hao, C SLee, CSurya, et al. Solution—processable ultrathin black phosphorus as an effective electron transport layer in organic photovoltaics. Advanced Functional Materials, 2015, 26(6): 864–871
https://doi.org/10.1002/adfm.201503273
114 WChen, K Li, YWang, XFeng, Z Liao, QSu, XLin, Z He. Black phosphorus quantum dots for hole extraction of typical planar hybrid perovskite solar cells. Journal of Physical Chemistry Letters, 2017, 8(3): 591–598
https://doi.org/10.1021/acs.jpclett.6b02843
115 MBuscema, D J Groenendijk, G A Steele, H S J van der Zant, A Castellanos-Gomez. Photovoltaic effect in few-layer black phosphorus PN junctions defined by local electrostatic gating. Nature Communications, 2014, 5(1): 4651
https://doi.org/10.1038/ncomms5651
116 JDai, X C Zeng. Bilayer phosphorene: Effect of stacking order on bandgap and its potential applications in thin-film solar cells. Journal of Physical Chemistry Letters, 2014, 5(7): 1289–1293
https://doi.org/10.1021/jz500409m
117 D RKim, C H Lee, P M Rao, I S Cho, X Zheng. Hybrid Si microwire and planar solar cells: Passivation and characterization. Nano Letters, 2011, 11(7): 2704–2708
https://doi.org/10.1021/nl2009636
118 MBatmunkh, M Bat-Erdene, GShapter J. Phosphorene and phosphorene based materials—prospects for future applications. Advanced Materials, 2016, 28(39): 8586–8617
https://doi.org/10.1002/adma.201602254
119 WKim, B A McClure, E Edri, HFrei. Coupling carbon dioxide reduction with water oxidation in nanoscale photocatalytic assemblies. Chemical Society Reviews, 2016, 45(11): 3221–3243
https://doi.org/10.1039/C6CS00062B
120 PLiao, E A Carter. New concepts and modeling strategies to design and evaluate photo-electro-catalysts based on transition metal oxides. Chemical Society Reviews, 2013, 42(6): 2401–2422
https://doi.org/10.1039/C2CS35267B
121 KMaeda, K Domen. Photocatalytic water splitting: Recent progress and future challenges. Journal of Physical Chemistry Letters, 2010, 1(18): 2655–2661
https://doi.org/10.1021/jz1007966
122 MNi, M K H Leung, D Y C Leung, K Sumathy. A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renewable & Sustainable Energy Reviews, 2007, 11(3): 401–425
https://doi.org/10.1016/j.rser.2005.01.009
123 XZhu, T Zhang, ZSun, HChen, J Guan, XChen, HJi, P Du, SYang. Black phosphorus revisited: A missing metal-free elemental photocatalyst for visible light hydrogen evolution. Advanced Materials, 2017, 29(17): 1605776
https://doi.org/10.1002/adma.201605776
124 JYang, D Wang, HHan, CLi. Roles of cocatalysts in photocatalysis and photoelectrocatalysis. Accounts of Chemical Research, 2013, 46(8): 1900–1909
https://doi.org/10.1021/ar300227e
125 MZhu, X Cai, MFujitsuka, JZhang, TMajima. Au/La2Ti2O7 nanostructures sensitized with black phosphorus for plasmon-enhanced photocatalytic hydrogen production in visible and near-infrared light. Angewandte Chemie International Edition, 2017, 56(8): 2064–2068
https://doi.org/10.1002/anie.201612315
126 JWei, Q Ge, RYao, ZWen, C Fang, LGuo, HXu, J Sun. Directly converting CO2 into a gasoline fuel. Nature Communications, 2017, 8: 15174
https://doi.org/10.1038/ncomms15174
127 S NHabisreutinger, LSchmidt-Mende, J KStolarczyk. Photocatalytic reduction of CO2 on TiO2 and other semiconductors. Angewandte Chemie International Edition, 2013, 52(29): 7372–7408
https://doi.org/10.1002/anie.201207199
128 P DTran, L H Wong, J Barber, J S CLoo. Recent advances in hybrid photocatalysts for solar fuel production. Energy & Environmental Science, 2012, 5(3): 5902–5918
https://doi.org/10.1039/c2ee02849b
129 XZhang, Z Zhang, JLi, XZhao, D Wu, ZZhou. Ti2CO2 MXene: A highly active and selective photocatalyst for CO2 reduction. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(25): 12899–12903
https://doi.org/10.1039/C7TA03557H
130 MAsadi, K Kim, CLiu, A VAddepalli, PAbbasi, PYasaei, PPhillips, ABehranginia, J MCerrato, RHaasch, et al. Nanostructured transition metal dichalcogenide electrocatalysts for CO reduction in ionic liquid. Science, 2016, 353(6298): 467–470
https://doi.org/10.1126/science.aaf4767
131 Y TLiang, B K Vijayan, K A Gray, M C Hersam. Minimizing graphene defects enhances titania nanocomposite-based photocatalytic reduction of CO2 for improved solar fuel production. Nano Letters, 2011, 11(7): 2865–2870
https://doi.org/10.1021/nl2012906
132 Y PYuan, S W Cao, Y S Liao, L S Yin, C Xue. Red phosphor/g-C3N4 heterojunction with enhanced photocatalytic activities for solar fuels production. Applied Catalysis B: Environmental, 2013, 140-141: 164–168
https://doi.org/10.1016/j.apcatb.2013.04.006
133 ZShen, S Sun, WWang, JLiu, Z Liu, J CYu. A black-red phosphorus heterostructure for efficient visible-light-driven photocatalysis. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3(7): 3285–3288
https://doi.org/10.1039/C4TA06871H
134 J IIto, H Nishiyama. Recent topics of transfer hydrogenation. Tetrahedron Letters, 2014, 55(20): 3133–3146
https://doi.org/10.1016/j.tetlet.2014.03.140
135 JZhao, X Liu, ZChen. Frustrated Lewis pair catalysts in two dimensions: B/Al-doped phosphorenes as promising catalysts for hydrogenation of small unsaturated molecules. ACS Catalysis, 2017, 7(1): 766–771
https://doi.org/10.1021/acscatal.6b02727
136 MCaporali, M Serrano-Ruiz, FTelesio, SHeun, G Nicotra, CSpinella, MPeruzzini. Decoration of exfoliated black phosphorus with nickel nanoparticles and its application in catalysis. Chemical Communications, 2017, 53(79): 10946–10949
https://doi.org/10.1039/C7CC05906J
137 RDaghrir, P Drogui, DRobert. Modified TiO2 for environmental photocatalytic applications: A review. Industrial & Engineering Chemistry Research, 2013, 52(10): 3581–3599
https://doi.org/10.1021/ie303468t
138 SBhatkhande D, GPangarkar V, A C MBeenackers . Photocatalytic degradation for environmental applications: A review. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 2001, 77(1): 102–116
https://doi.org/10.1002/jctb.532
139 HWang, X Yang, WShao, SChen, J Xie, XZhang, JWang, Y Xie. Ultrathin black phosphorus nanosheets for efficient singlet oxygen generation. Journal of the American Chemical Society, 2015, 137(35): 11376–11382
https://doi.org/10.1021/jacs.5b06025
140 QJiang, L Xu, NChen, HZhang, LDai, S Wang. facile synthesis of black phosphorus: An efficient electrocatalyst for the oxygen evolving reaction. Angewandte Chemie International Edition, 2016, 55(44): 13849–13853
https://doi.org/10.1002/anie.201607393
141 XRen, J Zhou, XQi, YLiu, Z Huang, ZLi, YGe, C Dhanabalan S , SPonraj J, SWang, et al. Few-layer black phosphorus nanosheets as electrocatalysts for highly efficient oxygen evolution reaction. Advanced Energy Materials, 2017, 7(19): 1700396
https://doi.org/10.1002/aenm.201700396
142 KNielsch, J Bachmann, JKimling, HBöttner. Thermoelectric nanostructures: From physical model systems towards nanograined composites. Advanced Energy Materials, 2011, 1(5): 713–731
https://doi.org/10.1002/aenm.201100207
143 EFlores, J R Ares, A Castellanos-Gomez, MBarawi, I JFerrer, CSánchez. Thermoelectric power of bulk black-phosphorus. Applied Physics Letters, 2015, 106(2): 022102
https://doi.org/10.1063/1.4905636
144 SLee, F Yang, JSuh, SYang, Y Lee, GLi, HSung C, ASuslu, YChen, C Ko, et al. Anisotropic in-plane thermal conductivity of black phosphorus nanoribbons at temperatures higher than 100 K. Nature Communications, 2015, 6(1): 8573
https://doi.org/10.1038/ncomms9573
145 JXiao, M Long, XZhang, JOuyang, HXu, Y Gao. Theoretical predictions on the electronic structure and charge carrier mobility in 2D phosphorus sheets. Scientific Reports, 2015, 5(1): 9961
https://doi.org/10.1038/srep09961
146 AKuang, M Kuang, HYuan, GWang, H Chen, XYang. Acidic gases (CO2, NO2 and SO2) capture and dissociation on metal decorated phosphorene. Applied Surface Science, 2017, 410: 505–512
https://doi.org/10.1016/j.apsusc.2017.03.135
147 Z GYu, Y W Zhang, B I Yakobson. Phosphorene-based nanogenerator powered by cyclic molecular doping. Nano Energy, 2016, 23: 34–39
https://doi.org/10.1016/j.nanoen.2016.03.010
148 RIrshad, K Tahir, BLi, ZSher, J Ali, SNazir. A revival of 2D materials, phosphorene: Its application as sensors. Journal of Industrial and Engineering Chemistry, 2018, 64(25): 60–69
https://doi.org/10.1016/j.jiec.2018.03.010
[1] Ling Tan, Kipkorir Peter, Jing Ren, Baoyang Du, Xiaojie Hao, Yufei Zhao, Yu-Fei Song. Photocatalytic syngas synthesis from CO2 and H2O using ultrafine CeO2-decorated layered double hydroxide nanosheets under visible-light up to 600 nm[J]. Front. Chem. Sci. Eng., 2021, 15(1): 99-108.
[2] Uthen Thubsuang, Suphawadee Chotirut, Apisit Thongnok, Archw Promraksa, Mudtorlep Nisoa, Nicharat Manmuanpom, Sujitra Wongkasemjit, Thanyalak Chaisuwan. Facile preparation of polybenzoxazine-based carbon microspheres with nitrogen functionalities: effects of mixed solvents on pore structure and supercapacitive performance[J]. Front. Chem. Sci. Eng., 2020, 14(6): 1072-1086.
[3] Wenming Li, Weijian Tang, Maoqin Qiu, Qiuge Zhang, Muhammad Irfan, Zeheng Yang, Weixin Zhang. Effects of gradient concentration on the microstructure and electrochemical performance of LiNi0.6Co0.2Mn0.2O2 cathode materials[J]. Front. Chem. Sci. Eng., 2020, 14(6): 988-996.
[4] Krishnaveni Kalaiappan, Subadevi Rengapillai, Sivakumar Marimuthu, Raja Murugan, Premkumar Thiru. Kombucha SCOBY-based carbon and graphene oxide wrapped sulfur/polyacrylonitrile as a high-capacity cathode in lithium-sulfur batteries[J]. Front. Chem. Sci. Eng., 2020, 14(6): 976-987.
[5] Qingzhuo Ni, Hao Cheng, Jianfeng Ma, Yong Kong, Sridhar Komarneni. Efficient degradation of orange II by ZnMn2O4 in a novel photo-chemical catalysis system[J]. Front. Chem. Sci. Eng., 2020, 14(6): 956-966.
[6] Baoyu Liu, Qiaowen Mu, Jiajin Huang, Wei Tan, Jing Xiao. Fabrication of titanosilicate pillared MFI zeolites with tailored catalytic activity[J]. Front. Chem. Sci. Eng., 2020, 14(5): 772-782.
[7] Yuedong Yu, Wei Zhu, Xixia Kong, Yaling Wang, Pengcheng Zhu, Yuan Deng. Recent development and application of thin-film thermoelectric cooler[J]. Front. Chem. Sci. Eng., 2020, 14(4): 492-503.
[8] Tongzhou Lu, Yongzheng Zhang, Chun Cheng, Yanbin Wang, Yongming Zhu. One-step synthesis of recoverable CuCo2S4 anode material for high-performance Li-ion batteries[J]. Front. Chem. Sci. Eng., 2020, 14(4): 595-604.
[9] Cyrine Ayed, Wei Huang, Kai A. I. Zhang. Covalent triazine framework with efficient photocatalytic activity in aqueous and solid media[J]. Front. Chem. Sci. Eng., 2020, 14(3): 397-404.
[10] Evelyn Chalmers, Yi Li, Xuqing Liu. Molecular tailoring to improve polypyrrole hydrogels’ stiffness and electrochemical energy storage capacity[J]. Front. Chem. Sci. Eng., 2019, 13(4): 684-694.
[11] Bin Xu, Toshiro Kaneko, Toshiaki Kato. Improvement in growth yield of single-walled carbon nanotubes with narrow chirality distribution by pulse plasma CVD[J]. Front. Chem. Sci. Eng., 2019, 13(3): 485-492.
[12] Tingting Zhao, Niamat Ullah, Yajun Hui, Zhenhua Li. Review of plasma-assisted reactions and potential applications for modification of metal–organic frameworks[J]. Front. Chem. Sci. Eng., 2019, 13(3): 444-457.
[13] Kadriye Özlem Hamaloğlu, Ebru Sağ, Çiğdem Kip, Erhan Şenlik, Berna Saraçoğlu Kaya, Ali Tuncel. Magnetic-porous microspheres with synergistic catalytic activity of small-sized gold nanoparticles and titania matrix[J]. Front. Chem. Sci. Eng., 2019, 13(3): 574-585.
[14] J. Christopher Whitehead. Plasma-catalysis: Is it just a question of scale?[J]. Front. Chem. Sci. Eng., 2019, 13(2): 264-273.
[15] Andrea P. Reverberi, P.S. Varbanov, M. Vocciante, B. Fabiano. Bismuth oxide-related photocatalysts in green nanotechnology: A critical analysis[J]. Front. Chem. Sci. Eng., 2018, 12(4): 878-892.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed