Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2019, Vol. 13 Issue (2) : 330-339    https://doi.org/10.1007/s11705-019-1803-6
RESEARCH ARTICLE
Multifunctional antimicrobial chlorhexidine polymers by remote plasma assisted vacuum deposition
Ana Mora-Boza1, Francisco J. Aparicio1(), María Alcaire1, Carmen López-Santos1, Juan P. Espinós1, Daniel Torres-Lagares2, Ana Borrás1, Angel Barranco1()
1. Consejo Superior de Investigaciones Científicas. Instituto de Ciencia de Materiales de Sevilla (CSIC-Universidad de Sevilla) c/Américo Vespucio 49, 41092 Sevilla, Spain
2. Facultad de Odontología, Universidad de Sevilla (USE) c/Avicena, 41009 Sevilla, Spain
 Download: PDF(1154 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Novel antibacterial materials for implants and medical instruments are essential to develop practical strategies to stop the spread of healthcare associated infections. This study presents the synthesis of multifunctional antibacterial nanocoatings on polydimethylsiloxane (PDMS) by remote plasma assisted deposition of sublimated chlorhexidine powders at low pressure and room temperature. The obtained materials present effective antibacterial activity against Escherichia coli K12, either by contact killing and antibacterial adhesion or by biocide agents release depending on the synthetic parameters. In addition, these multifunctional coatings allow the endure hydrophilization of the hydrophobic PDMS surface, thereby improving their biocompatibility. Importantly, cell-viability tests conducted on these materials also prove their non-cytotoxicity, opening a way for the integration of this type of functional plasma films in biomedical devices.

Keywords plasma polymers      conformal plasma deposition, chlorhexidine, bactericide, PDMS, biocompatibility     
Corresponding Author(s): Francisco J. Aparicio,Angel Barranco   
Online First Date: 09 April 2019    Issue Date: 22 May 2019
 Cite this article:   
Ana Mora-Boza,Francisco J. Aparicio,María Alcaire, et al. Multifunctional antimicrobial chlorhexidine polymers by remote plasma assisted vacuum deposition[J]. Front. Chem. Sci. Eng., 2019, 13(2): 330-339.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-019-1803-6
https://academic.hep.com.cn/fcse/EN/Y2019/V13/I2/330
Fig.1  (a) Experimental set-up; (b) FESEM cross-sectional micrograph of 300-nm-thick CHX-1 film over Si(100); (c) UV-VIS transmission spectra of CHX-1 (top) and CHX-2 (bottom) before and after a LB medium incubation for 10 min
Fig.2  (a) XPS Survey and C1s, N1s, Cl2p and O1s spectra of CHX-1 and CHX-2 films; (b) FT-IR spectra of a CHX reference precursor powder in KBr, CHX-1 and CHX-2 plasma nanocoatings. Grid lines mark the CHX main vibration bands preserved in the films
Sample O1s /% N1s /% Cl2p /% C1s /%
CHX molecule 29.4 5.9 64.7
CHX-1 4.2 24.7 11.2 59.9
CHX-2 17.4 16.6 1.2 64.8
Tab.1  Atomic composition of CHX-1 and CHX-2 plasma films and percentages corresponding to the CHX molecule excluding H content inaccessible by XPS
Sample WCA /° DCA /° Surface energy /(mJ·m2)
PDMS 112±2 78±2 9.5±4
CHX-1/PDMS <10 48±2 98±4
CHX-2/PDMS 54±2 38±3 111±4
Tab.2  WCA and DCA values of CHX nanocoatings and their corresponding surface energy values
Fig.3  (a) Result of agar diffusion test where bacteria growth inhibition by CHX-1 and CHX-2 nanocoatings can be observed and compared to an uncoated PDMS foil (negative control); (b) Agar diffusion test for CHX-1 nanocoating (top) as a function of the thickness in comparison to unmodified PDMS foil (bottom). The radius of inhibition increases with the thickness of the RPAVD film
Fig.4  (a) FESEM top-view micrographs of unmodified PDMS foil and CHX-1 nanocoating surfaces after agar diffusion test; (b) Fluorescence micrographs of live/dead bacteria for viability analysis of CHX-1 and CHX-2 antibacterial RPAVD coatings after agar diffusion test. Green signals indicate viable bacteria and red signals dead or damage cells
Fig.5  Viability analysis of osteoblastic-like cells (cell line MG-63) over Thermanox® (TMX), TMX with poly-lysine coating (TMX poly-lys) control discs, and CHX-1 and CHX-2 RPAVD nanocoatings. No significant difference with respect to the control discs (p<0.05) were observed
1 A ACavallaro , M NMacgregor-Ramiasa , KVasilev . Antibiofouling properties of plasma-deposited oxazoline-based thin films. ACS Applied Materials & Interfaces, 2016, 8(10): 6354–6362
https://doi.org/10.1021/acsami.6b00330
2 MVähä-Nissi, MPitkänen, ESalo, E Kenttä, ATanskanen, TSajavaara, MPutkonen, JSievänen, ASneck, MRättö, MKarppinen, AHarlin. Antibacterial and barrier properties of oriented polymer films with ZnO thin films applied with atomic layer deposition at low temperatures. Thin Solid Films, 2014, 562: 331–337
https://doi.org/10.1016/j.tsf.2014.03.068
3 BZhang, D Myers, GWallace, MBrandt, PChoong. Bioactive coatings for orthopaedic implants—recent trends in development of implant coatings. International Journal of Molecular Sciences, 2014, 15(7): 11878–11921
https://doi.org/10.3390/ijms150711878
4 IBanerjee, R C Pangule, R S Kane. Antifouling coatings: Recent developments in the design of surfaces that prevent fouling by proteins, bacteria, and marine organisms. Advanced Materials, 2011, 23(6): 690–718
https://doi.org/10.1002/adma.201001215
5 JGilabert-Porres, S Martí, LCalatayud, VRamos, ARosell, SBorrós. Design of a nanostructured active surface against gram-positive and gram-negative bacteria through plasma activation and in situ silver reduction. ACS Applied Materials & Interfaces, 2016, 8(1): 64–73
https://doi.org/10.1021/acsami.5b07115
6 FJiang, C K Yeh, J Wen, YSun. N-Trimethylchitosan/alginate layer-by-layer self assembly coatings act as ‘fungal repellents’ to prevent biofilm formation on healthcare materials. Advanced Healthcare Materials, 2015, 4(3): 469–475
https://doi.org/10.1002/adhm.201400428
7 LLi, T Pu, GZhanel, NZhao, W Ens, SLiu. New biocide with both n-chloramine and quaternary ammonium moieties exerts enhanced bactericidal activity. Advanced Healthcare Materials, 2012, 1(5): 609–620
https://doi.org/10.1002/adhm.201200018
8 MWu, J He, XRen, W SCai, Y CFang, X ZFeng. Development of functional biointerfaces by surface modification of polydimethylsiloxane with bioactive chlorogenic acid. Colloids and Surfaces. B, Biointerfaces, 2014, 116: 700–706
https://doi.org/10.1016/j.colsurfb.2013.11.010
9 QYu, Z Wu, HChen. Dual-function antibacterial surfaces for biomedical applications. Acta Biomaterialia, 2015, 16: 1–13
https://doi.org/10.1016/j.actbio.2015.01.018
10 AAgarwal, T B Nelson, P R Kierski, M J Schurr, C J Murphy, C J Czuprynski, J F McAnulty, N L Abbott. Polymeric multilayers that localize the release of chlorhexidine from biologic wound dressings. Biomaterials, 2012, 33(28): 6783–6792
https://doi.org/10.1016/j.biomaterials.2012.05.068
11 THe, Y Zhang, A C KLai, VChan. Engineering bio-adhesive functions in an antimicrobial polymer multilayer. Biomedical Materials (Bristol, England), 2015, 10(1): 15015
https://doi.org/10.1088/1748-6041/10/1/015015
12 EVerraedt, A Braem, AChaudhari, KThevissen, EAdams, LVan Mellaert, B P ACammue, JDuyck, JAnné, JVleugels, J AMartens. Controlled release of chlorhexidine antiseptic from microporous amorphous silica applied in open porosity of an implant surface. International Journal of Pharmaceutics, 2011, 419(1-2): 28–32
https://doi.org/10.1016/j.ijpharm.2011.06.053
13 QYu, W Ge, AAtewologun, A DStiff-Roberts, G PLópez. Antimicrobial and bacteria-releasing multifunctional surfaces: Oligo (p-phenylene-ethynylene)/poly (N-isopropylacrylamide) films deposited by RIR-MAPLE. Colloids and Surfaces. B, Biointerfaces, 2015, 126: 328–334
https://doi.org/10.1016/j.colsurfb.2014.12.043
14 C HChang, S Y Yeh, B H Lee, C W Hsu, Y C Chen, C J Chen, T J Lin, M H C Chen, C T Huang, H Y Chen. Compatibility balanced antibacterial modification based on vapor-deposited parylene coatings for biomaterials. Journal of Materials Chemistry. B, Materials for Biology and Medicine, 2014, 2(48): 8496–8503
https://doi.org/10.1039/C4TB00992D
15 A YNikiforov, XDeng, I Onyshchenko, DVujosevic, VVuksanovic, UCvelbar, NDe Geyter, RMorent, CLeys. Atmospheric pressure plasma deposition of antimicrobial coatings on non-woven textiles. European Physical Journal Applied Physics, 2016, 75(2): 24710
https://doi.org/10.1051/epjap/2016150537
16 KOstrikov, I Levchenko, MKeidar, UCvelbar, DMariotti, AMai-Prochnow, JFang. Novel biomaterials: Plasma-enabled nanostructures and functions. Journal of Physics. D, Applied Physics, 2016, 49(27): 273001
https://doi.org/10.1088/0022-3727/49/27/273001
17 ABarranco , P Groening . Fluorescent plasma nanocomposite thin films containing nonaggregated rhodamine 6G laser dye molecules. Langmuir, 2006, 22(16): 6719–6722
https://doi.org/10.1021/la053304d
18 ABarranco , F Aparicio , AYanguas-Gil , PGroening , JCotrino , A RGonzález-Elipe . Optically active thin films deposited by plasma polymerization of dye molecules. Chemical Vapor Deposition, 2007, 13(6-7): 319–325
https://doi.org/10.1002/cvde.200606552
19 F JAparicio, M Holgado, ABorras, IBlaszczyk-Lezak, AGriol, C ABarrios, RCasquel, F JSanza, HSohlstrom, MAntelius, A RGonzález-Elipe, ABarranco. Transparent nanometric organic luminescent films as UV-active components in photonic structures. Advanced Materials, 2011, 23(6): 761–765
https://doi.org/10.1002/adma.201003088
20 F JAparicio, M Alcaire, A RGonzález-Elipe, ABarranco, MHolgado, RCasquel, F JSanza, AGriol, DBernier, FDortu, SCáceres, MAntelius, MLapisa, HSohlström, FNiklaus. Dye-based photonic sensing systems. Sensors and Actuators. B, Chemical, 2016, 228: 649–657 doi:
https://doi.org/10.1016/j.snb.2016.01.092
21 IBlaszczyk-Lezak, F J Aparicio, A Borrás, ABarranco, AÁlvarez-Herrero, MFernández-Rodríguez, A RGonzález-Elipe. Optically active luminescent perylene thin films deposited by plasma polymerization. Journal of Physical Chemistry C, 2009, 113(1): 431–438
https://doi.org/10.1021/jp807634j
22 F JAparicio, M Alcaire, ABorras, J CGonzalez, FLópez-Arbeloa, IBlaszczyk-Lezak, A RGonzález-Elipe, ABarranco. Luminescent 3-hydroxyflavone nanocomposites with a tuneable refractive index for photonics and UV detection by plasma assisted vacuum deposition. Journal of Materials Chemistry. C, Materials for Optical and Electronic Devices, 2014, 2(32): 6561–6573
https://doi.org/10.1039/C4TC00294F
23 KSangamesh, C Laurencin, MDeng, eds. Natural and Synthetic Biomedical Polymers. San Diego: Elsevier, 2014, 301–308
24 HChen, M A Brook, H Sheardown. Silicone elastomers for reduced protein adsorption. Biomaterials, 2004, 25(12): 2273–2282
https://doi.org/10.1016/j.biomaterials.2003.09.023
25 PThevenot, W Hu, LTang. Surface chemistry influences implant biocompatibility. Current Topics in Medicinal Chemistry, 2008, 8(4): 270–280
https://doi.org/10.2174/156802608783790901
26 PGilbert, D G Allison, M Brading, JVerran, JWalker. Biofilm community interactions: Chance or necessity? Cardiff: Bioline, 2001, 11–22
27 C JWilson, R E Clegg, D I Leavesley, M J Pearcy. Mediation of biomaterial-cell interactions by adsorbed proteins: A review. Tissue Engineering, 2005, 11(1-2): 1–18
https://doi.org/10.1089/ten.2005.11.1
28 HZhang, M Chiao. Anti-fouling Coatings of poly(dimethylsiloxane) devices for biological and biomedical applications. Journal of Medical and Biological Engineering, 2014, 35(2): 143–155
https://doi.org/10.1007/s40846-015-0029-4
29 B JLarson, S D Gillmor, J M Braun, L E Cruz-Barba, D E Savage, F S Denes, M G Lagally. Long-term reduction in poly(dimethylsiloxane) surface hydrophobicity via cold-plasma treatments. Langmuir, 2013, 29(42): 12990–12996
https://doi.org/10.1021/la403077q
30 SForster, S L McArthur. Stable low-fouling plasma polymer coatings on polydimethylsiloxane. Biomicrofluidics, 2012, 6(3): 036504
https://doi.org/10.1063/1.4754600
31 DLee, S Yang. Surface modification of PDMS by atmospheric-pressure plasma-enhanced chemical vapor deposition and analysis of long-lasting surface hydrophilicity. Sensors and Actuators. B, Chemical, 2012, 162(1): 425–434
https://doi.org/10.1016/j.snb.2011.12.017
32 D HKaelble. Dispersion-polar surface tension properties of organic solids. Journal of Adhesion, 1970, 2(2): 66–81
https://doi.org/10.1080/0021846708544582
33 D KOwens, R C Wendt. Estimation of the surface free energy or polymers. Journal of Applied Polymer Science, 1969, 13(8): 1741–1747
https://doi.org/10.1002/app.1969.070130815
34 MBalouiri, M Sadiki, S KIbnsouda. Methods for in vitro evaluating antimicrobial activity: A review. Journal of Pharmaceutical Analysis, 2016, 6(2): 71–79
https://doi.org/10.1016/j.jpha.2015.11.005
35 L BMestieri, A L Gomes-Cornélio, E M Rodrigues, G Faria, J MGuerreiro-Tanomaru, MTanomaru-Filho. Cytotoxicity and bioactivity of calcium silicate cements combined with niobium oxide in different cell lines. Brazilian Dental Journal, 2017, 28(1): 65–71
https://doi.org/10.1590/0103-6440201700525
36 F JAparicio, A Borras, IBlaszczyk-Lezak, PGröning, AÁlvarez-Herrero, MFernández-Rodríguez, A RGonzález-Elipe, ABarranco. Luminescent and optical properties of nanocomposite thin films deposited by remote plasma polymerization of Rhodamine 6G. Plasma Processes and Polymers, 2009, 6(1): 17–26
https://doi.org/10.1002/ppap.200800092
37 F JAparicio, I Blaszczyk-Lezak, J RSánchez-Valencia, MAlcaire, J CGonzález, CSerra, A RGonzález-Elipe, ABarranco. Plasma deposition of perylene-adamantane nanocomposite thin films for NO2 room-temperature optical sensing. Journal of Physical Chemistry C, 2012, 116(15): 8731–8740
https://doi.org/10.1021/jp209272s
38 GBeamson , D Briggs . High Resolution XPS of Organic Polymers. New York: John Wiley & Sons Ltd., 1990, 277–287
39 J HYim, M S Fleischman, V Rodriguez-Santiago, L TPiehler, A AWilliams, J LLeadore, D DPappas. Development of antimicrobial coatings by atmospheric pressure plasma using a guanidine-based precursor. ACS Applied Materials & Interfaces, 2013, 5(22): 11836–11843
https://doi.org/10.1021/am403503a
40 J YYook, M Lee, K HSong, JJun, S Kwak. Surface modification of poly(ethylene-2,6-naphthalate) using NH3 plasma. Macromolecular Research, 2014, 22(5): 534–540
https://doi.org/10.1007/s13233-014-2093-y
41 F JAparicio, D Thiry, PLaha, RSnyders. Wide range control of the chemical composition and optical properties of propanethiol plasma polymer films by regulating the deposition temperature. Plasma Processes and Polymers, 2016, 13(8): 814–822
https://doi.org/10.1002/ppap.201500212
42 HJiang, J T Grant, J Enlow, WSu, T JBunning. Surface oxygen in plasma polymerized films. Journal of Materials Chemistry, 2009, 19(15): 2234–2239
https://doi.org/10.1039/b816814h
43 GSokrates. Infrared and Raman Characteristic Group Frequencies: Tables and Charts. New York: Wiley-Interscience, 2001, 191–198
44 AKovtun, D Kozlova, KGanesan, CBiewald, NSeipold, PGaengler, W HArnold, MEpple. Chlorhexidine-loaded calcium phosphatenanoparticles for dental maintenance treatment: Combination of mineralising and antibacterial effects. RSC Advances, 2012, 2(3): 870–875
https://doi.org/10.1039/C1RA00955A
45 MBadea, R Olar, MIliş, RGeorgescu, MCălinescu. Synthesis, characterization, and thermal decomposition of new copper (II) complex compounds with chlorhexidine. Journal of Thermal Analysis and Calorimetry, 2012, 111(3): 1763–1770
https://doi.org/10.1007/s10973-012-2316-4
46 SPal, Y K Tak, E Han, SRangasamy, J MSong. A multifunctional composite of an antibacterial higher-valent silver metallopharmaceutical and a potent wound healing polypeptide: A combined killing and healing approach to wound care. New Journal of Chemistry, 2014, 38(8): 3889–3898
https://doi.org/10.1039/C4NJ00160E
47 SHolešová, MValášková, DHlaváč, JMadejová, MSamlíková, JTokarský, EPazdziora. Antibacterial kaolinite/urea/chlorhexidine nanocomposites: Experiment and molecular modelling. Applied Surface Science, 2014, 305: 783–791
https://doi.org/10.1016/j.apsusc.2014.04.008
48 HBiederman, ed. Plasma Polymer Films. London: Imperial College Press, 2004, 227–231
49 CLabay, J M Canal, M Modic, UCvelbar, MQuiles, MArmengol, M AArbos, F JGil, CCanal. Antibiotic-loaded polypropylene surgical meshes with suitable biological behaviour by plasma functionalization and polymerization. Biomaterials, 2015, 71: 132–144
https://doi.org/10.1016/j.biomaterials.2015.08.023
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed