Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2019, Vol. 13 Issue (3) : 427-443    https://doi.org/10.1007/s11705-019-1805-4
REVIEW ARTICLE
Tailoring electrical conductivity of two dimensional nanomaterials using plasma for edge electronics: A mini review
Aswathy Vasudevan1,2, Vasyl Shvalya1, Aleksander Zidanšek1,2,3, Uroš Cvelbar1,2()
1. Jožef Stefan Institute, 1000 Ljubljana, Slovenia
2. Jožef Stefan International Postgraduate School, 1000 Ljubljana, Slovenia
3. Faculty of Natural Sciences and Mathematics, University of Maribor, 2000 Maribor, Slovenia
 Download: PDF(2077 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Since graphene has been discovered, two-dimensional nanomaterials have attracted attention due to their promising tunable electronic properties. The possibility of tailoring electrical conductivity at the atomic level allows creating new prospective 2D structures for energy harvesting and sensing-related applications. In this respect, one of the most successful way to manipulate the physical properties of the aforementioned materials is related to the surface modification techniques employing plasma. Moreover, plasma-gaseous chemical treatment can provide a controlled change in the bandgap, increase sensitivity and significantly improve the structural stability of material to the environment as well. This review deals with recent advances in the modification of 2D carbon nanostructures for novel ‘edge’ electronics using plasma technology and processes.

Keywords graphene      edge electronics      2D nanomaterials      plasma      electrical conductivity     
Corresponding Author(s): Uroš Cvelbar   
Online First Date: 16 April 2019    Issue Date: 22 August 2019
 Cite this article:   
Aswathy Vasudevan,Vasyl Shvalya,Aleksander Zidanšek, et al. Tailoring electrical conductivity of two dimensional nanomaterials using plasma for edge electronics: A mini review[J]. Front. Chem. Sci. Eng., 2019, 13(3): 427-443.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-019-1805-4
https://academic.hep.com.cn/fcse/EN/Y2019/V13/I3/427
2D material Members Examples Ref.
Conductors 2D metals, carbon-based materials BiTe, BSCCO, FeTe, NbS2,VSe2, graphene [6]
Semiconductors 2D metal chalcogenides, 2D halides, 2D phosphides, 2D arsenide, 2D oxides, elemental Tellurene, black phosphorus, CuS, SnS, MoS2, WS2, SnSe2, BPS, FePS3, FePSe3, As2S3, As2Se3, MnO2, ?PbI2, CdI2 [7]
Insulators h-BN, 2D hydroxides, 2D micas MoO3, Sb2OS2, Ca(OH)2, Mg(OH)2 [7]
Tab.1  An overview of 2D materials according to their electrical conductivity properties
Fig.1  Electronic structure of one layer graphene. (a) Honeycomb lattice structure of graphene consisting of two atoms (A and B); (b) The representation of the graphene band structure; (c) Phonon spectra of graphene. (d) The schematic representation of low energy band structure exhibiting zero energy gap at the Dirac point. ‘Blue’ and ‘green’ Fermi levels reveal p- and n-dopants states (reprinted with permission from the reference [26])
Fig.2  Electron microscope images of different types of two-dimensional nanostructures. (a) Nano-island structure [37]; (b) Nanowalls [38]; (c) Branched nanostructures [39]; (d) Nanoribbons [40]; (e) Nanoplates [41]; (f) Nanodisks [42]; (g) Nanosheets [43]; (h) Nanoflowers [44]. (Reprinted with permission from the references listed above)
Fig.3  Typical geometries of nanoribbons edges. (a) Armchair type arrangement: NA is the number of dimers; (b) Zigzag type alignment: NZ is the number of elements in the chains and W is the characteristic width [48]
Fig.4  Schematic representation of edge scattering mechanisms in graphene NRs. (a) DE-diffusive edge scattering; (b) Atomistic edge-roughness scattering; (c) Structural edge-roughness scattering. The coefficients are defined as follows: P is a probability collision coefficient, sSER is a standard width deviation, LSER is SER correlation length, LAER is AER correlation length, W is the characteristic width [64]
Fig.5  Electric properties of graphene nanoribbons. (a) The low-temperature conductance of NR nanoribbons versus of applied gate voltage; (b) Conductance behaviour inside of the selected region; (c) Electrical current versus of applied bias voltage along two marked lines; (d) Dot-neck structure in disordered graphene nanoribbons. The disordered edge leading to the formation of dots and necks, where Coulomb-blockade takes place when the charge moves from one dot another [71]
Fig.6  The effect of the lattice atoms replacement in graphene. (a) Substitution of boron B (blue ball) in graphene; (b) Band structure of a single B-substituted graphene sheet (reproduced with permission from [93]); (c) Variation of the energy gap Eg under N and B atoms substitution, and N–B pair doping concentrations (reproduced with permission from [94])
Fig.7  ARPES intensity maps showing substrate-induced bandgap opening in graphene on SiC. (a) Photoelectron intensity as a function of energy and momentum, for a line through one of the K points; (b) EDC curves showing the dispersion of energy at the K point; (c) MDC showing the no-dispersive peaks at the gap region (Reprinted with permission from the reference [98])
Carrier gas Change in material Applications
NH3
N2/H2
N2/O3
Yielding graphene quantum nanosheets [109]
Incorporation of nitrogen preferably at the edges [110]
Defect generation
Gas sensors
FETs
Supercapacitors
Lithium batteries
O2 Control of thermal boundary conductance [111]
Narrowing the bandgap from 6.0 eV to 4.3 eV (in h-BN) [112]
Sulphur vacancy engineering in MoS2 [113]
Ar/O2 Wettability and surface energy [114]
Ar/H2 Conversion of sp2 to sp3 hybridisation (opening a bandgap of 3.5 eV) [115], defects and disorder generation
C3H9B p-Type conductivity with an on-off ratio of 102 [116], tunable bandgap ranging from 0 to ~0.54 eV Rectifying diodes
Back-gated FETs
Multi-bit memory
transistors
Photodiodes
Hydrogen production
Sensors
Photovoltaic devices
CF4
SF6
Ar/SF6
CHF3
p-Type doping for gas sensing (e.g., NH3) [117]
Cl2 p-Type doping increases carrier mobility [118]
H2 p-Type doping in MoS2 [119], reverse fluorination in WS2 [117]
CH4 The transition of insulating to semiconducting [120]
PH3/He Minimised etching and low damage [121]
N2 Substitution of sulphur with nitrogen in MoS2 [122]
Tab.2  Plasma-assisted tailoring of 2D materials for electrical properties and their applications
Fig.8  Schematic representation of graphene NRs edge tailoring with the assistance of plasma for 2D functionalisation electronics. Electrons on the two zigzag edges exhibit opposite directions of rotation (spin)-‘spin-down’ on the bottom edge or ‘spin-up’ on the top edge that generates a current flow
1 J N Tiwari, R N Tiwari, K S Kim. Zero-dimensional, one-dimensional, two-dimensional and three-dimensional nanostructured materials for advanced electrochemical energy devices. Progress in Materials Science, 2012, 57(4): 724–803
2 K S Novoselov, A K Geim, S V Morozov, D Jiang, M Katsnelson, I Grigorieva, S V Dubonos, A A Firsov. Two-dimensional gas of massless Dirac fermions in graphene. Nature, 2005, 438(7065): 197–200
3 S Dutta, S K Pati. Novel properties of graphene nanoribbons: A review. Journal of Materials Chemistry, 2010, 20(38): 8207–8223
4 Y Li, X Jiang, Z Liu, Z Liu. Strain effects in graphene and graphene nanoribbons: The underlying mechanism. Nano Research, 2010, 3(8): 545–556
5 V M Pereira, A C Neto. Strain engineering of graphene’s electronic structure. Physical Review Letters, 2009, 103(4): 046801
6 G R Bhimanapati, Z Lin, V Meunier, Y Jung, J Cha, S Das, D Xiao, Y Son, M S Strano, V R Cooper, et al. Recent advances in two-dimensional materials beyond graphene. ACS Nano, 2015, 9(12): 11509–11539
7 R Mas-Balleste, C Gomez-Navarro, J Gomez-Herrero, F Zamora. 2D Materials: To graphene and beyond. Nanoscale, 2011, 3(1): 20–30
8 K F Mak, C Lee, J Hone, J Shan, T F Heinz. Atomically thin MoS2: A new direct-gap semiconductor. Physical Review Letters, 2010, 105(13): 136805
9 M A Lukowski, A S Daniel, C R English, F Meng, A Forticaux, R J Hamers, S Jin. Highly active hydrogen evolution catalysis from metallic WS2 nanosheets. Energy & Environmental Science, 2014, 7(8): 2608–2613
10 A N Andriotis, M Menon. Tunable magnetic properties of transition metal doped MoS2. Physical Review B, 2014, 90(12): 125304
11 J He, K Hummer, C Franchini. Stacking effects on the electronic and optical properties of bilayer transition metal dichalcogenides MoS2, MoSe2, WS2, and WSe2. Physical Review B, 2014, 89(7): 075409
12 Q H Wang, K Kalantar-Zadeh, A Kis, J N Coleman, M S Strano. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nature Nanotechnology, 2012, 7(11): 699–712
13 L Cao, S Yang, W Gao, Z Liu, Y Gong, L Ma, G Shi, S Lei, Y Zhang, S Zhang, R Vajtai, P M Ajayan. Direct laser-patterned micro-supercapacitors from paintable MoS2 films. Small, 2013, 9(17): 2905–2910
14 Y H Huang, C C Peng, R S Chen, Y S Huang, C H Ho. Transport properties in semiconducting NbS2 nanoflakes. Applied Physics Letters, 2014, 105(9): 093106
15 D B Moore, M Beekman, S Disch, P Zschack, I Häusler, W Neumann, D C Johnson. Synthesis, structure, and properties of turbostratically disordered (PbSe)1.18(TiSe2)2. Chemistry of Materials, 2013, 25(12): 2404–2409
16 S Jeong, D Yoo, J T Jang, M Kim, J Cheon. Well-defined colloidal 2-D layered transition-metal chalcogenide nanocrystals via generalized synthetic protocols. Journal of the American Chemical Society, 2012, 134(44): 18233–18236
17 Z Yu, L Tetard, L Zhai, J Thomas. Supercapacitor electrode materials: Nanostructures from 0 to 3 dimensions. Energy & Environmental Science, 2015, 8(3): 702–730
18 Y K Hsu, Y C Chen, Y G Lin, L C Chen, K H Chen. Birnessite-type manganese oxides nanosheets with hole acceptor assisted photoelectrochemical activity in response to visible light. Journal of Materials Chemistry, 2012, 22(6): 2733–2739
19 A K Geim, I V Grigorieva. Van der Waals heterostructures. Nature, 2013, 499(7459): 419–425
20 G Eda, T Fujita, H Yamaguchi, D Voiry, M Chen, M Chhowalla. Coherent atomic and electronic heterostructures of single-layer MoS2. ACS Nano, 2012, 6(8): 7311–7317
21 H Li, G Lu, Y Wang, Z Yin, C Cong, Q He, L Wang, F Ding, T Yu, H Zhang. Mechanical exfoliation and characterization of single- and few- layer nanosheets of WSe2, TaS2, and TaSe2. Small, 2013, 9(11): 1974–1981
22 H Li, G Lu, Z Yin, Q He, H Li, Q Zhang, H Zhang. Optical identification of single- and few- layer MoS2 sheets. Small, 2012, 8(5): 682–686
23 S Tongay, J Zhou, C Ataca, K Lo, T S Matthews, J Li, J C Grossman, J Wu. Thermally driven crossover from indirect toward direct bandgap in 2D semiconductors: MoSe2 versus MoS2. Nano Letters, 2012, 12(11): 5576–5580
24 F Wang, Z Wang, Q Wang, F Wang, L Yin, K Xu, Y Huang, J He. Synthesis, properties and applications of 2D non-graphene materials. Nanotechnology, 2015, 26(29): 292001 1–7
25 Y Xu, Z Liu, X Zhang, Y Wang, J Tian, Y Huang, Y Ma, X Zhang, Y Chen. A graphene hybrid material covalently functionalized with porphyrin: Synthesis and optical limiting property. Advanced Materials, 2009, 21(12): 1275–1279
26 P Avouris. Graphene: Electronic and photonic properties and devices. Nano Letters, 2010, 10(11): 4285–4294
27 C Xu, B Xu, Y Gu, Z Xiong, J Sun, X S Zhao. Graphene-based electrodes for electrochemical energy storage. Energy & Environmental Science, 2013, 6(5): 1388–1414
28 Y Huang, J Liang, Y Chen. An overview of the applications of graphene-based materials in supercapacitors. Small, 2012, 8(12): 1805–1834
29 W Lv, Z Li, Y Deng, Q H Yang, F Kang. Graphene-based materials for electrochemical energy storage devices: Opportunities and challenges. Energy Storage Materials, 2016, 2(1): 107–138
30 S Fratini, F Guinea. Substrate-limited electron dynamics in graphene. Physical Review B, 2008, 77(19): 195415
31 D Prezzi, D Eom, K T Rim, H Zhou, M Lefenfeld, S Xiao, C Nuckolls, T F Heinz, G W Flynn, M S Hybertsen. Edge structures for nanoscale graphene islands on Co (0001) surfaces. ACS Nano, 2014, 8(6): 5765–5773
32 H Liu, X Zhang, T Zhai, T Sander, L Chen, P J Klar. Centimeter-scale-homogeneous SERS substrates with seven-order global enhancement through thermally controlled plasmonic nanostructures. Nanoscale, 2014, 6(10): 5099–5105
33 M Israr-Qadir, S Jamil-Rana, O Nur, M Willander, L A Larsson, P O Holtz. Fabrication of ZnO nanodisks from structural transformation of ZnO nanorods through natural oxidation and their emission characteristics. Ceramics International, 2014, 40(1): 2435–2439
34 H Wang, Z Guo, S Wang, W Liu. One-dimensional titania nanostructures: Synthesis and applications in dye-sensitized solar cells. Thin Solid Films, 2014, 558: 1–19
35 X Y Yu, Y Feng, B Guan, X W D Lou, U Paik. Carbon coated porous nickel phosphides nanoplates for highly efficient oxygen evolution reaction. Energy & Environmental Science, 2016, 9(4): 1246–1250
36 L Peng, Y Feng, Y Bai, H J Qiu, Y Wang. Designed synthesis of hollow Co3O4 nanoparticles encapsulated in a thin carbon nanosheet array for high and reversible lithium storage. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3(16): 8825–8831
37 T Karakouz, D Holder, M Goomanovsky, A Vaskevich, I Rubinstein. Morphology and refractive index sensitivity of gold island films. Chemistry of Materials, 2009, 21(24): 5875–5885
38 M Hiramatsu, K Shiji, H Amano, M Hori. Fabrication of vertically aligned carbon nanowalls using capacitively coupled plasma-enhanced chemical vapor deposition assisted by hydrogen radical injection. Applied Physics Letters, 2004, 84(23): 4708–4710
39 A Kargar, Y Jing, S J Kim, C T Riley, X Pan, D Wang. ZnO/CuO heterojunction branched nanowires for photoelectrochemical hydrogen generation. ACS Nano, 2013, 7(12): 11112–11120
40 H Terrones, R Lv, M Terrones, M S Dresselhaus. The role of defects and doping in 2D graphene sheets and 1D nanoribbons. Reports on Progress in Physics, 2012, 75(6): 062501
41 X Zhang, X B Wang, L W Wang, W K Wang, L L Long, W W Li, H Q Yu. Synthesis of a highly efficient BiOCl single-crystal nanodisk photocatalyst with exposing {001} facets. ACS Applied Materials & Interfaces, 2014, 6(10): 7766–7772
42 R Gao, L Yin, C Wang, Y Qi, N Lun, L Zhang, Y Liu, L Kang, X Wang. High-yield synthesis of boron nitride nanosheets with strong ultraviolet cathodoluminescence emission. Journal of Physical Chemistry C, 2009, 113(34): 15160–15165
43 A I Inamdar, J Kim, Y Jo, H Woo, S Cho, S M Pawar, S Lee, J Gunjakar, Y Cho, B Hou, et al. Highly efficient electro-optically tunable smart-supercapacitors using an oxygen-excess nanograin tungsten oxide thin film. Solar Energy Materials and Solar Cells, 2017, 166: 78–85
44 Y Qu, M Shao, Y Shao, M Yang, J Xu, C T Kwok, X Shi, Z Lu, H Pan. Ultra-high electrocatalytic activity of VS2 nanoflowers for efficient hydrogen evolution reaction. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(29): 15080–15086
45 J Tao, L Guan. Tailoring the electronic and magnetic properties of monolayer SnO by B, C, N, O and F adatoms. Scientific Reports, 2017, 7: 44568
46 M Terrones, A R Botello-Méndez, J Campos-Delgado, F López-Urías, Y I Vega-Cantú, F J Rodríguez-Macías, A L Elias Arriaga, E Muñoz-Sandoval, A G Cano-Márquez, J C Charlier, et al. Graphene and graphite nanoribbons: Morphology, properties, synthesis, defects and applications. Nano Today, 2010, 5(4): 351–372
47 D V Kosynkin, A L Higginbotham, A Sinitskii, J R Lomeda, A Dimiev, B K Price, J M Tour. Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature, 2009, 458(7240): 872–876
48 L Li. Epitaxial Graphene on SiC(0001): More Than Just Honeycombs, Physics and Applications of Graphene-Experiments. Sergey M, ed. Rijeka: InTech Europe, 2011, 55–72
49 Y H Lee, X Q Zhang, W Zhang, M T Chang, C T Lin, K D Chang, Y C Yu, J T Wang, C S Chang, L J Li, et al. Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Advanced Materials, 2012, 24(17): 2320–2325
50 J Zhao, S Pei, W Ren, L Gao, H M Cheng. Efficient preparation of large-area graphene oxide sheets for transparent conductive films. ACS Nano, 2010, 4(9): 5245–5252
51 F Sols, F Guinea, A C Neto. Coulomb blockade in graphene nanoribbons. Physical Review Letters, 2007, 99(16): 166803
52 L Jiao, L Zhang, X Wang, G Diankov, H Dai. Narrow graphene nanoribbons from carbon nanotubes. Nature, 2009, 458(7240): 877–880
53 J Bai, Y Huang. Fabrication and electrical properties of graphene nanoribbons. Materials Science and Engineering R Reports, 2010, 70(3-6): 341–353
54 Z Li, H Qian, J Wu, B L Gu, W Duan. Role of symmetry in the transport properties of graphene nanoribbons under bias. Physical Review Letters, 2008, 100(20): 206802
55 M Boutahir, S El Majdoub, A H Rahmani, B Fakrach, H Chadli, A Rahmani. Electronic properties of phosphorene nanoribbons. Energy Procedia, 2017, 139: 207–210
56 W Ning, F Kong, C Xi, D Graf, H Du, Y Han, J Yang, K Yang, M Tian, Y Zhang. Evidence of topological two-dimensional metallic surface states in thin bismuth nanoribbons. ACS Nano, 2014, 8(7): 7506–7512
57 G Liang, N Neophytou, D E Nikonov, M S Lundstrom. Performance projections for ballistic graphene nanoribbon field-effect transistors. IEEE Transactions on Electron Devices, 2007, 54(4): 677–682
58 J H Chen, C Jang, S Adam, M S Fuhrer, E D Williams, M Ishigami. Charged-impurity scattering in graphene. Nature Physics, 2008, 4(5): 377–381
59 B Obradovic, R Kotlyar, F Heinz, P Matagne, T Rakshit, M D Giles, D E Nikonov. Analysis of graphene nanoribbons as a channel material for field-effect transistors. Applied Physics Letters, 2006, 88(14): 142102
60 X Wang, Y Ouyang, X Li, H Wang, J Guo, H Dai. Room-temperature all-semiconducting sub-10-nm graphene nanoribbon field-effect transistors. Physical Review Letters, 2008, 100(20): 206803
61 L Liao, J Bai, Y C Lin, Y Qu, Y Huang, X Duan. High-performance top-gated graphene-nanoribbon transistors using zirconium oxide nanowires as high-dielectric-constant gate dielectrics. Advanced Materials, 2010, 22(17): 1941–1945
62 L Tapasztó, G Dobrik, P Lambin, L P Biró. Tailoring the atomic structure of graphene nanoribbons by scanning tunnelling microscope lithography. Nature Nanotechnology, 2008, 3(7): 397–401
63 B Özyilmaz, P Jarillo-Herrero, D Efetov, P Kim. Electronic transport in locally gated graphene nanoconstrictions. Applied Physics Letters, 2007, 91(19): 192107
64 A Yazdanpanah, M Pourfath, M Fathipour, H Kosina, S Selberherr. A numerical study of line-edge roughness scattering in graphene nanoribbons. IEEE Transactions on Electron Devices, 2012, 59(2): 433–440
65 D Gunlycke, D A Areshkin, C T White. Semiconducting graphene nanostrips with edge disorder. Applied Physics Letters, 2007, 90(14): 142104
66 M Evaldsson, I V Zozoulenko, H Xu, T Heinzel. Edge-disorder-induced Anderson localization and conduction gap in graphene nanoribbons. Physical Review. B, 2008, 78(16): 161407
67 D Querlioz, Y Apertet, A Valentin, K Huet, A Bournel, S Galdin-Retailleau, P Dollfus. Suppression of the orientation effects on bandgap in graphene nanoribbons in the presence of edge disorder. Applied Physics Letters, 2008, 92(4): 042108
68 C Gutiérrez, L Brown, C J Kim, J Park, A N Pasupathy. Klein tunnelling and electron trapping in nanometre-scale graphene quantum dots. Nature Physics, 2016, 12(11): 1069
69 L A Ponomarenko, F Schedin, M I Katsnelson, R Yang, E W Hill, K S Novoselov, A K Geim. Chaotic Dirac billiard in graphene quantum dots. Science, 2008, 320(5874): 356–358
70 C Stampfer, J Güttinger, F Molitor, D Graf, T Ihn, K Ensslin. Tunable Coulomb blockade in nanostructured graphene. Applied Physics Letters, 2008, 92(1): 012102
71 D Bischoff, A Varlet, P Simonet, M Eich, H C Overweg, T Ihn, K Ensslin. Localized charge carriers in graphene nanodevices. Applied Physics Reviews, 2015, 2(3): 031301
72 K S Novoselov, A K Geim, S V Morozov, D A Jiang, Y Zhang, S V Dubonos, I V Grigorieva, A A Firsov. Electric field effect in atomically thin carbon films. Science, 2004, 306(5696): 666–669
73 K S Novoselov, A C Neto. Two-dimensional crystals-based heterostructures: Materials with tailored properties. Physica Scripta, 2012, T146: 014006
74 K Nakada, M Fujita, G Dresselhaus, M S Dresselhaus. Edge state in graphene ribbons: Nanometer size effect and edge shape dependence. Physical Review. B, 1996, 54(24): 17954
75 K Wakabayashi. Electronic transport properties of nanographite ribbon junctions. Physical Review. B, 2001, 64(12): 125428
76 M Fujita, K Wakabayashi, K Nakada, K Kusakabe. Peculiar localized state at zigzag graphite edge. Journal of the Physical Society of Japan, 1996, 65(7): 1920–1923
77 X Li, X Wang, L Zhang, S Lee, H Dai. Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science, 2008, 319(5867): 1229–1232
78 C Berger, Z Song, X Li, X Wu, N Brown, C Naud, D Mayou, T Li, J Hass, A N Marchenkov, et al. Electronic confinement and coherence in patterned epitaxial graphene. Science, 2006, 312(5777): 1191–1196
79 D Wei, Y Liu, Y Wang, H Zhang, L Huang, G Yu. Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties. Nano Letters, 2009, 9(5): 1752–1758
80 L S Panchakarla, K S Subrahmanyam, S K Saha, A Govindaraj, H R Krishnamurthy, U V Waghmare, C N R Rao. Synthesis, structure, and properties of boron- and nitrogen- doped graphene. Advanced Materials, 2009, 21(46): 4726–4730
81 S S Yu, W T Zheng, Q B Wen, Q Jiang. First principle calculations of the electronic properties of nitrogen-doped carbon nanoribbons with zigzag edges. Carbon, 2008, 46(3): 537–543
82 Y Li, Z Zhou, P Shen, Z Chen. Spin gapless semiconductor‒metal‒half-metal properties in nitrogen-doped zigzag graphene nanoribbons. ACS Nano, 2009, 3(7): 1952–1958
83 A Lherbier, X Blase, Y M Niquet, F Triozon, S Roche. Charge transport in chemically doped 2D graphene. Physical Review Letters, 2008, 101(3): 036808
84 X H Zheng, I Rungger, Z Zeng, S Sanvito. Effects induced by single and multiple dopants on the transport properties in zigzag-edged graphene nanoribbons. Physical Review. B, 2009, 80(23): 235426
85 R Peköz, Ş Erkoç. A theoretical study of chemical doping and width effect on zigzag graphene nanoribbons. Physica E, Low-Dimensional Systems and Nanostructures, 2009, 42(2): 110–115
86 Y Shao, S Zhang, M H Engelhard, G Li, G Shao, Y Wang, J Liu, I A Aksay, Y Lin. Nitrogen-doped graphene and its electrochemical applications. Journal of Materials Chemistry, 2010, 20(35): 7491–7496
87 X Ma, Q Wang, L Q Chen, W Cermignani, H H Schobert, C G Pantano. Semi-empirical studies on electronic structures of a boron-doped graphene layer—implications on the oxidation mechanism. Carbon, 1997, 35(10-11): 1517–1525
88 S Dutta, S K Pati. Half-metallicity in undoped and boron doped graphene nanoribbons in the presence of semilocal exchange-correlation interactions. Journal of Physical Chemistry B, 2008, 112(5): 1333–1335
89 L S Panchakarla, A Govindaraj, C N R Rao. Boron-and nitrogen-doped carbon nanotubes and graphene. Inorganica Chimica Acta, 2010, 363(15): 4163–4174
90 L Ci, L Song, C Jin, D Jariwala, D Wu, Y Li, A Srivastava, Z F Wang, K Storr, L Balicas, et al. Atomic layers of hybridized boron nitride and graphene domains. Nature Materials, 2010, 9(5): 430–435
91 R Drost, A Uppstu, F Schulz, S K Hämäläinen, M Ervasti, A Harju, P Liljeroth. Electronic states at the graphene-hexagonal boron nitride zigzag interface. Nano Letters, 2014, 14(9): 5128–5132
92 S Nigar, Z Zhou, H Wang, M Imtiaz. Modulating the electronic and magnetic properties of graphene. RSC Advances, 2017, 7(81): 51546–51580
93 P Rani, V K Jindal. Designing band gap of graphene by B and N dopant atoms. RSC Advances, 2013, 3(3): 802–812
94 P Nath, S Chowdhury, D Sanyal, D Jana. Ab-initio calculation of electronic and optical properties of nitrogen and boron doped graphene nanosheet. Carbon, 2014, 73: 275–282
95 T Kawasaki, T Ichimura, H Kishimoto, A A Akbar, T Ogawa, C Oshima. Double atomic layers of graphene/monolayer h-BN on Ni (111) studied by scanning tunneling microscopy and scanning tunneling spectroscopy. Surface Review and Letters, 2002, 9(3-4): 1459–1464
96 G Giovannetti, P A Khomyakov, G Brocks, P J Kelly, J Van Den Brink. Substrate-induced band gap in graphene on hexagonal boron nitride: Ab initio density functional calculations. Physical Review. B, 2007, 76(7): 073103
97 P Shemella, S K Nayak. Electronic structure and band-gap modulation of graphene via substrate surface chemistry. Applied Physics Letters, 2009, 94(3): 032101
98 S Y Zhou, G H Gweon, A V Fedorov, P D First, W A De Heer, D H Lee, F Guinea, A H Castro Neto, A Lanzara. Substrate-induced bandgap opening in epitaxial graphene. Nature Materials, 2007, 6(10): 770–775
99 A Y Liu, R M Wentzcovitch, M L Cohen. Atomic arrangement and electronic structure of BC2N. Physical Review. B, 1989, 39(3): 1760
100 Y Miyamoto, A Rubio, M L Cohen, S G Louie. Chiral tubules of hexagonal BC2N. Physical Review. B, 1994, 50(7): 4976
101 Y Liang, Y Kawazoe. Half-metallicity modulation of hybrid BN-C nanotubes by external electric fields: A first-principles study. Journal of Chemical Physics, 2014, 140(23): 234702
102 Y Huang, Y Bando, C Tang, C Zhi, T Terao, B Dierre, T Sekiguchi, D Golberg. Thin-walled boron nitride microtubes exhibiting intense band-edge UV emission at room temperature. Nanotechnology, 2009, 20(8): 085705
103 F W N Silva, E Cruz-Silva, M Terrones, H Terrones, E B Barros. BNC nanoshells: A novel structure for atomic storage. Nanotechnology, 2017, 28(46): 465201
104 Y Ding, Y Wang, J Ni. Electronic properties of graphene nanoribbons embedded in boron nitride sheets. Applied Physics Letters, 2009, 95(12): 123105
105 W Y Kim, Y C Choi, K S Kim. Understanding structures and electronic/spintronic properties of single molecules, nanowires, nanotubes, and nanoribbons towards the design of nanodevices. Journal of Materials Chemistry, 2008, 18(38): 4510–4521
106 V D’Innocenzo, A R Srimath Kandada, M De Bastiani, M Gandini, A Petrozza. Tuning the light emission properties by band gap engineering in hybrid lead halide perovskite. Journal of the American Chemical Society, 2014, 136(51): 17730–17733
107 M Seifert, J E Vargas, M Bobinger, M Sachsenhauser, A W Cummings, S Roche, J A Garrido. Role of grain boundaries in tailoring electronic properties of polycrystalline graphene by chemical functionalization. 2D Materials, 2015, 2(2): 024008
108 P K Chow, R B Jacobs-Gedrim, J Gao, T M Lu, B Yu, H Terrones, N Koratkar. Defect-induced photoluminescence in monolayer semiconducting transition metal dichalcogenides. ACS Nano, 2015, 9(2): 1520–1527
109 J Moon, J An, U Sim, S P Cho, J H Kang, C Chung, J H Seo, J Lee, K T Nam, B H Hong. One-step synthesis of N-doped graphene quantum sheets from monolayer graphene by nitrogen plasma. Advanced Materials, 2014, 26(21): 3501–3505
110 T Kato, L Jiao, X Wang, H Wang, X Li, L Zhang, R Hatakeyama, H Dai. Room-temperature edge functionalization and doping of graphene by mild plasma. Small, 2011, 7(5): 574–577
111 B M Foley, S C Hernández, J C Duda, J T Robinson, S G Walton, P E Hopkins. Modifying surface energy of graphene via plasma-based chemical functionalization to tune thermal and electrical transport at metal interfaces. Nano Letters, 2015, 15(8): 4876–4882
112 R S Singh. Influence of oxygen impurity on electronic properties of carbon and boron nitride nanotubes: A comparative study. AIP Advances, 2015, 5(11): 117150
113 H Nan, Z Wang, W Wang, Z Liang, Y Lu, Q Chen, D He, P Tan, F Miao, X Wang, et al. Strong photoluminescence enhancement of MoS2 through defect engineering and oxygen bonding. ACS Nano, 2014, 8(6): 5738–5745
114 Y J Shin, Y Wang, H Huang, G Kalon, A T S Wee, Z Shen, C S Bhatia, H Yang. Surface-energy engineering of graphene. Langmuir, 2010, 26(6): 3798–3802
115 D C Elias, R R Nair, T M G Mohiuddin, S V Morozov, P Blake, M P Halsall, A C Ferrari, D W Boukhvalov, M I Katsnelson, A K Geim, et al. Control of graphene’s properties by reversible hydrogenation: Evidence for graphane. Science, 2009, 323(5914): 610–613
116 Y B Tang, L C Yin, Y Yang, X H Bo, Y L Cao, H E Wang, W J Zhang, I Bello, S T Lee, H M Cheng, et al. Tunable band gaps and p-type transport properties of boron-doped graphenes by controllable ion doping using reactive microwave plasma. ACS Nano, 2012, 6(3): 1970–1978
117 Y I Jhon, Y Kim, J Park, J H Kim, T Lee, M Seo, Y M Jhon. Significant exciton brightening in monolayer tungsten disulfides via fluorination: n-Type gas sensing semiconductors. Advanced Functional Materials, 2016, 26(42): 7551–7559
118 X Zhang, A Hsu, H Wang, Y Song, J Kong, M S Dresselhaus, T Palacios. Impact of chlorine functionalization on high-mobility chemical vapor deposition grown graphene. ACS Nano, 2013, 7(8): 7262–7270
119 Y Kim, Y I Jhon, J Park, C Kim, S Lee, Y M Jhon. Plasma functionalization for cyclic transition between neutral and charged excitons in monolayer MoS2. Scientific Reports, 2016, 6:21405
120 M Sajjad, G Morell, P Feng. Advance in novel boron nitride nanosheets to nanoelectronic device applications. ACS Applied Materials & Interfaces, 2013, 5(11): 5051–5056
121 A Nipane, D Karmakar, N Kaushik, S Karande, S Lodha. Few-layer MoS2 p-type devices enabled by selective doping using low energy phosphorus implantation. ACS Nano, 2016, 10(2): 2128–2137
122 A Azcatl, X Qin, A Prakash, C Zhang, L Cheng, Q Wang, N Lu, M J Kim, J Kim, K Cho, et al. Covalent nitrogen doping and compressive strain in MoS2 by remote N2 plasma exposure. Nano Letters, 2016, 16(9): 5437–5443
123 C Stampfer, E Schurtenberger, F Molitor, J Guttinger, T Ihn, K Ensslin. Tunable graphene single electron transistor. Nano Letters, 2008, 8(8): 2378–2383
124 H Wang, T Maiyalagan, X Wang. Review on recent progress in nitrogen-doped graphene: Synthesis, characterization, and its potential applications. ACS Catalysis, 2012, 2(5): 781–794
125 H M Jeong, J W Lee, W H Shin, Y J Choi, H J Shin, J K Kang, J W Choi. Nitrogen-doped graphene for high-performance ultracapacitors and the importance of nitrogen-doped sites at basal planes. Nano Letters, 2011, 11(6): 2472–2477
126 W Zhang, C T Lin, K K Liu, T Tite, C Y Su, C H Chang, L J Li. Opening an electrical band gap of bilayer graphene with molecular doping. ACS Nano, 2011, 5(9): 7517–7524
127 A Nourbakhsh, M Cantoro, T Vosch, G Pourtois, F Clemente, M H van der Veen, J Hofkens, M M Heyns, S De Gendt, B F Sels. Bandgap opening in oxygen plasma-treated graphene. Nanotechnology, 2010, 21(43): 435203
128 R Ionescu, E H Espinosa, E Sotter, E Llobet, X Vilanova, X Correig, A Felten, C Bittencourt, G Van Lier, J Charlier, et al. Oxygen functionalisation of MWNT and their use as gas sensitive thick-film layers. Sensors and Actuators. B, Chemical, 2006, 113(1): 36–46
129 W H Chiang, T C Lin, Y S Li, Y J Yang, Z Pei. Toward bandgap tunable graphene oxide nanoribbons by plasma-assisted reduction and defect restoration at low temperature. RSC Advances, 2016, 6(3): 2270–2278
130 Z J Han, A T Murdock, D H Seo, A Bendavid. Recent progress in plasma-assisted synthesis and modification of 2D materials. 2D Materials, 2018, 5(3): 032002
131 M Wojtaszek, N Tombros, A Caretta, P H M Van Loosdrecht, B J Van Wees. A road to hydrogenating graphene by a reactive ion etching plasma. Journal of Applied Physics, 2011, 110(6): 063715
132 B Radisavljevic, A Radenovic, J Brivio, I V Giacometti, A Kis. Single-layer MoS2 transistors. Nature Nanotechnology, 2011, 6(3): 147–150
133 W Zhou, X Zou, S Najmaei, Z Liu, Y Shi, J Kong, J Lou, P M Ajayan, B I Yakobson, J C Idrobo. Intrinsic structural defects in monolayer molybdenum disulfide. Nano Letters, 2013, 13(6): 2615–2622
134 J Su, N Li, Y Zhang, L Feng, Z Liu. Role of vacancies in tuning the electronic properties of Au-MoS2 contact. AIP Advances, 2015, 5(7): 077182
135 D Liu, Y Guo, L Fang, J Robertson. Sulfur vacancies in monolayer MoS2 and its electrical contacts. Applied Physics Letters, 2013, 103(18): 183113
136 H Qiu, T Xu, Z Wang, W Ren, H Nan, Z Ni, Q Chen, S Yuan, F Miao, F Song, et al. Hopping transport through defect-induced localized states in molybdenum disulphide. Nature Communications, 2013, 4: 2642
137 J Hong, Z Hu, M Probert, K Li, D Lv, X Yang, L Gu, N Mao, Q Feng, L Xie, et al. Exploring atomic defects in molybdenum disulphide monolayers. Nature Communications, 2015, 6: 6293
138 M R Islam, N Kang, U Bhanu, H P Paudel, M Erementchouk, L Tetard, M N Leuenberger, S I Khondaker. Tuning the electrical property via defect engineering of single layer MoS2 by oxygen plasma. Nanoscale, 2014, 6(17): 10033–10039
139 L Zhang, Y Zhou, L Guo, W Zhao, A Barnes, H T Zhang, E Craig, Y Zheng, M Brahlek, H F Haneef, et al. Correlated metals as transparent conductors. Nature Materials, 2016, 15(2): 204–210
140 A Castellanos-Gomez, M Wojtaszek, N Tombros, B J van Wees. Reversible hydrogenation and bandgap opening of graphene and graphite surfaces probed by scanning tunneling spectroscopy. Small, 2012, 8(10): 1607–1613
141 X H Zheng, X L Wang, T A Abtew, Z Zeng. Building half-metallicity in graphene nanoribbons by direct control over edge states occupation. Journal of Physical Chemistry C, 2010, 114(9): 4190–4193
142 M Endo, T Hayashi, S H Hong, T Enoki, M S Dresselhaus. Scanning tunneling microscope study of boron-doped highly oriented pyrolytic graphite. Journal of Applied Physics, 2001, 90(11): 5670–5674
143 A C Neto, F Guinea, N M Peres, K S Novoselov, A K Geim. The electronic properties of graphene. Reviews of Modern Physics, 2009, 81(1): 109–162
144 C L Kane, E J Mele. Quantum spin Hall effect in graphene. Physical Review Letters, 2005, 95(22): 226801
145 A F Young, J D Sanchez-Yamagishi, B Hunt, S H Choi, K Watanabe, T Taniguchi, R C Ashoori, P Jarillo-Herrero. Tunable symmetry breaking and helical edge transport in a graphene quantum spin Hall state. Nature, 2014, 505(7484): 528–532
146 A Saffarzadeh, R Farghadan. A spin-filter device based on armchair graphene nanoribbons. Applied Physics Letters, 2011, 98(2): 023106
[1] Xuewen Hu, Yun Wang, Jinbo Ou Yang, Yang Li, Peng Wu, Hengju Zhang, Dingzhong Yuan, Yan Liu, Zhenyu Wu, Zhirong Liu. Synthesis of graphene oxide nanoribbons/chitosan composite membranes for the removal of uranium from aqueous solutions[J]. Front. Chem. Sci. Eng., 2020, 14(6): 1029-1038.
[2] Krishnaveni Kalaiappan, Subadevi Rengapillai, Sivakumar Marimuthu, Raja Murugan, Premkumar Thiru. Kombucha SCOBY-based carbon and graphene oxide wrapped sulfur/polyacrylonitrile as a high-capacity cathode in lithium-sulfur batteries[J]. Front. Chem. Sci. Eng., 2020, 14(6): 976-987.
[3] Sen Wang, Shiyun Liu, Danhua Mei, Rusen Zhou, Congcong Jiang, Xianhui Zhang, Zhi Fang, Kostya (Ken) Ostrikov. Liquid discharge plasma for fast biomass liquefaction at mild conditions: The effects of homogeneous catalysts[J]. Front. Chem. Sci. Eng., 2020, 14(5): 763-771.
[4] Guoxing Chen, Marc Widenmeyer, Binjie Tang, Louise Kaeswurm, Ling Wang, Armin Feldhoff, Anke Weidenkaff. A CO and CO2 tolerating (La0.9Ca0.1)2(Ni0.75Cu0.25)O4+d Ruddlesden-Popper membrane for oxygen separation[J]. Front. Chem. Sci. Eng., 2020, 14(3): 405-414.
[5] Abdolhamid Hatefi-Mehrjardi, Amirkhosro Beheshti-Marnani, Zarrin Es'haghi. Signal promoting role of a p-type transition metal dichalcogenide used for the detection of ultra-trace amounts of diclofenac via a labeled aptasensor[J]. Front. Chem. Sci. Eng., 2019, 13(4): 823-831.
[6] Daniil Marinov. Kinetic Monte Carlo simulations of plasma-surface reactions on heterogeneous surfaces[J]. Front. Chem. Sci. Eng., 2019, 13(4): 815-822.
[7] Chi Him Alpha Tsang, Adilet Zhakeyev, Dennis Y.C. Leung, Jin Xuan. GO-modified flexible polymer nanocomposites fabricated via 3D stereolithography[J]. Front. Chem. Sci. Eng., 2019, 13(4): 736-743.
[8] Romain Chanson, Remi Dussart, Thomas Tillocher, P. Lefaucheux, Christian Dussarrat, Jean François de Marneffe. Low-k integration: Gas screening for cryogenic etching and plasma damage mitigation[J]. Front. Chem. Sci. Eng., 2019, 13(3): 511-516.
[9] Liangliang Lin, Xintong Ma, Sirui Li, Marly Wouters, Volker Hessel. Plasma-electrochemical synthesis of europium doped cerium oxide nanoparticles[J]. Front. Chem. Sci. Eng., 2019, 13(3): 501-510.
[10] Bin Xu, Toshiro Kaneko, Toshiaki Kato. Improvement in growth yield of single-walled carbon nanotubes with narrow chirality distribution by pulse plasma CVD[J]. Front. Chem. Sci. Eng., 2019, 13(3): 485-492.
[11] Athanasios Smyrnakis, Angelos Zeniou, Kamil Awsiuk, Vassilios Constantoudis, Evangelos Gogolides. A non-lithographic plasma nanoassembly technology for polymeric nanodot and silicon nanopillar fabrication[J]. Front. Chem. Sci. Eng., 2019, 13(3): 475-484.
[12] Tingting Zhao, Niamat Ullah, Yajun Hui, Zhenhua Li. Review of plasma-assisted reactions and potential applications for modification of metal–organic frameworks[J]. Front. Chem. Sci. Eng., 2019, 13(3): 444-457.
[13] Xiuqi Fang, Carles Corbella, Denis B. Zolotukhin, Michael Keidar. Plasma-enabled healing of graphene nano-platelets layer[J]. Front. Chem. Sci. Eng., 2019, 13(2): 350-359.
[14] Rusen Zhou, Renwu Zhou, Xianhui Zhang, Kateryna Bazaka, Kostya (Ken) Ostrikov. Continuous flow removal of acid fuchsine by dielectric barrier discharge plasma water bed enhanced by activated carbon adsorption[J]. Front. Chem. Sci. Eng., 2019, 13(2): 340-349.
[15] Di Lu, Ran Tao, Zheng Wang. Carbon-based materials for photodynamic therapy: A mini-review[J]. Front. Chem. Sci. Eng., 2019, 13(2): 310-323.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed