Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2019, Vol. 13 Issue (2) : 238-252    https://doi.org/10.1007/s11705-019-1801-8
REVIEW ARTICLE
Important parameters in plasma jets for the production of RONS in liquids for plasma medicine: A brief review
Anna Khlyustova1,2, Cédric Labay1,2, Zdenko Machala3, Maria-Pau Ginebra1,2, Cristina Canal1,2()
1. Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgy, Universitat Politècnica de Catalunya, Barcelona 08019, Spain
2. Research centre in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Barcelona 08019, Spain
3. Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava 84248, Slovakia
 Download: PDF(701 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Reactive oxygen and nitrogen species (RONS) are among the key factors in plasma medicine. They are generated by atmospheric plasmas in biological fluids, living tissues and in a variety of liquids. This ability of plasmas to create a delicate mix of RONS in liquids has been used to design remote or indirect treatments for oncological therapy by treating biological fluids by plasmas and putting them in contact with the tumour. Documented effects include selective cancer cell toxicity, even though the exact mechanisms involved are still under investigation. However, the “right” dose for suitable therapeutical activity is crucial and still under debate. The wide variety of plasma sources hampers comparisons. This review focuses on atmospheric pressure plasma jets as the most studied plasma devices in plasma medicine and compiles the conditions employed to generate RONS in relevant liquids and the concentration ranges obtained. The concentrations of H2O2, NO2, NO3 and short-lived oxygen species are compared critically to provide a useful overview for the reader.

Keywords atmospheric plasma jets      liquids      ROS      RNS      plasma-dose     
Corresponding Author(s): Cristina Canal   
Online First Date: 29 April 2019    Issue Date: 22 May 2019
 Cite this article:   
Anna Khlyustova,Cédric Labay,Zdenko Machala, et al. Important parameters in plasma jets for the production of RONS in liquids for plasma medicine: A brief review[J]. Front. Chem. Sci. Eng., 2019, 13(2): 238-252.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-019-1801-8
https://academic.hep.com.cn/fcse/EN/Y2019/V13/I2/238
Fig.1  Representative picture of three examples of plasma jets of interest in plasma medicine: (a) atmospheric pressure argon plasma jet (kINPen), (b) plasma needle, and (c) microplasma COST
Fig.2  Overview of the short- and long-lived RONS generated in liquid media by APPJ with detail of the liquid media in which each species has been quantified in literature and the corresponding detection methods employed therein
Gas Flow rate/ (L?min−1) Conditions t/s V/mL Liquid [H2O2] /(µmol?L1) Ref.
He 0.05 U = 8 kV, f = 20 kHz,
d = 10 mm
240 500 PBS (Ca2+/Mg2+) 1300a) [28]
0.1 U = 8 kV, f = 15 kHz,
P = 5 W
120 100 DMEM+FBS 14b) [29]
DI water 26b)
1 U = 7 kV, f = 10 kHz 300 4000 DI water 18b) [30]
1.67 U = 7.5 kV, f = 10 kHz, d = 2 mm, shielding gas O2/N2 600 2000 PBS 265b) [31]
2 U = 18 kV, f = 24.9 kHz, d = 10 mm 60 100 Aqueous solutions 50?80a) [32]
3 U = 10 kV, f = 9.69 kHz 150 100 DI water 1750a) [33]
DMEM 1600a)
DMEM+ 10% FCS 1600a)
4.7 U = 3.16 kV, d = 30 mm 60 or
120
1000 DMEM 35c) [34]
PBS 42c)
5 U = 5?9 kV, f = 5 kHz, d = 25 mm 60 500 MEM 30c) [35]
5 U = 2 kV, P = 6 W,
d = 20 mm
1800 4000 McCoy 1470.6d) [36]
advDMEM 2117.6d)
He+O2 2 U = 15 kV, f = 1 kHz,
d = 5 mm
300
600
900
360 PBS 174c)
391c)
1250c)
[37]
8 U = 28 kV, f = 2 kHz 60 300 Phenol-free RPMI 1640 6c) [38]
Ar 1 U = 9 kV, f = 16 kHz,
d = 9 mm
60 100 PBS 88.2c) [39]
2 U = 7 kV, f = 60 Hz,
d = 13 mm
300 3000 DMEM+P/S+FBS 110c) [40]
DMEM 92c)
2 U = 10 kV, f = 60 Hz,
d =3 mm
120 8000 Ringer’s saline 8c) [41]
3 U = 0.7 kV, I = 3 mA,
f = 16 kHz, P = 0.2 W
1800 DI water 800a) [42]
3 U = 7 kV, f = 10 kHz,
d = 15, 25 and 80 mm
300 4000 DI water d = 15 mm, 16b) [43]
d = 11 mm, 80b)
d = 25 mm, 3.7b)
Other gases 1, O2 U = 9 kV, f =16 kHz,
d = 9 mm
60 100 PBS 1559c) [39]
1, N2 PBS 735c)
1, CO2 PBS 1265c)
1, air PBS 58.8c)
Ar, RF plasma jet 1.5 F = 13.7 MHz,
d = 5?13 mm
60 3000 PBS (Ca2+/Mg2+)+
1 g?L–1 D-glucose
15?250c) [44]
Ar, kINPen 3 U = 2?6 kV, f = 1.1 MHz, d = 5 mm 60 1000 Phenol-free RPMI 1640 60c) [45]
3 U = 2?6 kV, f = 1 MHz, d = 9 mm 100 5000 RPMI 1640+8% FCS+1% P/S 45?210d) [46]
3 U = 2?6 kV, f = 1 MHz 180 5000 Phenol-free RPMI 1640 100c) [47]
3 U = 2?6 kV, f = 1 MHz 180 NaCl 78d) [48]
3 DPBS 60d)
3 RPMI 1640 88d)
3 U = 2?6 kV, f = 1 MHz, d = 10 mm 300 2000 PBS 1300a) [49]
3 U = 2?6 kV, f = 1 MHz, d = 2?18 mm 60 3000 PBS (Ca2+/Mg2+)+
1 g?L–1 D-glucose
19?20d) [44]
COST microplasma jet 1.4 He 250 RPMI1640 75c) [50]
He+ O2 250 5c)
He+ H2O 250 25c)
He+ H2O+ O2 250 20c)
Tab.1  Concentration of hydrogen peroxide after treatment by APPJ from different authors and configurations (working conditions and measurement technique are specified for each device)
Gas Flow rate/
(L?min−1)
Conditions t/s V/mL Liquid [NO2]/(µmol?L1) Ref.
He 0.05 U = 8 kV, f = 20 kHz,
d = 10 mm
240 500 PBS (Ca2+/Mg2+) 1600a) [28]
0.05 U = 8 kV, f = 20 kHz,
d = 10 mm
60 500 PBS (Ca2+/Mg2+) 400a) [28]
0.1 U = 8 kV, f = 15 kHz,
P = 5 W
120 100 DMEM+FBS 340b) [29]
DI water 137b)
1 U = 7 kV, f = 10 kHz 300 4000 DI water 18c) [30]
1.67 U = 7.5 kV, f = 10 kHz,
d = 2 mm, shielding gas O2/N2
600 2000 PBS 620c) [31]
2 U = 1.8 kV, f = 35 kHz 180 Serum-free HBSS 125?138b) [53]
2 U = 15 kV, f = 1 kHz,
d = 5 mm
300 360 PBS 5a) [37]
2 U = 15 kV, f = 1 kHz,
d = 5 mm
600 360 PBS 10a) [37]
2 U = 15 kV, f = 1 kHz,
d = 5 mm
900 360 PBS 19.5a) [37]
3 U = 10 kV, f = 9.69 kHz 150 100 DI water 25a) [33]
DMEM 200a)
DMEM+ 10% FCS 500a)
5 U = 2 kV, P = 6 W,
d = 20 mm
1800 4000 McCoy 435d) [36]
advDMEM 174d)
He+N2 2 U = 7.5 kV, f =10 kHz,
d= 15 mm
600 2000 PBS 590c) [54]
Ar 1 U= 9 kV, f= 16 kHz,
d = 9 mm
60 100 PBS 8.8a) [39]
2 U = 7 kV, f = 60 Hz,
d = 20 mm
300 3000 DMEM+P/S+FBS 3350a) [40]
DMEM 2750a)
3 U = 0.7 kV, I = 3 mA,
f = 16 kHz, P = 0.2 W
1800 DI water 10b) [42]
3 U = 7 kV, f = 10 kHz,
d = 15, 25 and 80 mm
300 4000 DI water d = 15 mm, 11c) [43]
d = 25 mm, 16c)
d = 80 mm, 3.7c)
1, O2 U = 9 kV, f = 16 kHz,
d = 9 mm
60 100 PBS <2.5a) [39]
1, N2 PBS <2.5a)
1, CO2 PBS <2.5a)
1, air PBS 1782a)
Ar, RF plasma jet 1.5 F = 13.7 MHz, d = 5?13 mm 60 3000 PBS (Ca2+/Mg2+)
+1 g?L−1 D-glucose
250b) [44]
Ar, kINPen 3 U = 2?6 kV, f = 1 MHz 180 NaCl 10a) [48]
3 DPBS 6.5a)
3 Phenol free RPMI 1640 19.5a)
3 d = 10 mm 300 2000 PBS 500b) [49]
Tab.2  Concentration of nitrite ions in different liquids following APPJ or kINPen treatment
Gas Flow rate/ (L?min−1) Conditions t/s V/mL Liquid [NO3]/(µmol?L1) Ref.
He 0.05 U = 8 kV, f = 20 kHz, d = 10 mm 240 500 PBS (Ca2+/Mg2+) 500a) [28]
1 U = 7 kV, f = 10 kHz, d = 12 mm 900 100 DI water 2.4b) [55]
1 U = 7 kV, f = 10 kHz 300 4000 DI water 0.47c) [30]
1.67 U = 7.5 kV, f = 10 kHz, d = 2 mm, shielding gas O2/N2 600 2000 PBS 260c) [31]
3 U = 10 kV, f = 9.69 kHz 150 100 DI water 250a) [33]
DMEM 400a)
He+ N2 2 U = 7.5 kV, f = 10 kHz 600 2000 PBS 460b) [54]
Ar 3 U = 0.7 kV, I = 3 mA, f = 16 kHz, P = 0.2 W 1800 DI water 20c) [42]
3 U = 7 kV, f = 10 kHz 300 4000 DI water d = 15 mm, 0.9b) [43]
d = 25 mm, 1.5b)
d = 80 mm, 0.2b)
Air 1 U = 9 kV, f = 16 kHz, d = 9 mm 60 100 PBS 2580a) [39]
Ar, kINPen 3 U = 2?6 kV, f = 1 MHz, shielding gas O2 + N2 at 5 L?min–1 180 NaCl 7a) [48]
3 U = 2?6 kV, f = 1 MHz, shielding gas O2 + N2 at 5 L?min–1 180 DPBS 5a) [48]
Tab.3  Concentration of nitrate ions in solutions after APPJ treatment.
Gas Flow rate/(L?min−1) Conditions t/s V/mL Liquid [ROS]/(µmol?L1) Ref.
He 1 U = 9 kV, f = 16 kHz, d = 9 mm 60 100 DI water OH, 68 [57]
2 U =18 kV, f =24.9 kHz, d =10 mm 60 100 Aqueous solutions OH, 23.5 [32]
HOO, 17
O3/O2/O, 170
3 U = 10 kV, f = 9.69 kHz 150 100 DI water OH, 4.12 [33]
DMEM OH, 3
DMEM+ 10% FCS OH, 0.4
N2 1 U = 9 kV, f = 16 kHz, d = 9 mm 60 100 DI water OH, 130 [57]
Ar 1 OH, 84
Ar+H2O 1 OH, 210
O2 1 OH, 32
CO2 1 OH, 28
Air 1 OH,<10
Ar, kINPen 3 Shielding gas O2, O2 + N2, flow rate 5 L?min–1 180 NaCl OH + O2, 1.9 [48]
DPBS OH + O2, 5.6
RPMI 1640 OH + O2, 3.6
Tab.4  Concentration of short-lived ROS detected by spin-trap after APPJ treatment, using different gases for plasma generation
Fig.3  Concentration ranges of RONS in PAM described in literature with emphasis on the nature of the liquid media
PAM tplasma/s [H2O2]max
/(mmol?L1)
[NO2]max
/(mmol?L1)
Cell viability (Cv)
/%
Cell lines Ref.
PBS(Ca2+/Mg2+) (1 h exposure followed by DMEM addition) 120 1300 1600 Cv24h≈ 4% Normal human skin fibroblasts (NHSF) [28]
480 Cv24h≈ 1%
120 Cv24h≈ 10% MRC5Vi cell line (derived from normal human lung fibroblasts MRC5)
480 Cv24h≈ 1%
120 Cv24h ≈ 45% Human colon cancer cells (HCT116)
480 Cv24h≈ 1%
120 Cv24h≈ 30% Melanoma cell line (Lu1205)
480 Cv24h≈ 1%
DMEM+FBS 120 14 340 Cv24h≈ 60.8%
Cv48h ≈ 45%–49%
Glioblastoma (U87MG) [29]
DMEM/modified DMEM 240 35–42 Cv72h≈ 40% Human breast cancer (MDA-MB-231) cells [34]
240 Cv72h≈ 15% Human glioblastoma (U87MG) cells
240 Cv72h≈ 20% Pancreatic cancer (PA-TU-8988T) cells
MEM+10% FBS 120 30 Cv12h≈ 50%
Cv48h≈ 50%
ScaBER (from human bladder cancer) [35]
240 Cv12h≈ 10%
Cv48h≤5%
RPMI 1640 20?300 6 Cv24h≤10% Human hepatocellular carcinoma Bel7402 [38]
20 Cv24h≈ 92% 5-FU-resistant Bel7402/5FU cells
40 Cv24h≈ 80%
60 Cv24h≈ 60%
120 Cv24h≈ 40%
300 Cv24h≈ 10%
DMEM w/wo 10% FBS 180 110 3350 Cv24h ≈ 10%–12% Human glioblastoma cell line (U251SP) [40]
180 64a) 1740a) Cv24h≈ 95%–98% Human mammary epithelial cell
Line (MCF10A)
PBS 300 & 540 1300 500 Cv24h≈ 2%–5% Glioblastoma human GBM cell lines (U87, U251 and LN229) [49]
Tab.5  Correlation between RONS concentration generated by atmospheric plasma treatment in cell culture media by indirect treatment and the corresponding cell viability
1 D BGraves. Reactive species from cold atmospheric plasma: Implications for cancer therapy. Plasma Processes and Polymers, 2014, 11(12): 1120–1127
https://doi.org/10.1002/ppap.201400068
2 D BGraves. Oxy-nitroso shielding burst model of cold atmospheric plasma therapeutics. Clinical Plasma Medicine, 2014, 2(2): 38–49
https://doi.org/10.1016/j.cpme.2014.11.001
3 DYan, J H Sherman, M Keidar. Cold atmospheric plasma, a novel promising anti-cancer treatment modality. Oncotarget, 2017, 8(9): 15977–15995
https://doi.org/10.18632/oncotarget.13304
4 K DWeltmann, T Von Woedtke. Plasma medicine—current state of research and medical application. Plasma Physics and Controlled Fusion, 2017, 59(1): 014031
https://doi.org/10.1088/0741-3335/59/1/014031
5 XLu, M Laroussi, VPuech. On atmospheric-pressure non-equilibrium plasma jets and plasma bullets. Plasma Sources Science & Technology, 2012, 21(3): 34005
https://doi.org/10.1088/0963-0252/21/3/034005
6 FIza, G J Kim, S M Lee, J K Lee, J L Walsh, Y T Zhang, M G Kong. Microplasmas: Sources, particle kinetics, and biomedical applications. Plasma Processes and Polymers, 2008, 5(4): 322–344
https://doi.org/10.1002/ppap.200700162
7 SReuter, T Von Woedtke, K DWeltmann. The kINPen—a review on physics and chemistry of the atmospheric pressure plasma jet and its applications. Journal of Physics. D, Applied Physics, 2018, 51(23): 233001
https://doi.org/10.1088/1361-6463/aab3ad
8 JGolda, J Held, BRedeker, MKonkowski, PBeijer, ASobota, GKroesen, N St JBraithwaite, SReuter, M MTurner, TGans, D O’Connell, V Schulz-von der Gathen. Concepts and characteristics of the “COST Reference Microplasma Jet”. Journal of Physics. D, Applied Physics, 2016, 49(8): 084003
https://doi.org/10.1088/0022-3727/49/8/084003
9 SKelly, J Golda, M MTurner, VSchulz-von der Gathen. Gas and heat dynamics of a micro-scaled atmospheric pressure plasma reference jet. Journal of Physics. D, Applied Physics, 2015, 48(44): 444002
https://doi.org/10.1088/0022-3727/48/44/444002
10 IAdamovich, S D Baalrud, A Bogaerts, P JBruggeman, MCapelli, VColombo, UCzarnetzki, UEbert, J GEden, PFavia, et al. The 2017 plasma roadmap: Low temperature plasma science and technology. Journal of Physics. D, Applied Physics, 2017, 50(32): 323001
https://doi.org/10.1088/1361-6463/aa76f5
11 HKajiyama, F Utsumi, KNakamura, HTanaka, SToyokuni, MHori, F Kikkawa. Future perspective of strategic non-thermal plasma therapy for cancer treatment. Journal of Clinical Biochemistry and Nutrition, 2016, 60(1): 33–38
https://doi.org/10.3164/jcbn.16-65
12 MKeidar, A Shashurin, OVolotskova, M AStepp, PSrinivasan, ASandler, BTrink. Cold atmospheric plasma in cancer therapy. Physics of Plasmas, 2013, 20(5): 057101
https://doi.org/10.1063/1.4801516
13 L IPartecke, K Evert, JHaugk, FDoering, LNormann, SDiedrich, F UWeiss, MEvert, N OHuebner, CGuenther, et al. Tissue tolerable plasma (TTP) induces apoptosis in pancreatic cancer cells in vitro and in vivo. BMC Cancer, 2012, 12(1): 473–482
https://doi.org/10.1186/1471-2407-12-473
14 D BGraves. The emerging role of reactive oxygen and nitrogen species in redox biology and some implications for plasma applications to medicine and biology. Journal of Physics. D, Applied Physics, 2012, 45(26): 263001
https://doi.org/10.1088/0022-3727/45/26/263001
15 G VBuxton, C L Greenstock, W P Helman, A B Ross. Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (•OH/•O-) in aqueous solution. Journal of Physical and Chemical Reference Data, 1988, 17(2): 513–886
https://doi.org/10.1063/1.555805
16 PLukes, E Dolezalova, ISisrova, MClupek. Aqueous-phase chemistry and bactericidal effects from an air discharge plasma in contact with water: Evidence for the formation of peroxynitrite through a pseudo-second-order post-discharge reaction of H2O2 and HNO2. Plasma Sources Science & Technology, 2014, 23(1): 015019
https://doi.org/10.1088/0963-0252/23/1/015019
17 P JBruggeman, M JKushner, B RLocke, J G EGardeniers, W GGraham, D BGraves, R CHofman-Caris, DMaric, J PReid, ECeriani, et al. Plasma-liquid interactions: A review and roadmap. Plasma Sources Science & Technology, 2016, 25(5): 253002
https://doi.org/10.1088/0963-0252/25/5/053002
18 Y HKim, Y J Hong, K Y Baik, G C Kwon, J J Choi, G S Cho, H S Uhm, D Y Kim, E H Choi. Measurement of reactive hydroxyl radical species inside the biosolutions during non-thermal atmospheric pressure plasma jet bombardment onto the solution. Plasma Chemistry and Plasma Processing, 2014, 34(3): 457–472
https://doi.org/10.1007/s11090-014-9538-0
19 PRumbach, D M Bartels, R M Sankaran, D B Go. The solvation of electrons by an atmospheric-pressure plasma. Nature Communications, 2015, 6(1): 7248
https://doi.org/10.1038/ncomms8248
20 A TBullock, D L Gavin, M D Ingram. Electron spin resonance detection of spin-trapped radicals formed during the glow-discharge electrolysis of aqueous solutions. Journal of the Chemical Society, Faraday Transactions I, 1980, 76(0): 648–653
https://doi.org/10.1039/f19807600648
21 HTresp, M U Hammer, J Winter, K DWeltmann, SReuter. Quantitative detection of plasma-generated radicals in liquids by electron paramagnetic resonance spectroscopy. Journal of Physics. D, Applied Physics, 2013, 46(43): 435401
https://doi.org/10.1088/0022-3727/46/43/435401
22 GEisenberg. Colorimetric determination of hydrogen peroxide. Industrial & Engineering Chemistry. Analytical Edition, 1943, 15(5): 327–328
https://doi.org/10.1021/i560117a011
23 M COliveira, R F Pupo Nogueira, J Gomes Neto, W FJardim, J J RRohwedder. Flow injection spectrophotometric system for hydrogen peroxide monitoring in photo-Fenton degradation processes. Quimica Nova, 2001, 24(2): 188–190
https://doi.org/10.1590/S0100-40422001000200007
24 PGriess. Griess reagent: A solution of sulphanilic acid and a-naphthylamine in acetic acid which gives a pink colour on reaction with the solution obtained after decomposition of nitrosyl complexes. Chemische Berichte, 1897, 12: 427
25 J IIkeda, H Tanaka, KIshikawa, HSakakita, YIkehara, MHori. Plasma-activated medium (PAM) kills human cancer-initiating cells. Pathology International, 2018, 68(1): 23–30
https://doi.org/10.1111/pin.12617
26 ETurrini, R Laurita, AStancampiano, ECatanzaro, CCalcanbrini, FMaffei, MGherardi, VColombo, CFimognari. Cold atmospheric plasma induces apoptosis and oxidative stress pathway regulation in T-Lymphoblastoid leukemia cells. Oxidative Medicine and Cellular Longevity, 2017, 2017: 4271065
https://doi.org/10.1155/2017/4271065
27 ZMachala, B Tarabova, DSersenová, MJanda, KHensel. Plasma activated water chemical and antibacterial effects: Correlation with gaseous and aqueous reactive oxygen and nitrogen species, plasma sources and air flow conditions. Journal of Physics. D, Applied Physics, 2018, 52(3): 034002
https://doi.org/10.1088/1361-6463/aae807
28 P MGirard, A Arbabian, MFleury, GBauville, VPuech, MDutreix, J SSousa. Synergistic effect of H2O2 and NO2 in cell death induced by cold atmospheric He plasma. Scientific Reports, 2016, 6(1): 29098
https://doi.org/10.1038/srep29098
29 ZChen, H Simonyan, XCheng, EGjika, LLin, J Canady, J HSherman, CYoung, MKeidar. A novel micro cold atmospheric plasma device for glioblastoma both in vitro and in vivo. Cancers (Basel), 2017, 9(6): 61
https://doi.org/10.3390/cancers9060061
30 J SOh, E J Szili, S Ito, S HHong, NGaur, H Furuta, R DShort, AHatta. Slow molecular transport of plasma-generated reactive oxygen and nitrogen species and O2 through agarose as a surrogate for tissue. Plasma Medicine, 2015, 5(2-4): 125–143
https://doi.org/10.1615/PlasmaMed.2016015740
31 FGirard, M Peret, NDumont, VBadets, SBlanc, KGazeli, CNoel, T Belmonte, LMarlin, J PCambus, et al. Correlations between gaseous and liquid phase chemistries induced by cold atmospheric plasmas in a physiological buffer. Physical Chemistry Chemical Physics, 2018, 20(14): 9198–9210
https://doi.org/10.1039/C8CP00264A
32 YGorbanev, D O’Connell, VChechik. Non-thermal plasma in contact with water: The origin of species. Chemistry (Weinheim an der Bergstrasse, Germany), 2016, 22(10): 3496–3505
https://doi.org/10.1002/chem.201503771
33 JChauvin, F Judée, MYousfi, PVicendo, NMerbahi. Analysis of reactive oxygen and nitrogen species generated in three liquid media by low temperature helium plasma jet. Scientific Reports, 2017, 7(1): 4562
https://doi.org/10.1038/s41598-017-04650-4
34 DYan, N Nourmohammadi, KBian, FMurad, J HSherman, MKeidar. Stabilizing the cold plasma-stimulated medium by regulating medium’s composition. Scientific Reports, 2016, 6(1): 26016
https://doi.org/10.1038/srep26016
35 SMohades, M Laroussi, JSears, NBarekzi, HRazavi. Evaluation of the effects of a plasma activated medium on cancer cells. Physics of Plasmas, 2015, 22(12): 122001
https://doi.org/10.1063/1.4933367
36 CCanal, R Fontelo, IHamouda, JGuillem-Marti, UCvelbar, M PGinebra. Plasma-induced selectivity in bone cancer cells death. Free Radical Biology & Medicine, 2017, 110: 72–80
https://doi.org/10.1016/j.freeradbiomed.2017.05.023
37 JDuan, X Lu, GHe. On the penetration depth of reactive oxygen and nitrogen species generated by a plasma jet through real biological tissue. Physics of Plasmas, 2017, 24(7): 073506
https://doi.org/10.1063/1.4990554
38 HYang, R Lu, YXian, LGan, X Lu, XYang. Effects of atmospheric pressure cold plasma on human hepatocarcinoma cell and its 5-fluorouracil resistant cell line. Physics of Plasmas, 2015, 22(12): 122006
https://doi.org/10.1063/1.4933405
39 TTakamatsu, A Kawate, KUehara, TOshita, HMiyahara, DDobrynin, GFridman, AFridman, AOkino. Bacterial inactivation in liquids using multi-gas plasmas. Plasma Medicine, 2012, 2(4): 237–247
https://doi.org/10.1615/PlasmaMed.2014010792
40 NKurake, H Tanaka, KIshikawa, TKondo, MSekine, KNakamura, HKajiyama, FKikkawa, MMizuno, MHori. Cell survival of glioblastoma grown in medium containing hydrogen peroxide and/or nitrite, or in plasma-activated medium. Archives of Biochemistry and Biophysics, 2016, 605: 102–108
https://doi.org/10.1016/j.abb.2016.01.011
41 HTanaka, K Nakamura, MMizuno, KIshikawa, KTakeda, HKajiyama, FUtsumi, FKikkawa, MHori. Non-thermal atmospheric pressure plasma activates lactate in Ringer’s solution for anti-tumor effects. Scientific Reports, 2016, 6(1): 36282
https://doi.org/10.1038/srep36282
42 PAttri, M Yusupov, J HPark, L PLingamdinne, J RKoduru, MShiratani, E HChoi, ABogaerts. Mechanism and comparison of needle-type non-thermal direct and indirect atmospheric pressure plasma jets on the degradation of dyes. Scientific Reports, 2016, 6(1): 34419
https://doi.org/10.1038/srep34419
43 JOh, E J Szili, K Ogawa, R DShort, MIto, H Furuta, A.Hatta UV–vis spectroscopy study of plasma-activated water: Dependence of the chemical composition on plasma exposure time and treatment distance. Japanese Journal of Applied Physics, 2017, 57(1): 0102B9
44 KWende, P Williams, JDalluge, WVan Gaens, HAboubakr, JBischof, TVoedtke, S MGoyal, K DWeltmann, ABogaerts, et al. Identification of the biologically active liquid chemistry induced by a nonthermal atmospheric pressure plasma jet. Biointerphases, 2015, 10(2): 29518
https://doi.org/10.1116/1.4919710
45 SBekeschus, J Kolata, CWinterbourn, AKramer, RTurner, K DWeltmann, BBroker, KMasur. Hydrogen peroxide: A central player in physical plasma-induced oxidative stress in human blood cells. Free Radical Research, 2014, 48(5): 542–549
https://doi.org/10.3109/10715762.2014.892937
46 JWinter, H Tresp, M UHammer, SIseni, SKupsch, ASchmidt-Bleker, MDunnbier, KMasur, K DWeltmann, SReuter. Tracking plasma generated H2O2 from gas into liquid phase and revealing its dominant impact on human skin cells. Journal of Physics. D, Applied Physics, 2014, 47(28): 285401
https://doi.org/10.1088/0022-3727/47/28/285401
47 ASchmidt, S Dietrich, ASteuer, K DWeltmann, TVon Woedtke, KMasur, KWende. Non-thermal plasma activates human keratinocytes by stimulation of antioxidant and phase II pathways. Journal of Biological Chemistry, 2015, 290(11): 6731–6750
https://doi.org/10.1074/jbc.M114.603555
48 HTresp, M U Hammer, K D Weltmann, S Reuter. Effects of atmosphere composition and liquid type on plasma-generated reactive species in biologically relevant solutions. Plasma Medicine, 2013, 3(12): 45–55
https://doi.org/10.1615/PlasmaMed.2014009711
49 WVan Boxem, J Van Der Paal, YGorbanev, SVanuytsel, ESmits, SDewilde, ABogaerts. Anti-cancer capacity of plasma-treated PBS: Effect of chemical composition on cancer cell cytotoxicity. Scientific Reports, 2017, 7(1): 16478
https://doi.org/10.1038/s41598-017-16758-8
50 SBekeschus, K Wende, M MHefny, KRödder, HJablonowski, ASchmidt, TVon Woedtke, K DWeltmann, JBenedikt. Oxygen atoms are critical in rendering THP-1 leukaemia cells susceptible to cold physical plasma-induced apoptosis. Scientific Reports, 2017, 7(1): 2791
https://doi.org/10.1038/s41598-017-03131-y
51 C EAnderson, N R Cha, A D Lindsay, D S Clark, D B Graves. The role of interfacial reactions in determining plasma–liquid chemistry. Plasma Chemistry and Plasma Processing, 2016, 36(6): 1393–1415
https://doi.org/10.1007/s11090-016-9742-1
52 TIto, G Uchida, ANakajama, KTakenaka, YSetsuhara. Control of reactive oxygen and nitrogen species production in liquid by nonthermal plasma jet with controlled surrounding gas. Japanese Journal of Applied Physics, 2017, 56(1S): 01AC06
https://doi.org/10.7567/JJAP.56.01AC06
53 S JKim, T H Chung. Cold atmospheric plasma jet-generated RONS and their selective effects on normal and carcinoma cells. Scientific Reports, 2016, 6(1): 20332
https://doi.org/10.1038/srep20332
54 FGirard, V Badets, SBlanc, KGazeli, LMarlin, LAuthier, PSvarnas, NSojic, FClement, SArbault. Formation of reactive nitrogen species including peroxynitrite in physiological buffer exposed to cold atmospheric plasma. Royal Society of Chemistry Advances, 2016, 6(82): 78457–78467
https://doi.org/10.1039/C6RA12791F
55 E JSzili, J S Oh, H Fukuhara, RBhatia, NGaur, C K Nguyen, S H Hong, S Ito, KOgawa, CKawada, et al. Modelling the helium plasma jet delivery of reactive species into a 3D cancer tumour. Plasma Sources Science & Technology, 2018, 27(1): 14001
https://doi.org/10.1088/1361-6595/aa9b3b
56 SSuzen, H Gurer-Orhan, LSaso. Detection of reactive oxygen and nitrogen species by electron paramagnetic resonance (EPR) technique. Molecules (Basel, Switzerland), 2017, 22(1): 181
https://doi.org/10.3390/molecules22010181
57 TTakamatsu, K Uehara, YSasaki, HMiyahara, YMatsumura, AIwasawa, NIto, T Azuma, MKohno, AOkino. Investigation of reactive species using various gas plasmas. Royal Sosiety of Chemistry Advances, 2014, 4(75): 39901–39905
https://doi.org/10.1039/C4RA05936K
58 ZMachala, B Tarabova, KHensel, ESpetlikova, LSikurova, PLukes. Formation of ROS and RNS in water electro-sprayed through transient spark discharge in air and their bactericidal effects. Plasma Processes and Polymers, 2013, 10(7): 649–659
https://doi.org/10.1002/ppap.201200113
59 HJablonowski, R Bussiahn, M UHammer, K DWeltmann, TVon Woedtke, SReuter. Impact of plasma jet vacuum ultraviolet radiation on reactive oxygen species generation in bio-relevant liquids. Physics of Plasmas, 2015, 22(12): 122008
https://doi.org/10.1063/1.4934989
60 NKnake, S Reuter, KNiemi, VSchulz-Von Der Gathen, JWinter. Absolute atomic oxygen density distributions in the effluent of a microscale atmospheric pressure plasma jet. Journal of Physics. D, Applied Physics, 2008, 41(19): 194006
https://doi.org/10.1088/0022-3727/41/19/194006
61 JGay-Mimbrera, M C Garcia, B Isla-Tejera, ARodero-Serrano, A VGarcia-Nieto, JRuano. Clinical and biological principles of cold atmospheric plasma application in skin cancer. Advances in Therapy, 2016, 33(6): 894–909
https://doi.org/10.1007/s12325-016-0338-1
62 E ARatovitski, XCheng, DYan, J H Sherman, J Canady, BTrink, MKeidar. Anti-cancer therapies of 21st century : Novel approach to treat human cancers using cold atmospheric plasma. Plasma Processes and Polymers, 2014, 11(12): 1128–1137
https://doi.org/10.1002/ppap.201400071
63 KHensel, K Kučerová, BTarabová, MJanda, ZMachala, KSano, C T Mihai, M Ciorpac, L DGorgan, RJijie, VPohoata, ITopala. Effects of air transient spark discharge and helium plasma jet on water, bacteria, cells, and biomolecules. Biointerphases, 2015, 10(2): 029515
https://doi.org/10.1116/1.4919559
64 MKeidar. A prospectus on innovations in the plasma treatment of cancer. Physics of Plasmas, 2018, 25(8): 083504
https://doi.org/10.1063/1.5034355
[1] Faraz Montazersadgh, Hao Zhang, Anas Alkayal, Benjamin Buckley, Ben W. Kolosz, Bing Xu, Jin Xuan. Electrolytic cell engineering and device optimization for electrosynthesis of e-biofuels via co-valorisation of bio-feedstocks and captured CO2[J]. Front. Chem. Sci. Eng., 2021, 15(1): 208-219.
[2] Uthen Thubsuang, Suphawadee Chotirut, Apisit Thongnok, Archw Promraksa, Mudtorlep Nisoa, Nicharat Manmuanpom, Sujitra Wongkasemjit, Thanyalak Chaisuwan. Facile preparation of polybenzoxazine-based carbon microspheres with nitrogen functionalities: effects of mixed solvents on pore structure and supercapacitive performance[J]. Front. Chem. Sci. Eng., 2020, 14(6): 1072-1086.
[3] Jun Wei, Jianbo Zhao, Di Cai, Wenqiang Ren, Hui Cao, Tianwei Tan. Synthesis of micro/meso porous carbon for ultrahigh hydrogen adsorption using cross-linked polyaspartic acid[J]. Front. Chem. Sci. Eng., 2020, 14(5): 857-867.
[4] Grant Perry, Fernando Cortezon-Tamarit, Sofia I. Pascu. Detection and monitoring prostate specific antigen using nanotechnology approaches to biosensing[J]. Front. Chem. Sci. Eng., 2020, 14(1): 4-18.
[5] Miguel Martínez-Calvo, Sandra A. Bright, Emma B. Veale, Adam F. Henwood, D. Clive Williams, Thorfinnur Gunnlaugsson. 4-Amino-1,8-naphthalimide based fluorescent photoinduced electron transfer (PET) pH sensors as liposomal cellular imaging agents: The effect of substituent patterns on PET directional quenching[J]. Front. Chem. Sci. Eng., 2020, 14(1): 61-75.
[6] Yifei Wang, Kai Wang, Zhao Zhou, Wenli Du. Modeling of oil near-infrared spectroscopy based on similarity and transfer learning algorithm[J]. Front. Chem. Sci. Eng., 2019, 13(3): 599-607.
[7] Kadriye Özlem Hamaloğlu, Ebru Sağ, Çiğdem Kip, Erhan Şenlik, Berna Saraçoğlu Kaya, Ali Tuncel. Magnetic-porous microspheres with synergistic catalytic activity of small-sized gold nanoparticles and titania matrix[J]. Front. Chem. Sci. Eng., 2019, 13(3): 574-585.
[8] Mahmoud Trad, Alexandre Nominé, Natalie Tarasenka, Jaafar Ghanbaja, Cédric Noël, Malek Tabbal, Thierry Belmonte. Synthesis of Ag and Cd nanoparticles by nanosecond-pulsed discharge in liquid nitrogen[J]. Front. Chem. Sci. Eng., 2019, 13(2): 360-368.
[9] Xiuqi Fang, Carles Corbella, Denis B. Zolotukhin, Michael Keidar. Plasma-enabled healing of graphene nano-platelets layer[J]. Front. Chem. Sci. Eng., 2019, 13(2): 350-359.
[10] Vahideh R. Hokmabad, Soodabeh Davaran, Marziyeh Aghazadeh, Effat Alizadeh, Roya Salehi, Ali Ramazani. Effect of incorporating Elaeagnus angustifolia extract in PCL-PEG-PCL nanofibers for bone tissue engineering[J]. Front. Chem. Sci. Eng., 2019, 13(1): 108-119.
[11] Lei Zhang, Lisha Zhao, Ping-Kai Ouyang, Pu Chen. Insight into the role of cholesterol in modulation of morphology and mechanical properties of CHO-K1 cells: An in situ AFM study[J]. Front. Chem. Sci. Eng., 2019, 13(1): 98-107.
[12] Feng Qi, Jie Wu, Hao Li, Guanghui Ma. Recent research and development of PLGA/PLA microspheres/nanoparticles: A review in scientific and industrial aspects[J]. Front. Chem. Sci. Eng., 2019, 13(1): 14-27.
[13] Wenjin Ding, Alexander Bonk, Thomas Bauer. Corrosion behavior of metallic alloys in molten chloride salts for thermal energy storage in concentrated solar power plants: A review[J]. Front. Chem. Sci. Eng., 2018, 12(3): 564-576.
[14] Raquel Portela, Susana Perez-Ferreras, Ana Serrano-Lotina, Miguel A. Bañares. Engineering operando methodology: Understanding catalysis in time and space[J]. Front. Chem. Sci. Eng., 2018, 12(3): 509-536.
[15] Dong Yang, Xiaoyan Zou, Yuanyuan Sun, Zhenwei Tong, Zhongyi Jiang. Fabrication of three-dimensional porous La-doped SrTiO3 microspheres with enhanced visible light catalytic activity for Cr(VI) reduction[J]. Front. Chem. Sci. Eng., 2018, 12(3): 440-449.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed