Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2020, Vol. 14 Issue (1) : 105-111    https://doi.org/10.1007/s11705-019-1791-6
COMMUNICATION
Highly selective detection of copper(II) by a “ligand-free” conjugated copolymer in nucleophilic solvents
Weixing Deng1, Pengfei Sun1, Quli Fan1(), Lei Zhang1, Tsuyoshi Minami2()
1. Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
2. Institute of Industrial Science, The University of Tokyo, Meguro-ku, Tokyo 153-8505, Japan
 Download: PDF(1130 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The synthesis of N-cyclohexyl carbamate-attached fluorene-alt-phenylene copolymer (PFPNCC) and the use of PFPNCC as a “ligand-free” fluorescent chemosensor for Cu(II) are described. Addition of Cu(II) can efficiently quench the fluorescence of PFPNCC in nucleophilic solvents such as DMF and DMSO, but not in low nucleophilic solvents such as 1,4-dioxane and THF. Ultraviolet-visible spectra of the mixture of the conjugated polymer and Cu(II) indicate the presence of a reduced Cu(I) ion in the solution. Furthermore, fluorescence recovery of PFPNCC observed at low temperature suggests that the quenching and reducing mechanism is most probably due to a photo-induced electron transfer from excited PFPNCC to Cu(II). Our findings provide a novel strategy for highly selective conjugated polymer-based chemosensors for various target analytes, albeit “ligand-free”.

Keywords ligand-free      fluorescent chemosensor      copper      photo-induced electron transfer     
Corresponding Author(s): Quli Fan,Tsuyoshi Minami   
Online First Date: 09 April 2019    Issue Date: 20 January 2020
 Cite this article:   
Weixing Deng,Pengfei Sun,Quli Fan, et al. Highly selective detection of copper(II) by a “ligand-free” conjugated copolymer in nucleophilic solvents[J]. Front. Chem. Sci. Eng., 2020, 14(1): 105-111.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-019-1791-6
https://academic.hep.com.cn/fcse/EN/Y2020/V14/I1/105
Fig.1  Scheme 1 Synthesis of PFPNCC
Fig.2  Fluorescence quenching efficiency of PFPNCC (1.0 × 10?6 mol/L) in DMF by adding metal ions. lex = 370 nm, lem= 420 nm. [Metal ion] = 4 mmol/L
Fig.3  Fluorescence spectra of PFPNCC (1.0 × 10−6 mol/L) in DMF upon addition of Cu(II). [Cu(II)] = 0–5 mmol/L. lex = 370 nm. Inset shows titration isotherm corresponding to the Cu(II)-induced fluorescence quenching
Fig.4  UV–vis spectra of PFPNCC (1.0 × 10−6 mol/L) in DMF with various concentrations of Cu(II). Inset shows UV–vis spectra of PFPNCC (1.0 × 10−6 mol/L) with higher concentration of Cu(II) in DMF
Fig.5  Fluorescence spectra of PFPNCC in the presence or absence of Cu(II) in various solvents. [Cu(II)] = 4 m mol/L, λex = 370 nm
Fig.6  Fluorescence spectra of PFPNCC (1.0 × 10–6 mol/L) in DMF in the presence or absence of Cu(II) (4 mmol/L) (I: no Cu(II), at 25C; II: Cu(II), at 25C; III: Cu(II), at about –75C). lex = 370 nm
Fig.7  Scheme 2 A plausible mechanism of the fluorescence quenching of PFPNCC by adding Cu(II) in nucleophilic solvents
1 J Liu, S Chakraborty, P Hosseinzadeh, Y Yu, S Tian, I Petrik, A Bhag, Y Lu. Metalloproteins containing cytochrome, iron-sulfur, or copper redox centers. Chemical Reviews, 2014, 114(8): 4366–4469
2 J R Winkler, H B Gray. Electron flow through metalloproteins. Chemical Reviews, 2013, 114(7): 3369–3380
3 T Rae, P Schmidt, R Pufahl, V Culotta, T O’halloran. Undetectable intracellular free copper: The requirement of a copper chaperone for superoxide dismutase. Science, 1999, 284(5415): 805–808
4 S R Vora, Y Guo, D N Stephens, E Salih, E D Vu, K H Kirsch, G E Sonenshein, P C Trackman. Characterization of recombinant lysyl oxidase propeptide. Biochemistry, 2010, 49(13): 2962–2972
5 M T Kieber-Emmons, M F Qayyum, Y Li, Z Halime, K O Hodgson, B Hedman, K D Karlin, E I Solomon. Spectroscopic elucidation of a new heme/copper dioxygen structure type: Implications for O⋅⋅⋅O bond rupture in cytochrome c oxidase. Angewandte Chemie International Edition, 2012, 51(1): 168–172
6 G Multhaup, A Schlicksupp, L Hesse, D Beher, T Ruppert, C L Masters, K Beyreuther. The amyloid precursor protein of Alzheimer’s disease in the reduction of copper(II) to copper(I). Science, 1996, 271(5254): 1406–1409
7 K J Barnham, A I Bush. Metals in Alzheimer’s and Parkinson’s diseases. Current Opinion in Chemical Biology, 2008, 12(2): 222–228
8 S Lee, G Barin, C M Ackerman, A Muchenditsi, J Xu, J A Reimer, S Lutsenko, J R Long, C J Chang. Copper capture in a thioether-functionalized porous polymer applied to the detection of Wilson’s disease. Journal of the American Chemical Society, 2016, 138(24): 7603–7609
9 R E Tanzi, K Petrukhin, I Chernov, J L Pellequer, W Wasco, B Ross, D M Romano, E Parano, L Pavone, L M Brzustowicz, et al.. The Wilson disease gene is a copper transporting ATPase with homology to the Menkes disease gene. Nature Genetics, 1993, 5(4): 344–350
10 N Shao, Y Zhang, S Cheung, R Yang, W Chan, T Mo, K Li, F Liu. Copper ion-selective fluorescent sensor based on the inner filter effect using a spiropyran derivative. Analytical Chemistry, 2005, 77(22): 7294–7303
11 Q Shen, X Zhao, S Zhou, W Hou, J J Zhu. ZnO/CdS hierarchical nanospheres for photoelectrochemical sensing of Cu2+. Journal of Physical Chemistry C, 2011, 115(36): 17958–17964
12 Y Nuevo Ordóñez, M Montes-Bayón, E Blanco-González, A Sanz-Medel. Quantitative analysis and simultaneous activity measurements of Cu, Zn-superoxide dismutase in red blood cells by HPLC-ICPMS. Analytical Chemistry, 2010, 82(6): 2387–2394
13 L Yang, C Lian, X Li, Y Han, L Yang, T Cai, C Shao. Highly selective bifunctional luminescent sensor toward nitrobenzene and Cu2+ ion based on microporous metal-organic frameworks: Synthesis, structures, and properties. ACS Applied Materials & Interfaces, 2017, 9(20): 17208–17217
14 Y Han, C Ding, J Zhou, Y Tian. Single probe for imaging and biosensing of pH, Cu2+ ions, and pH/Cu2+ in live cells with ratiometric fluorescence signals. Analytical Chemistry, 2015, 87(10): 5333–5339
15 S H Yun, L Xia, T N Edison, M Pandurangan, D H Kim, S H Kim, Y R Lee. Highly selective fluorescence turn-on sensor for Cu2+ ions and its application in confocal imaging of living cells. Sensors and Actuators. B, Chemical, 2017, 240: 988–995
16 Y C Hsieh, J L Chir, H H Wu, C Q Guo, A T Wu. Synthesis of a sugar-aza-crown ether-based cavitand as a selective fluorescent chemosensor for Cu2+ ion. Tetrahedron Letters, 2010, 51(1): 109–111
17 H N Kim, Z Guo, W Zhu, J Yoon, H Tian. Recent progress on polymer-based fluorescent and colorimetric chemosensors. Chemical Society Reviews, 2011, 40(1): 79–93
18 D T McQuade, A E Pullen, T M Swager. Conjugated polymer-based chemical sensors. Chemical Reviews, 2000, 100(7): 2537–2574
19 A Álvarez-Diaz, A Salinas-Castillo, M Camprubí-Robles, J M Costa-Fernández, R Pereiro, R Mallavia, A Sanz-Medel. Conjugated polymer microspheres for “turn-off”/“turn-on” fluorescence optosensing of inorganic ions in aqueous media. Analytical Chemistry, 2011, 83(7): 2712–2718
20 Y Dong, B Koken, X Ma, L Wang, Y Cheng, C Zhu. Polymer-based fluorescent sensor incorporating 2,2′-bipyridyl and benzo[2,1,3] thiadiazole moieties for Cu2+ detection. Inorganic Chemistry Communications, 2011, 14(11): 1719–1722
21 C Xing, Z Shi, M Yu, S Wang. Cationic conjugated polyelectrolyte-based fluorometric detection of copper (II) ions in aqueous solution. Polymer, 2008, 49(11): 2698–2703
22 Y Jeong, J Yoon. Recent progress on fluorescent chemosensors for metal ions. Inorganica Chimica Acta, 2012, 381: 2–14
23 B Kaur, N Kaur, S Kumar. Colorimetric metal ion sensors—a comprehensive review of the years 2011–2016. Coordination Chemistry Reviews, 2018, 358: 13–69
24 U Duraisamy, S Naha, V Sivan. Colorimetric and fluorescent chemosensors for Cu2+. A comprehensive review from the years 2013–15. Analytical Methods, 2017, 9: 552–578
25 K Pu, Z Fang, B Liu. Effect of charge density on energy-transfer properties of cationic conjugated polymers. Advanced Functional Materials, 2008, 18(8): 1321–1328
26 P Sun, M Lin, Y Zhao, G Chen, M Jiang. Stereoisomerism effect on sugar-lectin binding of self-assembled glyco-nanoparticles of linear and brush copolymers. Colloids and Surfaces. B, Biointerfaces, 2015, 133: 12–18
27 G Franc, A Jutand. On the origin of copper (I) catalysts from copper (II) precursors in C–N and C–O cross-couplings. Dalton Transactions (Cambridge, England), 2010, 39(34): 7873–7875
28 B Valeur, I Leray. Design principles of fluorescent molecular sensors for cation recognition. Coordination Chemistry Reviews, 2000, 205(1): 3–40
29 G De Santis, L Fabbrizzi, M Licchelli, C Mangano, D Sacchi, N Sardone. A fluorescent chemosensor for the copper (II) ion. Inorganica Chimica Acta, 1997, 257(1): 69–76
30 D Rehm, A Weller. Kinetics of fluorescence quenching by electron and H-atom transfer. Israel Journal of Chemistry, 1970, 8(2): 259–271
31 G Yang, W Wang, M Wang, T Liu. Side-chain effect on the structural evolution and properties of poly(9,9-dihexylfluorene-alt-2,5-dialkoxybenzene) copolymers. Journal of Physical Chemistry B, 2007, 111(27): 7747–7755
32 K A Richardson. The manufacture of high temperature superconducting tapes and films. Universal-Publishers, 1999, 4: 26–27
33 M Verma, A F Chaudhry, C J Fahrni. Predicting the photoinduced electron transfer thermodynamics in polyfluorinated 1,3,5-triarylpyrazolines based on multiple linear free energy relationships. Organic & Biomolecular Chemistry, 2009, 7(8): 1536–1546
34 Y Liu, T Minami, R Nishiyabu, Z Wang, P Anzenbacher. Sensing of carboxylate drugs in urine by a supramolecular sensor array. Journal of the American Chemical Society, 2013, 135(20): 7705–7712
35 T Minami, Y Liu, A Akdeniz, P Koutnik, N A Esipenko, R Nishiyabu, Y Kubo, P Anzenbacher. Intramolecular indicator displacement assay for anions: supramolecular sensor for glyphosate. Journal of the American Chemical Society, 2014, 136(32): 11396–11401
[1] FCE-18068-OF-DW_suppl_1 Download
[1] You Han, Yulian Wang, Tengzhou Ma, Wei Li, Jinli Zhang, Minhua Zhang. Mechanistic understanding of Cu-based bimetallic catalysts[J]. Front. Chem. Sci. Eng., 2020, 14(5): 689-748.
[2] Tongzhou Lu, Yongzheng Zhang, Chun Cheng, Yanbin Wang, Yongming Zhu. One-step synthesis of recoverable CuCo2S4 anode material for high-performance Li-ion batteries[J]. Front. Chem. Sci. Eng., 2020, 14(4): 595-604.
[3] Xinxiang Cao, Tengteng Lyu, Wentao Xie, Arash Mirjalili, Adelaide Bradicich, Ricky Huitema, Ben W.-L. Jang, Jong K. Keum, Karren More, Changjun Liu, Xiaoliang Yan. Preparation and investigation of Pd doped Cu catalysts for selective hydrogenation of acetylene[J]. Front. Chem. Sci. Eng., 2020, 14(4): 522-533.
[4] Marcela Achimovičová, Erika Dutková, Erika Tóthová, Zdenka Bujňáková, Jaroslav Briančin, Satoshi Kitazono. Structural and optical properties of nanostructured copper sulfide semiconductor synthesized in an industrial mill[J]. Front. Chem. Sci. Eng., 2019, 13(1): 164-170.
[5] Tao Zhang, Tewodros Asefa. Copper nanoparticles/polyaniline-derived mesoporous carbon electrocatalysts for hydrazine oxidation[J]. Front. Chem. Sci. Eng., 2018, 12(3): 329-338.
[6] Zhi Sun, Hongbin Cao, Prakash Venkatesan, Wei Jin, Yanping Xiao, Jilt Sietsma, Yongxiang Yang. Electrochemistry during efficient copper recovery from complex electronic waste using ammonia based solutions[J]. Front. Chem. Sci. Eng., 2017, 11(3): 308-316.
[7] Yong Zhu, Zhishan Bai, Bingjie Wang, Linlin Zhai, Wenqiang Luo. Microfluidic synthesis of renewable biosorbent with highly comprehensive adsorption performance for copper (II)[J]. Front. Chem. Sci. Eng., 2017, 11(2): 238-251.
[8] Xinxiang Cao,Arash Mirjalili,James Wheeler,Wentao Xie,Ben W.-L. Jang. Investigation of the preparation methodologies of Pd-Cu single atom alloy catalysts for selective hydrogenation of acetylene[J]. Front. Chem. Sci. Eng., 2015, 9(4): 442-449.
[9] Paramasivan GOMATHISANKAR,Tomoko NODA,Hideyuki KATSUMATA,Tohru SUZUKI,Satoshi KANECO. Enhanced hydrogen production from aqueous methanol solution using TiO2/Cu as photocatalysts[J]. Front. Chem. Sci. Eng., 2014, 8(2): 197-202.
[10] Sandy, Velycia MARAMIS, Alfin KURNIAWAN, Aning AYUCITRA, Jaka SUNARSO, Suryadi ISMADJI. Removal of copper ions from aqueous solution by adsorption using LABORATORIES-modified bentonite (organo-bentonite)[J]. Front Chem Sci Eng, 2012, 6(1): 58-66.
[11] Xiaoshuai LIU, Zihong CHENG, Wei MA. Removal of copper by modified chitosan adsorptive membrane[J]. Front Chem Eng Chin, 2009, 3(1): 102-106.
[12] QI Jingyao, LI Xin, LI Ying, ZHU Jianhua, QIANG Liangsheng. Selective removal of Cu(II) from contaminated water using molecularly imprinted polymer[J]. Front. Chem. Sci. Eng., 2008, 2(1): 109-114.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed