Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2019, Vol. 13 Issue (3) : 444-457    https://doi.org/10.1007/s11705-019-1811-6
REVIEW ARTICLE
Review of plasma-assisted reactions and potential applications for modification of metal–organic frameworks
Tingting Zhao, Niamat Ullah, Yajun Hui, Zhenhua Li()
Key Lab for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
 Download: PDF(2083 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Plasma catalysis is drawing increasing attention worldwide. Plasma is a partially ionized gas comprising electrons, ions, molecules, radicals, and photons. Integration of catalysis and plasma can enhance catalytic activity and stability. Some thermodynamically unfavorable reactions can easily occur with plasma assistance. Compared to traditional thermal catalysis, plasma reactors can save energy because they can be operated at much lower temperatures or even room temperature. Additionally, the low bulk temperature of cold plasma makes it a good alternative for treatment of temperature-sensitive materials. In this review, we summarize the plasma-assisted reactions involved in dry reforming of methane, CO2 methanation, the methane coupling reaction, and volatile organic compound abatement. Applications of plasma for modification of metal–organic frameworks are discussed.

Keywords plasma catalysis      methane      carbon dioxide      VOCs      metal–organic frameworks     
Corresponding Author(s): Zhenhua Li   
Just Accepted Date: 06 May 2019   Online First Date: 26 June 2019    Issue Date: 22 August 2019
 Cite this article:   
Tingting Zhao,Niamat Ullah,Yajun Hui, et al. Review of plasma-assisted reactions and potential applications for modification of metal–organic frameworks[J]. Front. Chem. Sci. Eng., 2019, 13(3): 444-457.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-019-1811-6
https://academic.hep.com.cn/fcse/EN/Y2019/V13/I3/444
Fig.1  Transmission electron microscopy images of carbon produced in the plasma dry reforming process: (a) spherical carbon nanoparticles; (b) carbon nanotubes (CH4/CO2 = 7:3, total flow rate: 51 min1, input power: 165 W). Reprinted from ref. [38], copyright (2014), with permission from Elsevier
Fig.2  Schematic representation of dry CH4 reforming on or near the surface of an Al2O3-supported metal catalyst in the presence of plasma: (a) excitation of CH4 species by gas-phase electron impact, (b) transition-metal catalyst supported on dielectric support (e.g., Al2O3) within plasma discharge zone, and (c) chemical equation of dry CH4 reforming. Reprinted from ref. [59], copyright (2016), with permission from American Chemical Society
Temperature /°C DHf° /(kJ·mol?1) DG° /(kJ·mol?1) logKp
27 ?165.101 ?113.290 19.724
127 ?170.080 ?95.265 12.440
227 ?174.803 ?76.015 7.940
327 ?179.042 ?55.844 4.86
427 ?182.757 ?35.003 2.61
527 ?185.975 ?13.677 0.893
627 ?188.720 +8.037 ?0.466
727 ?191.012 +30.012 ?1.568
Tab.1  Thermodynamic properties of CO2 methanation reaction
Fig.3  Experimental setup for plasma-catalytic methanation of CO2. Reprinted from ref. [93], copyright (2016), with permission from Elsevier
Fig.4  Components of a switching-TPE lambda probe and bidirectional ion transport through the ceramic (yttria-stabilized zirconia) ion conductor. Reprinted from ref. [104], copyright (2017), with permission from Elsevier
Material Molar ratio /%
AC
DBD
Pulsed
DBD
Pulsed
Spark
AC
Spark
Hollow
Cathode
Gliding
Arc
Rotating
Arc
H2 0.520 0.210 1.373 2.920 0.850 1.83 1.310
C2H6 0.106 0.065 0.026 0.000 0.014 ? 0.002
C2H4 0.007 0.003 0.031 0.024 0.015 ? 0.011
C3H8 0.018 0.009 0.002 0.000 0.000 ? 0.000
C3H6 0.002 0.000 0.005 0.000 0.003 ? 0.000
C2H2 0.008 0.003 0.459 0.860 0.270 0.272 0.420
CH4 conv. /% 14.76 12.375 49.405 82.930 25.772 23.72 42.170
Sel.(H2) /% 36.457 19.312 32.249 42.053 33.173 73.2 34.815
Sel.(C2H2) /% 2.243 1.104 43.124 49.171 42.149 43.52 44.649
Tab.2  Product analysis of methane coupling reaction in different plasma sources. Reprinted from ref. [111], copyright (2013), with permission from Springer
Fig.5  Schematic illustration of methane conversion under plasma over Pd-IL/γ-Al2O3. Reprinted from ref. [112], copyright (2013), with permission from Elsevier
Fig.6  Effect of energy density on CH4 conversion and C2 hydrocarbon yield. Reprinted from ref. [115], copyright (2006), with permission from Nuclear Fusion and Plasma Physics
Fig.7  Energy efficiency of CH4 coupling reaction. Reprinted from ref. [115], copyright (2006), with permission from Nuclear Fusion and Plasma Physics
Fig.8  Reactor configurations: (a) conventional reactor, (b) zeolite-hybrid reactor. Reprinted from ref. [134], copyright (2001), with permission from IEEE
Fig.9  Overview of equipment for toluene oxidation in a gas circulation system. Reprinted from ref. [136], copyright (2011), with permission from IEEE
Fig.10  CO selectivity, CO2 selectivity, and carbon balance of the three-stage system in four different conditions: DBD alone, DBD-BCD, DBD-catalyst, and DBD-BCD-catalyst. The specific input energy of DBD and BCD is fixed at 64 and 128.9 J/L, respectively. Reprinted from ref. [137], copyright (2015), with permission from American Chemical Society
Catalyst Temperature /°C Ref.
ZIF-67 500 148
ZIF-8 550 149
Co-MOF-74 450 150
Ni-MOF-74 300 151
MIL-101 330 152
MOF-5 400 153
Cu-BTC 280 154
UiO-66 500 155
Tab.3  Thermogravimetric analysis of various MOFs
Fig.11  Schematic of particle formation process on MOFs: (a) Blank MOFs; (b) Formation of seed particles (approximately 1 nm in diameter) at low metal loadings (for Pt ≈ 0.5 wt.% metal loading) by APD irradiation; (c) Particle growth up to approximately 2 nm in diameter by further APD irradiation (0.5 wt.% –1.5 wt.%); (d) Formation of nanorods by further APD irradiation (above 2 wt.%). Reprinted from ref. [156], copyright (1996), with permission from Royal Society of Chemistry
1 H M Mott-Smith. History of “plasmas”. Nature, 1971, 233(5316): 219–219
https://doi.org/10.1038/233219a0
2 B Jiang, J T Zheng, S Qiu, M B Wu, Q H Zhang, Z F Yan, Q Z Xue. Review on electrical discharge plasma technology for wastewater remediation. Chemical Engineering Journal, 2014, 236: 348–368
https://doi.org/10.1016/j.cej.2013.09.090
3 S Hinokuma, S Misumi, H Yoshida, M Machida. Nanoparticle catalyst preparation using pulsed arc plasma deposition. Catalysis Science & Technology, 2015, 5(9): 4249–4257
https://doi.org/10.1039/C5CY00636H
4 S Samukawa, M Hori, S Rauf, K Tachibana, P Bruggeman, G Kreesen, I C Whitehead, A B Murphy, A F Gutsol, S Starikovskaia. The 2012 plasma roadmap. Journal of Physics. D, Applied Physics, 2012, 45(25): 253001
https://doi.org/10.1088/0022-3727/45/25/253001
5 S H Kim, S Y Moon, J Y Park. Non-colloidal nanocatalysts fabricated using arc plasma deposition and their application in heterogenous catalysis and photocatalysis. Topics in Catalysis, 2017, 60(12): 812–822
https://doi.org/10.1007/s11244-017-0746-8
6 C J Liu, G P Vissokov, B W L Jang. Catalyst preparation using plasma technologies. Catalysis Today, 2002, 72(3-4): 173–184
https://doi.org/10.1016/S0920-5861(01)00491-6
7 Z Y Wang, C J Liu. Preparation and application of iron oxide/graphene based composites for electrochemical energy storage and energy conversion devices: Current status and perspective. Nano Energy, 2015, 11: 277–293
https://doi.org/10.1016/j.nanoen.2014.10.022
8 C J Liu, M Y Li, J Q Wang, X T Zhou, Q T Guo, J M Yan, Y Z Li. Plasma methods for preparing green catalysts: Current status and perspective. Chinese Journal of Catalysis, 2016, 37(3): 340–348
https://doi.org/10.1016/S1872-2067(15)61020-8
9 H Q Li, J J Zou, C J Liu. Progress in hydrogen generation using plasmas. Progress in Chemistry, 2005, 17(1): 69–77
10 L Bian, L Zhang, R Xia, Z H Li. Enhanced low-temperature CO2 methanation activity on plasma-prepared Ni-based catalyst. Journal of Natural Gas Science and Engineering, 2015, 27: 1189–1194
https://doi.org/10.1016/j.jngse.2015.09.066
11 T J Fu, C D Huang, J Lv, Z H Li. Fischer-Tropsch performance of an SiO2-supported Co-based catalyst prepared by hydrogen dielectric-barrier discharge plasma. Plasma Science & Technology, 2014, 16(3): 232–238
https://doi.org/10.1088/1009-0630/16/3/11
12 S Park, W Choe, S Y Moon, S J Yoo. Electron characterization in weakly ionized collisional plasmas: From principles to techniques. Advances in Physics-X, 2018, 4(1): 1526114
13 J Ouyang, B Li, F He, D Dai. Nonlinear phenomena in dielectric barrier discharges: Pattern, striation and chaos. Plasma Science & Technology, 2018, 20(10): 103002
https://doi.org/10.1088/2058-6272/aad325
14 J P Borra. Review on water electro-sprays and applications of charged drops with focus on the corona-assisted cone-jet mode for high efficiency air filtration by wet electro-scrubbing of aerosols. Journal of Aerosol Science, 2018, 125: 208–236
https://doi.org/10.1016/j.jaerosci.2018.04.005
15 H H Yi, S Z Zhao, X L Tang, C Y Song, F Y Gao, B W Zhang, Z X Wang, Y R Zuo. Low-temperature hydrolysis of carbon disulfide using the Fe-Cu/AC catalyst modified by non-thermal plasma. Fuel, 2014, 128: 268–273
https://doi.org/10.1016/j.fuel.2014.03.021
16 M V Naseh, A A Khodadadi, Y Mortazavi, F Pourfayaz, O Alizadeh, M Maghrebi. Fast and clean functionalization of carbon nanotubes by dielectric barrier discharge plasma in air compared to acid treatment. Carbon, 2010, 48(5): 1369–1379
https://doi.org/10.1016/j.carbon.2009.12.027
17 Q Chen, T Kaneko, R Hatakeyama. Rapid synthesis of water-soluble gold nanoparticles with control of size and assembly using gas-liquid interfacial discharge plasma. Chemical Physics Letters, 2012, 521: 113–117
https://doi.org/10.1016/j.cplett.2011.11.065
18 C M Zhou, H Chen, Y B Yan, X L Jia, C J Liu, Y H Yang. Argon plasma reduced Pt nanocatalysts supported on carbon nanotube for aqueous phase benzyl alcohol oxidation. Catalysis Today, 2013, 211: 104–108
https://doi.org/10.1016/j.cattod.2013.04.006
19 C J Liu, Y Zhao, Y Z Li, D S Zhang, Z Chang, X H Bu. Perspectives on electron-assisted reduction for preparation of highly dispersed noble metal catalysts. ACS Sustainable Chemistry & Engineering, 2014, 2(1): 3–13
https://doi.org/10.1021/sc400376m
20 Y Ohkubo, Y Hamaguchi, S Seino, T Nakagawa, S Kageyama, J Kugai, H Nitani, K Ueno, T A Yamamoto. Preparation of carbon-supported PtCo nanoparticle catalysts for the oxygen reduction reaction in polymer electrolyte fuel cells by an electron-beam irradiation reduction method. Journal of Materials Science, 2013, 48(14): 5047–5054
https://doi.org/10.1007/s10853-013-7292-y
21 L Pastor-Perez, V Belda-Alcazar, C Marini, M M Pastor-Blas, A Sepulveda-Escribana, E V Ramos-Fernandez. Effect of cold Ar plasma treatment on the catalytic performance of Pt/CeO2 in water-gas shift reaction (WGS). Applied Catalysis B: Environmental, 2018, 225: 121–127
https://doi.org/10.1016/j.apcatb.2017.11.065
22 C Liu, J P Lan, F L Sun, Y H Zhang, J L Li, J P Hong. Promotion effects of plasma treatment on silica supports and catalyst precursors for cobalt Fischer-Tropsch catalysts. RSC Advances, 2016, 6(62): S7701–S7708
https://doi.org/10.1039/C6RA11605A
23 E C Neyts, K Ostrikov, M K Sunkara, A Bogaerts. Plasma catalysis: Synergistic effects at the nanoscale. Chemical Reviews, 2015, 115(24): 13408–13446
https://doi.org/10.1021/acs.chemrev.5b00362
24 Z Wang, Y Zhang, E C Neyts, X X Cao, X S Zhang, B W L Jang, C J Liu. Catalyst preparation with plasmas: How does it work? ACS Catalysis, 2018, 8(3): 2093–2110
https://doi.org/10.1021/acscatal.7b03723
25 M Sadakiyo, M Heima, T Yamamoto, S Matsumura, M Matsuura, S Sugimoto, K Kato, M Takata, M Yamauchi. Preparation of solid-solution type Fe-Co nanoalloys by synchronous deposition of Fe and Co using dual arc plasma guns. Dalton Transactions (Cambridge, England), 2015, 44(36): 15764–15768
https://doi.org/10.1039/C5DT02815A
26 N L Rosi, J Kim, M Eddaoudi, B L Chen, M O’Keeffe, O M Yaghi. Rod packings and metal-organic frameworks constructed from rod-shaped secondary building units. Journal of the American Chemical Society, 2005, 127(5): 1504–1518
https://doi.org/10.1021/ja045123o
27 A B Gilman, M S Piskarev, A A Kuznetsov, A N Ozerin. Modification of ultrahigh-molecular-weight polyethylene by low-temperature plasma. High Energy Chemistry, 2017, 51(2): 136–144
https://doi.org/10.1134/S0018143917020059
28 Y P Sun, Y Nie, J Yuan, A S Wu, J L Shen, D X Ji, F W Yu, J B Ji. Application of plasma technology in the reaction of methane carbon dioxide reforming to syngas. Chemical Industry and Engineering Progress, 2010, 29(S1): 295–300
29 W C Chung, M B Chang. Review of catalysis and plasma performance on dry reforming of CH4 and possible synergistic effects. Renewable & Sustainable Energy Reviews, 2016, 62: 13–31
https://doi.org/10.1016/j.rser.2016.04.007
30 T Zhou, K Jang, B W L Jang. Ionic liquid and plasma effects on SiO2 supported Pd for selective hydrogenation of acetylene. Catalysis Today, 2013, 211: 147–155
https://doi.org/10.1016/j.cattod.2013.02.008
31 C M Zhou, X Wang, X L Jia, H P Wang, C J Liu, Y H Yang. Nanoporous platinum grown on nickel foam by facile plasma reduction with enhanced electro-catalytic performance. Electrochemistry Communications, 2012, 18: 33–36
https://doi.org/10.1016/j.elecom.2012.01.029
32 E A Platonov, I G Bratchikova, V D Yagodovskii, Z V Murga. Carbon dioxide reforming of methane on a cobalt catalyst subjected to plasma-chemical treatment. Russian Journal of Physical Chemistry A, 2017, 91(8): 1422–1426
https://doi.org/10.1134/S003602441708026X
33 Y W Wu, W C Chung, M B Chang. Modification of Ni/gamma-Al2O3 catalyst with plasma for steam reforming of ethanol to generate hydrogen. International Journal of Hydrogen Energy, 2015, 40(25): 8071–8080
https://doi.org/10.1016/j.ijhydene.2015.04.053
34 B Zhu, B W L Jang. Insights into surface properties of non-thermal RF plasmas treated Pd/TiO2 in acetylene hydrogenation. Journal of Molecular Catalysis A Chemical, 2014, 395: 137–144
https://doi.org/10.1016/j.molcata.2014.08.015
35 A Movasati, S M Alavi, G Mazloom. Dry reforming of methane over CeO2-ZnAl2O4 supported Ni and Ni-Co nano-catalysts. Fuel, 2019, 236: 1254–1262
https://doi.org/10.1016/j.fuel.2018.09.069
36 K Song, M Lu, S Xu, C Chen, Y Zhan, D Li, C Au, L Jiang, K Tomishige. Effect of alloy composition on catalytic performance and coke-resistance property of Ni-Cu/Mg(Al)O catalysts for dry reforming of methane. Applied Catalysis B: Environmental, 2018, 239: 324–333
https://doi.org/10.1016/j.apcatb.2018.08.023
37 Z Li, S Das, P Hongmanorom, N Dewangan, M H Wai, S Kawi. Silica-based micro- and mesoporous catalysts for dry reforming of methane. Catalysis Science & Technology, 2018, 8(11): 2763–2778
https://doi.org/10.1039/C8CY00622A
38 X Tu, J C Whitehead. Plasma dry reforming of methane in an atmospheric pressure AC gliding arc discharge: Co-generation of syngas and carbon nanomaterials. International Journal of Hydrogen Energy, 2014, 39(18): 9658–9669
https://doi.org/10.1016/j.ijhydene.2014.04.073
39 M S Lim, Y N Chun. Carbon dioxide destruction with methane reforming by a novel plasma-catalytic converter. Plasma Chemistry and Plasma Processing, 2016, 36(5): 1211–1228
https://doi.org/10.1007/s11090-016-9727-0
40 X S Li, B Zhu, C Shi, Y Xu, A M Zhu. Carbon dioxide reforming of methane in kilohertz spark-discharge plasma at atmospheric pressure. AIChE Journal. American Institute of Chemical Engineers, 2011, 57(10): 2854–2860
https://doi.org/10.1002/aic.12472
41 Z P Zhou, J M Zhang, T H Ye, P H Zhao, W D Xia. Hydrogen production by reforming methane in a corona inducing dielectric barrier discharge and catalyst hybrid reactor. Chinese Science Bulletin, 2011, 56(20): 2162–2166
https://doi.org/10.1007/s11434-011-4485-0
42 X Li, X M Tao, Y X Yin. An atmospheric-pressure glow-discharge plasma jet and its application. IEEE Transactions on Plasma Science, 2009, 37(6): 759–763
https://doi.org/10.1109/TPS.2009.2016968
43 S Jo, D H Lee, Y H Song. Product analysis of methane activation using noble gases in a non-thermal plasma. Chemical Engineering Science, 2015, 130: 101–108
https://doi.org/10.1016/j.ces.2015.03.019
44 S Park, M Lee, J Bae, D Y Hong, Y K Park, Y K Hwang, M G Jeong, Y D Kim. Plasma-assisted non-oxidative conversion of methane over Mo/HZSM-5 catalyst in DBD reactor. Topics in Catalysis, 2017, 60(9-11): 735–742
https://doi.org/10.1007/s11244-017-0778-0
45 D Ray, P M K Reddy, S Challapalli. Glass beads packed DBD-plasma assisted dry reforming of methane. Topics in Catalysis, 2017, 60(12-14): 869–878
https://doi.org/10.1007/s11244-017-0751-y
46 K Zhang, T Mukhriza, X T Liu, P P Greco, E Chiremba. A study on CO2 and CH4 conversion to synthesis gas and higher hydrocarbons by the combination of catalysts and dielectric-barrier discharges. Applied Catalysis A, General, 2015, 502: 138–149
https://doi.org/10.1016/j.apcata.2015.06.002
47 X G Zheng, S Y Tan, L C Dong, S B Li, H M Chen, S A Wei. Experimental and kinetic investigation of the plasma catalytic dry reforming of methane over perovskite LaNiO3 nanoparticles. Fuel Processing Technology, 2015, 137: 250–258
https://doi.org/10.1016/j.fuproc.2015.02.003
48 W C Chung, I Y Tsao, M B Chang. Novel plasma photocatalysis process for syngas generation via dry reforming of methane. Energy Conversion and Management, 2018, 164: 417–428
https://doi.org/10.1016/j.enconman.2018.03.024
49 Y Xia, N Lu, B Wang, J Li, K Shang, N Jiang, Y Wu. Dry reforming of CO2-CH4 assisted by high-frequency AC gliding arc discharge: Electrical characteristics and the effects of different parameters. International Journal of Hydrogen Energy, 2017, 42(36): 22776–22785
https://doi.org/10.1016/j.ijhydene.2017.07.104
50 A M Montoro-Damas, J J Brey, M A Rodríguez, A R Gonzalez-Elipe, J Cotrino. Plasma reforming of methane in a tunable ferroelectric packed-bed dielectric barrier discharge reactor. Journal of Power Sources, 2015, 296: 268–275
https://doi.org/10.1016/j.jpowsour.2015.07.038
51 L J Jin, Y Li, Y Q Feng, H Q Hu, A M Nu. Integrated process of coal pyrolysis with CO2 reforming of methane by spark discharge plasma. Journal of Analytical and Applied Pyrolysis, 2017, 126: 194–200
https://doi.org/10.1016/j.jaap.2017.06.008
52 M F Mustafa, X D Fu, W J Lu, Y J Liu, Y Abbas, H T Wang, M T Arslan. Application of non-thermal plasma technology on fugitive methane destruction: Configuration and optimization of double dielectric barrier discharge reactor. Journal of Cleaner Production, 2018, 174: 670–677
https://doi.org/10.1016/j.jclepro.2017.10.283
53 H H Nguyen, A Nasonova, I W Nah, K S Kim. Analysis on CO2 reforming of CH4 by corona discharge process for various process variables. Journal of Industrial and Engineering Chemistry, 2015, 32: 58–62
https://doi.org/10.1016/j.jiec.2015.07.018
54 B W Wang, Q M Sun, Y J Lu, M L Yang, W J Yan. Steam reforming of dimethyl ether by gliding arc gas discharge plasma for hydrogen production. Chinese Journal of Chemical Engineering, 2014, 22(1): 104–112
https://doi.org/10.1016/S1004-9541(14)60020-3
55 S A Iwarere, V J Rohani, D Ramjugernath, L Fulcheri. Dry reforming of methane in a tip-tip arc discharge reactor at very high pressure. International Journal of Hydrogen Energy, 2015, 40(8): 3388–3401
https://doi.org/10.1016/j.ijhydene.2015.01.005
56 G H Xu, E Y Jiang, J Sheng. Technology and application of plasma. Beijing: Chemical Industry Press, 2006: 1–242 (in Chinese)
57 D Yap, J M Tatibouet, C Batiot-Dupeyrat. Catalyst assisted by non-thermal plasma in dry reforming of methane at low temperature. Catalysis Today, 2018, 299: 263–271
https://doi.org/10.1016/j.cattod.2017.07.020
58 J Sentek, K Krawczyk, M Mlotek, M Kalczewska, T Kroker, T Kolb, A Schenk, K H Gericke, K Schmidt-Szalowski. Plasma-catalytic methane conversion with carbon dioxide in dielectric barrier discharges. Applied Catalysis B: Environmental, 2010, 94(1-2): 19–26
https://doi.org/10.1016/j.apcatb.2009.10.016
59 J Kim, M S Abbott, D B Go, J C Hicks. Enhancing C‒H bond activation of methane via temperature-controlled, catalyst-plasma interactions. ACS Energy Letters, 2016, 1(1): 94–99
https://doi.org/10.1021/acsenergylett.6b00051
60 R Snoeckx, R Aerts, X Tu, A Bogaerts. Plasma-based dry reforming: A computational study ranging from the nanoseconds to seconds time scale. Journal of Physical Chemistry C, 2013, 117(10): 4957–4970
https://doi.org/10.1021/jp311912b
61 H H Kim, Y Teramoto, N Negishi, A Ogata. A multidisciplinary approach to understand the interactions of nonthermal plasma and catalyst: A review. Catalysis Today, 2015, 256: 13–22
https://doi.org/10.1016/j.cattod.2015.04.009
62 M Meinshausen, N Meinshausen, W Hare, S C B Raper, K Frieler, R Knutti, D J Frame, M R Allen. Greenhouse-gas emission targets for limiting global warming to 2°C. Nature, 2009, 458(7242): 1158–1162
https://doi.org/10.1038/nature08017
63 H D Matthews, N P Gillett, P A Stott, K Zickfeld. The proportionality of global warming to cumulative carbon emissions. Nature, 2009, 459(7248): 829–832
https://doi.org/10.1038/nature08047
64 M Wise, K Calvin, A Thomson, L Clarke, B Bond-Lamberty, R Sands, S J Smith, A Janetos, J Edmonds. Implications of limiting CO2 concentrations for land use and energy. Science, 2009, 324(5931): 1183–1186
https://doi.org/10.1126/science.1168475
65 Y W Lu, Q G Yan, J Han, B B Cao, J Street, F Yu. Fischer-Tropsch synthesis of olefin-rich liquid hydrocarbons from biomass-derived syngas over carbon-encapsulated iron carbide/iron nanoparticles catalyst. Fuel, 2017, 193: 369–384
https://doi.org/10.1016/j.fuel.2016.12.061
66 S R Foit, I C Vinke, L G J de Haart, R A Eichel. Power-to-syngas: An enabling technology for the transition of the energy system? Angewandte Chemie International Edition, 2017, 56(20): 5402–5411
https://doi.org/10.1002/anie.201607552
67 L Wang, Y H Yi, H C Guo, X Tu. Atmospheric pressure and room temperature synthesis of methanol through plasma-catalytic hydrogenation of CO2. ACS Catalysis, 2018, 8(1): 90–100
https://doi.org/10.1021/acscatal.7b02733
68 S Saeidi, N A S Amin, M R Rahimpour. Hydrogenation of CO2 to value-added products—A review and potential future developments. Journal of CO2 Utilization, 2014, 5: 66–81
69 C Federsel, R Jackstell, M Beller. State-of-the-art catalysts for hydrogenation of carbon dioxide. Angewandte Chemie International Edition, 2010, 49(36): 6254–6257
https://doi.org/10.1002/anie.201000533
70 I Dimitriou, P Garcia-Gutierrez, R H Elder, R M Cuellar-France, A Azapagic, R W K Allen. Carbon dioxide utilisation for production of transport fuels: Process and economic analysis. Energy & Environmental Science, 2015, 8(6): 1775–1789
https://doi.org/10.1039/C4EE04117H
71 I Omae. Aspects of carbon dioxide utilization. Catalysis Today, 2006, 115(1): 33–52
https://doi.org/10.1016/j.cattod.2006.02.024
72 P G Jessop, T Ikariya, R Noyori. Homogeneous catalytic-hydrogen of carbon dioxide. Nature, 1994, 368(6468): 231–233
https://doi.org/10.1038/368231a0
73 G Alexmills, F Steffgen. Catalytic methanation. Catalysis Reviews, 1974, 8(1): 159–210
https://doi.org/10.1080/01614947408071860
74 S Paulussen, B Verheyde, X Tu, C De Bie, T Martens, D Petrovic, A Bogaerts, B Sels. Conversion of carbon dioxide to value-added chemicals in atmospheric pressure dielectric barrier discharges. Plasma Sources Science & Technology, 2010, 19(3): 34015–34016
https://doi.org/10.1088/0963-0252/19/3/034015
75 N R Pinhão, A Janeco, J B Branco. Influence of helium on the conversion of methane and carbon dioxide in a dielectric barrier discharge. Plasma Chemistry and Plasma Processing, 2011, 31(3): 427–439
https://doi.org/10.1007/s11090-011-9294-3
76 B Eliasson, U Kogelschatz, B Z Xue, L M Zhou. Hydrogenation of carbon dioxide to methanol with a discharge-activated catalyst. Industrial & Engineering Chemistry Research, 1998, 37(8): 3350–3357
https://doi.org/10.1021/ie9709401
77 A Gómez-Ramírez, V J Rico, J Cotrino, A Gonzalez-Elipe, R M Lambert. Low temperature production of formaldehyde from carbon dioxide and ethane by plasma-assisted catalysis in a ferroelectrically moderated dielectric barrier discharge reactor. ACS Catalysis, 2014, 4(2): 402–408
https://doi.org/10.1021/cs4008528
78 K Van Laer, A Bogaerts. Improving the conversion and energy efficiency of carbon dioxide splitting in a zirconia-packed dielectric barrier discharge reactor. Energy Technology (Weinheim), 2015, 3(10): 1038–1044
https://doi.org/10.1002/ente.201500127
79 M Ramakers, I Michielsen, R Aerts, V Meynen, A Bogaerts. Effect of argon or helium on the CO2 conversion in a dielectric barrier discharge. Plasma Processes and Polymers, 2015, 12(8): 755–763
https://doi.org/10.1002/ppap.201400213
80 G J van Rooij, D C M van den Bekerom, N den Harder, T Minea, G Berden, W A Bongers, R Engeln, M F Graswinckel, E Zoethout, M C M V de Sandena. Taming microwave plasma to beat thermodynamics in CO2 dissociation. Faraday Discussions, 2015, 183: 233–248
https://doi.org/10.1039/C5FD00045A
81 W Bongers, H Bouwmeester, B Wolf, F Peeters, S Welzel, D van den Bekerom, N den Harder, A Goede, M Graswinckel, P W Green, et al.Plasma-driven dissociation of CO2 for fuel synthesis. Plasma Processes and Polymers, 2017, 14(6): 1600126
https://doi.org/10.1002/ppap.201600126
82 T Silva, N Britun, T Godfroid, R Snyders. Optical characterization of a microwave pulsed discharge used for dissociation of CO2. Plasma Sources Science & Technology, 2014, 23(2): 217–221
https://doi.org/10.1088/0963-0252/23/2/025009
83 L F Spencer, A D Gallimore. CO2 dissociation in an atmospheric pressure plasma/catalyst system: A study of efficiency. Plasma Sources Science & Technology, 2013, 22(1): 015019
https://doi.org/10.1088/0963-0252/22/1/015019
84 M Ramakers, G Trenchev, S Heijkers, W Z Wang, A Bogaerts. Gliding arc plasmatron: Providing an alternative method for carbon dioxide conversion. ChemSusChem, 2017, 10(12): 2642–2652
https://doi.org/10.1002/cssc.201700589
85 K Li, J L Liu, X S Li, X B Zhu, A M Zhu. Warm plasma catalytic reforming of biogas in a heat-insulated reactor: Dramatic energy efficiency and catalyst auto-reduction. Chemical Engineering Journal, 2016, 288: 671–679
https://doi.org/10.1016/j.cej.2015.12.036
86 J L Liu, H W Park, W J Chung, W S Ahn, D W Park. Simulated biogas oxidative reforming in AC-pulsed gliding arc discharge. Chemical Engineering Journal, 2016, 285: 243–251
https://doi.org/10.1016/j.cej.2015.09.100
87 J L Liu, H W Park, W J Chung, D W Park. High-efficient conversion of CO2 in AC-pulsed tornado gliding arc plasma. Plasma Chemistry and Plasma Processing, 2016, 36(2): 437–449
https://doi.org/10.1007/s11090-015-9649-2
88 V Shapoval, E Marotta, C Ceretta, N Konjevic, M Ivkovic, M Schiorlin, C Paradisi. Development and testing of a self-triggered spark reactor for plasma driven dry reforming of methane. Plasma Processes and Polymers, 2014, 11(8): 787–797
https://doi.org/10.1002/ppap.201400007
89 B Zhu, X S Li, C Shi, J L Liu, T L Zhao, A M Zhu. Pressurization effect on dry reforming of biogas in kilohertz spark-discharge plasma. International Journal of Hydrogen Energy, 2012, 37(6): 4945–4954
https://doi.org/10.1016/j.ijhydene.2011.12.062
90 B Zhu, X S Li, J L Liu, X B Zhu, A M Zhu. Kinetics study on carbon dioxide reforming of methane in kilohertz spark-discharge plasma. Chemical Engineering Journal, 2015, 264: 445–452
https://doi.org/10.1016/j.cej.2014.11.112
91 C J Lee, D H Lee, T Kim. Enhancement of methanation of carbon dioxide using dielectric barrier discharge on a ruthenium catalyst at atmospheric conditions. Catalysis Today, 2017, 293: 97–104
https://doi.org/10.1016/j.cattod.2017.01.022
92 M Nizio, R Benrabbah, M Krzak, R Debek, M Motak, S Caavadias, M E Galvez, P Da Costa. Low temperature hybrid plasma-catalytic methanation over Ni-Ce-Zr hydrotalcite-derived catalysts. Catalysis Communications, 2016, 83: 14–17
https://doi.org/10.1016/j.catcom.2016.04.023
93 M Nizio, A Albarazi, S Cavadias, J Amouroux, M E Galvez, P Da Costa. Hybrid plasma-catalytic methanation of CO2 at low temperature over ceria zirconia supported Ni catalysts. International Journal of Hydrogen Energy, 2016, 41(27): 11584–11592
https://doi.org/10.1016/j.ijhydene.2016.02.020
94 Y R Zhang, K Van Laer, E C Neyts, A Bogaerts. Can plasma be formed in catalyst pores? A modeling investigation. Applied Catalysis B: Environmental, 2016, 185: 56–67
https://doi.org/10.1016/j.apcatb.2015.12.009
95 P J Bruggeman, M J Kushner, B R Locke, J G E Gardeniers, W G Graham, D B Graves, R C H M Hofmann-Caris, D Maric, J P Reid, E Ceriani, et al.Plasma-liquid interactions: A review and roadmap. Plasma Sources Science & Technology, 2016, 25(5): 1–125
https://doi.org/10.1088/0963-0252/25/5/053002
96 P J Bruggeman, U Czarnetzki. Retrospective on ‘The 2012 Plasma Roadmap’. Journal of Physics. D, Applied Physics, 2016, 49(43): 431001
https://doi.org/10.1088/0022-3727/49/43/431001
97 M A A Aziz, A A Jalil, S Triwahyono, R R Mukti, Y H Taufiq-Yap, M R Sazegar. Highly active Ni-promoted mesostructured silica nanoparticles for CO2 methanation. Applied Catalysis B: Environmental, 2014, 147: 359–368
https://doi.org/10.1016/j.apcatb.2013.09.015
98 J Ren, H L Guo, J Y Yang, Z F Qin, J Y Lin, Z Li. Insights into the mechanisms of CO2 methanation on Ni(111) surfaces by density functional theory. Applied Surface Science, 2015, 351: 504–516
https://doi.org/10.1016/j.apsusc.2015.05.173
99 G D Weatherbee, C H Bartholomew. Hydrogenation of CO2 on group VIII metals. II. Kinetics and mechanism of CO2 hydrogenation on nickel. Journal of Catalysis, 1982, 77(2): 460–472
https://doi.org/10.1016/0021-9517(82)90186-5
100 D C Upham, A R Derk, S Sharma, H Metiu, E W McFarland. CO2 methanation by Ru-doped ceria: The role of the oxidation state of the surface. Catalysis Science & Technology, 2015, 5(3): 1783–1791
https://doi.org/10.1039/C4CY01106F
101 F Azzolina-Jury, D Bento, C Henriques, F Thibault-Starzyk. Chemical engineering aspects of plasma-assisted CO2 hydrogenation over nickel zeolites under partial vacuum. Journal of CO2 Utilization, 2017, 22: 97–109
102 Q Jiang, Q Lin, Z T Huang. Study on carbon dioxide methanation catalyst III. Catalytic reaction mechanism under the action of Ni-Ru- rare earth/ZrO2. Journal of Catalysis, 1997, (3): 189–139 (in Chinese)
103 E Jwa, S B Lee, H W Lee, Y S Mok. Plasma-assisted catalytic methanation of CO and CO2 over Ni-zeolite catalysts. Fuel Processing Technology, 2013, 108: 89–93
https://doi.org/10.1016/j.fuproc.2012.03.008
104 F W Speckmann, D Mueller, J Koehler, K P Birke. Low pressure glow-discharge methanation with an ancillary oxygen ion conductor. Journal of CO2 Utilization, 2017, 19: 130–136
105 R Aerts, W Somers, A Bogaerts. Carbon dioxide splitting in a dielectric barrier discharge plasma: A combined experimental and computational study. ChemSusChem, 2015, 8(4): 702–716
https://doi.org/10.1002/cssc.201402818
106 F Azzolina-Jury, F Thibault-Starzyk. Mechanism of low pressure plasma-assisted CO2 hydrogenation over Ni-USY by microsecond time-resolved FTIR spectroscopy. Topics in Catalysis, 2017, 60(19): 1709–1721
https://doi.org/10.1007/s11244-017-0849-2
107 X L Yan, J H Bao, B R Zhao, C Yuan, T Hu, C F Huang, Y N Li. CO dissociation on Ni/SiO2: The formation of different carbon materials. Topics in Catalysis, 2017, 60(12-14): 890–897
https://doi.org/10.1007/s11244-017-0754-8
108 B Dai, W M Gong, X L Zhang, L Zhang, R He. Studies on methanation of CO2 under synergism plasma with catalyst. Chemical Journal of Chinese Universities, 2001, 22(5): 817–820 (in Chinese)
109 L Jing, Z H Li. Conversion of natural gas to C hydrocarbons via cold plasma technology. Journal of Energy Chemistry, 2010, 19(4): 375–379
110 D J Xu, Z H Li, J Lv, B W Wang, G H Xu. Methane conversion to C2 and higher hydrocarbons via dielectric-barrier discharge plasma at atmospheric pressure. Chemical Reaction Engineering & Technology, 2006, 22(4): 356–360
111 D H Lee, Y H Song, K T Kim, J O Lee. Comparative study of methane activation process by different plasma sources. Plasma Chemistry and Plasma Processing, 2013, 33(4): 647–661
https://doi.org/10.1007/s11090-013-9456-6
112 X L Zhang, L B Di, Q Zhou. Methane conversion under cold plasma over Pd-containing ionic liquids immobilized on gamma-Al2O3. Journal of Energy Chemistry, 2013, 22(3): 446–450
https://doi.org/10.1016/S2095-4956(13)60058-3
113 J S Wilkes. A short history of ionic liquids-from molten salts to neoteric solvents. Green Chemistry, 2002, 4(2): 73–80
https://doi.org/10.1039/b110838g
114 T Nozaki, A Hattori, K Okazaki. Partial oxidation of methane using a microscale non-equilibrium plasma reactor. Catalysis Today, 2004, 98(4): 607–616
https://doi.org/10.1016/j.cattod.2004.09.053
115 D W Wang, T C Ma. Catalytic methane coupling of C2 hydrocarbons by glow discharge plasma. Nuclear Fusion and Plasma Physics, 2006, 4: 327–330 (in Chinese)
116 V Goujard, J M Tatibouët, C Batiot-Dupeyrat. Carbon dioxide reforming of methane using a dielectric barrier discharge reactor: Effect of helium dilution and kinetic model. Plasma Chemistry and Plasma Processing, 2011, 31(2): 315–325
https://doi.org/10.1007/s11090-010-9283-y
117 K Thanyachotpaiboon, S Chavadej, T A Caldwell, L L Lobban, R G Mallinson. Conversion of methane to higher hydrocarbons in AC nonequilibrium plasmas. AIChE Journal. American Institute of Chemical Engineers, 1998, 44(10): 2252–2257
https://doi.org/10.1002/aic.690441014
118 A J Zhang, A M Zhu, J Guo, Y Xu, C Shi. Conversion of greenhouse gases into syngas via combined effects of discharge activation and catalysis. Chemical Engineering Journal, 2010, 156(3): 601–606
https://doi.org/10.1016/j.cej.2009.04.069
119 S Jo, D H Lee, S Kang, Y H Song. Methane activation using noble gases in a dielectric barrier discharge reactor. Physics of Plasmas, 2013, 20(8): 14–31
https://doi.org/10.1063/1.4818795
120 S Jo, D H Lee, K T Kim, W S Kang, Y H Song. Methane activation using Kr and Xe in a dielectric barrier discharge reactor. Physics of Plasmas, 2014, 21(10): 14–31
https://doi.org/10.1063/1.4897171
121 J J Sudnick, D L Corwin. VOC control techniques. Hazardous Waste & Hazardous Materials, 1994, 11(1): 129–143
https://doi.org/10.1089/hwm.1994.11.129
122 R A Keller, J A Dyer. Abating halogenated VOCs. Chemical Engineering (Albany, N.Y.), 1998, 105(1): 100–105
123 H H Kim, A Ogata, S Futamura. Complete oxidation of volatile organic compounds (VOCs) using plasma-driven catalysis and oxygen plasma. International Journal of Plasma Environmental Science & Technology, 2007, 1: 46–51
124 J A Dyer, K Mulholland. Toxic air emissions. What is the full cost to your business? Chemical Engineering Environmental Engineering, 1994, 101 (S2): 4–8
125 M Okubo, T Yamamoto, T Kuroki, H Fukumoto. Electric air cleaner composed of nonthermal plasma reactor and electrostatic precipitator. IEEE Transactions on Industry Applications, 2001, 37(5): 1505–1511
https://doi.org/10.1109/28.952528
126 C L Chang, T S Lin. Decomposition of toluene and acetone in packed dielectric barrier discharge reactors. Plasma Chemistry and Plasma Processing, 2005, 25(3): 227–243
https://doi.org/10.1007/s11090-004-3034-x
127 T Ohshima, T Kondo, N Kitajima, M Sato. Adsorption and plasma decomposition of gaseous acetaldehyde on fibrous activated carbon. IEEE Transactions on Industry Applications, 2010, 46(1): 23–28
https://doi.org/10.1109/TIA.2009.2036525
128 A Vandenbroucke, M Mora, R Morent, N De Geyter, C Leys. TCE abatement with a plasma-catalysis combined system using MnO2 as catalyst. 21st International Symposium on Plasma Chemistry, 2013, 156: 94–100
129 M T N Dinh, J M Giraudon, J F Lamonier, A Vandenbroucke, N De Geyter, C Leys, R Morent. Plasma-catalysis of low TCE concentration in air using LaMnO3+d as catalyst. Applied Catalysis B: Environmental, 2014, 147(147): 904–911
https://doi.org/10.1016/j.apcatb.2013.07.008
130 A A Assadi, A Bouzaza, C Vallet, D Wolbert. Use of DBD plasma, photocatalysis, and combined DBD plasma/photocatalysis in a continuous annular reactor for isovaleraldehyde elimination-Synergetic effect and byproducts identification. Chemical Engineering Journal, 2014, 254(13): 124–132
https://doi.org/10.1016/j.cej.2014.05.101
131 A Ogata, D Ito, K Mizuno, S Kushiyama, A Gal, T Yamamoto. Effect of coexisting components on aromatic decomposition in a packed-bed plasma reactor. Applied Catalysis A, General, 2002, 236(1): 9–15
https://doi.org/10.1016/S0926-860X(02)00280-6
132 T Yamamoto, K Mizuno, I Tamori, A Ogata, M Nifuku, M Michalska, G Prieto. Catalysis-assisted plasma technology for carbon tetrachloride destruction. IEEE Transactions on Industry Applications, 1996, 32(1): 100–105
https://doi.org/10.1109/28.485819
133 A Ogata, K Yamanouchi, K Mizuno, S Kushiyama, T Yamamoto. Oxidation of dilute benzene in an alumina hybrid plasma reactor at atmospheric pressure. Plasma Chemistry and Plasma Processing, 1999, 19(3): 383–394
https://doi.org/10.1023/A:1021820403362
134 A Ogata, D Ito, K Mizuno, S Kushiyamaet, T Yamamoto. Removal of dilute benzene using a zeolite-hybrid plasma reactor. IEEE Transactions on Industry Applications, 2001, 37(4): 959–964
https://doi.org/10.1109/28.936384
135 S M Oh, H H Kim, H Einaga, A Ogata, S Futamura, D W Park. Zeolite-combined plasma reactor for decomposition of toluene. Thin Solid Films, 2006, 506-507: 418–422
https://doi.org/10.1016/j.tsf.2005.08.105
136 T Kuroki, K Hirai, S Matsuoka, J Y Kim, M Okubo. Oxidation system of adsorbed VOCs on adsorbent using nonthermal plasma flow. IEEE Transactions on Industry Applications, 2011, 47(4): 1916–1921
https://doi.org/10.1109/TIA.2011.2155013
137 F D Feng, Y Y Zheng, X J Shen, Q Z Zheng, S L Dai, X M Zhang, Y F Huang, Z Liu, K P Yan. Characteristics of back corona discharge in a honeycomb catalyst and its application for treatment of volatile organic compounds. Environmental Science & Technology, 2015, 49(11): 6831–6837
https://doi.org/10.1021/acs.est.5b00447
138 S Sultana, A M Vandenbroucke, C Leys, N De Geyter, R Morent. Abatement of VOCs with alternate adsorption and plasma-assisted regeneration: A review. Catalysts, 2015, 5(2): 718–746
https://doi.org/10.3390/catal5020718
139 M Schiavon, V Torretta, A Casazza, M Ragazzi. Non-thermal plasma as an innovative option for the abatement of volatile organic compounds: A review. Water, Air, and Soil Pollution, 2017, 228(10): 388
https://doi.org/10.1007/s11270-017-3574-3
140 A M Vandenbroucke, R Morent, N De Geyter, C Leys. Non-thermal plasmas for non-catalytic and catalytic VOC abatement. Journal of Hazardous Materials, 2011, 195: 30–54
https://doi.org/10.1016/j.jhazmat.2011.08.060
141 X X Feng, H X Liu, C He, Z X Shen, T B Wang. Synergistic effects and mechanism of a non-thermal plasma catalysis system in volatile organic compound removal: A review. Catalysis Science & Technology, 2018, 8(4): 936–954
https://doi.org/10.1039/C7CY01934C
142 F Yang, Y F Li, T Liu, K Xu, L Q Zhang, C M Xu, J S Gao. Plasma synthesis of Pd nanoparticles decorated-carbon nanotubes and its application in Suzuki reaction. Chemical Engineering Journal, 2013, 226: 52–58
https://doi.org/10.1016/j.cej.2013.04.036
143 H F Liang, A N Gandi, D H Anjum, X B Wang, U Schwingenschlogl, H N Alshareef. Plasma-assisted synthesis of NiCoP for efficient overall water splitting. Nano Letters, 2016, 16(12): 7718–7725
https://doi.org/10.1021/acs.nanolett.6b03803
144 S Y Wang, X Y Wang, L Wang, Q S Pu, W B Du, G S Guo. Plasma-assisted alignment in the fabrication of microchannel-array-based in-tube solid-phase microextraction microchips packed with TiO2 nanoparticles for phosphopeptide analysis. Analytica Chimica Acta, 2018, 1018: 70–77
https://doi.org/10.1016/j.aca.2018.02.018
145 S J Li, L L Li, Z Chen, G P Xue, L G Jiang, K Zheng, J C Chen, R Li, C Yuan, M D Huang. A novel purification procedure for recombinant human serum albumin expressed in Pichia pastoris. Protein Expression and Purification, 2018, 149: 37–42
https://doi.org/10.1016/j.pep.2018.04.012
146 Z Cong, S Lee. Study of mechanical behavior of BNNT-reinforced aluminum composites using molecular dynamics simulations. Composite Structures, 2018, 194: 80–86
https://doi.org/10.1016/j.compstruct.2018.03.103
147 S Cogal, S E Ela, A K Ali, G C Cogal, M Micusik, M Omastova, A U Oksuz. Polyfuran-based multi-walled carbon nanotubes and graphene nanocomposites as counter electrodes for dye-sensitized solar cells. Research on Chemical Intermediates, 2018, 44(5): 3325–3335
https://doi.org/10.1007/s11164-018-3309-0
148 B Qiu, C Yang, W H Guo, Y Xu, Z B Liang, D Ma, R Q Zou. Highly dispersed Co-based Fischer-Tropsch synthesis catalysts from metal-organic frameworks. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(17): 8081–8086
https://doi.org/10.1039/C7TA02128C
149 L Zhu, X Q Liu, H L Jiang, L B Sun. Metal-organic frameworks for heterogeneous basic catalysis. Chemical Reviews, 2017, 117(12): 8129–8176
https://doi.org/10.1021/acs.chemrev.7b00091
150 P Jing, S Y Zhang, W J Chen, L Wang, W Shi, P Cheng. A macroporous metal-organic framework with enhanced hydrophobicity for efficient oil adsorption. Chemistry-a European Journal, 2018, 24(15): 3754–3759
https://doi.org/10.1002/chem.201704929
151 J A Carrasco, J Romero, G Abellan, J Hernandez-Saz, S I Molina, C Marti-Gastaldo, E Coronado. Small-pore driven high capacitance in a hierarchical carbon via carbonization of Ni-MOF-74 at low temperatures. Chemical Communications, 2016, 52(58): 9141–9144
https://doi.org/10.1039/C6CC02252A
152 Y Q Li, Q Gao, L J Zhang, Y S Zhou, Y X Zhong, Y Ying, M C Zhang, C Q Huang, Y A Wang. H5PV2Mo10O40 encapsulated in MIL-101(Cr): Facile synthesis and characterization of rationally designed composite materials for efficient decontamination of sulfur mustard. Dalton Transactions (Cambridge, England), 2018, 47(18): 6394–6403
https://doi.org/10.1039/C8DT00572A
153 W L Zhen, B Li, G X Lu, J T Ma. Enhancing catalytic activity and stability for CO2 methanation on Ni@MOF-5 via control of active species dispersion. Chemical Communications, 2015, 51(9): 1728–1731
https://doi.org/10.1039/C4CC08733J
154 Y J Li, J P Miao, X J Sun, J Xiao, Y W Li, H H Wang, Q B Xia, Z Li. Mechanochemical synthesis of Cu-BTC@GO with enhanced water stability and toluene adsorption capacity. Chemical Engineering Journal, 2016, 298: 191–197
https://doi.org/10.1016/j.cej.2016.03.141
155 L Zeng, L Xiao, Y K Long, X W Shi. Trichloroacetic acid-modulated synthesis of polyoxometalate@UiO-66 for selective adsorption of cationic dyes. Journal of Colloid and Interface Science, 2018, 516: 274–283
https://doi.org/10.1016/j.jcis.2018.01.070
156 M Sadakiyo, S Yoshimaru, H Kasai, K Kato, M Takata, M Yamauchi. A new approach for the facile preparation of metal-organic framework composites directly contacting with metal nanoparticles through arc plasma deposition. Chemical Communications, 2016, 52(54): 8385–8388
https://doi.org/10.1039/C6CC02729F
157 K S Park, Z Ni, A P Côté, J Y Choi, R D Huang, F J Uribe-Romo, H K Chae, M O’Keeffe, O M Yaghi. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(27): 10186–10191
https://doi.org/10.1073/pnas.0602439103
158 G Férey, C Mellot-Draznieks, C Serre, F Millange, J Dutour, S Surble, I Margiolaki. A chromium terephthalate-based solid with unusually large pore volumes and surface area. Science, 2005, 309(5743): 2040–2042
https://doi.org/10.1126/science.1116275
159 M Kandiah, S Usseglio, S Svelle, U Olsbye, K P Lillerud, M Tilset. Post-synthetic modification of the metal-organic framework compound UiO-66. Journal of Materials Chemistry, 2010, 20(44): 9848–9851
https://doi.org/10.1039/c0jm02416c
160 T Fujitani, I Nakamura, T Akita, M Okumura, M Haruta. Hydrogen dissociation by gold clusters. Angewandte Chemie, 2009, 121(50): 9679–9682
https://doi.org/10.1002/ange.200905380
161 M Bahri, F Haghighat, S Rohani, H Kazemian. Metal organic frameworks for gas-phase VOCs removal in a NTP-catalytic reactor. Chemical Engineering Journal, 2017, 320: 308–318
https://doi.org/10.1016/j.cej.2017.02.087
162 B H Li, T H Yu, C Y Weng, C C Yang, C H Lin, S Lee. Thermal and plasma synthesis of metal oxide nanoparticles from MOFs with SERS characterization. Vibrational Spectroscopy, 2016, 84: 146–152
https://doi.org/10.1016/j.vibspec.2016.03.015
163 S Dou, C L Dong, Z Hu, Y C Huang, J L Chen, L Tao, D F Yan, D W Chen, C H Shen, S L Chou, et al.Atomic-scale CoOx species in metal-organic frameworks for oxygen evolution reaction. Advanced Functional Materials, 2017, 27(36): 1702546
https://doi.org/10.1002/adfm.201702546
[1] Yang Su, Liping Lü, Weifeng Shen, Shun’an Wei. An efficient technique for improving methanol yield using dual CO2 feeds and dry methane reforming[J]. Front. Chem. Sci. Eng., 2020, 14(4): 614-628.
[2] Xiuhui Huang, Junfeng Li, Jun Wang, Zeqiu Li, Jiayin Xu. Catalytic combustion of methane over a highly active and stable NiO/CeO2 catalyst[J]. Front. Chem. Sci. Eng., 2020, 14(4): 534-545.
[3] J. Christopher Whitehead. Plasma-catalysis: Is it just a question of scale?[J]. Front. Chem. Sci. Eng., 2019, 13(2): 264-273.
[4] Elena Graczová, Branislav Šulgan, Samuel Barabas, Pavol Steltenpohl. Methyl acetate–methanol mixture separation by extractive distillation: Economic aspects[J]. Front. Chem. Sci. Eng., 2018, 12(4): 670-682.
[5] Alberto T. Penteado, Mijin Kim, Hamid R. Godini, Erik Esche, Jens-Uwe Repke. Techno-economic evaluation of a biogas-based oxidative coupling of methane process for ethylene production[J]. Front. Chem. Sci. Eng., 2018, 12(4): 598-618.
[6] Guilan Chen, Xingfu Song, Shuying Sun, Yanxia Xu, Jianguo Yu. Solubility and diffusivity of CO2 in n-butanol+ N235 system and absorption mechanism of CO2 in a coupled reaction-extraction process[J]. Front. Chem. Sci. Eng., 2016, 10(4): 480-489.
[7] Kathryn A. MUMFORD,Yue WU,Kathryn H. SMITH,Geoffrey W. STEVENS. Review of solvent based carbon-dioxide capture technologies[J]. Front. Chem. Sci. Eng., 2015, 9(2): 125-141.
[8] Jing WANG, Hua WANG, Zhenzhen HAN, Jinyu HAN. Electrodeposited porous Pb electrode with improved electrocatalytic performance for the electroreduction of CO2 to formic acid[J]. Front. Chem. Sci. Eng., 2015, 9(1): 57-63.
[9] Mo LI,Xiaobin JIANG,Gaohong HE. Application of membrane separation technology in post-combustion carbon dioxide capture process[J]. Front. Chem. Sci. Eng., 2014, 8(2): 233-239.
[10] Yan LI,Zhehao WEI,Yong WANG. Ni/MgO catalyst prepared via dielectric-barrier discharge plasma with improved catalytic performance for carbon dioxide reforming of methane[J]. Front. Chem. Sci. Eng., 2014, 8(2): 133-140.
[11] Stefania MOIOLI, Laura A. PELLEGRINI, Simone GAMBA, Ben LI. Improved rate-based modeling of carbon dioxide absorption with aqueous monoethanolamine solution[J]. Front Chem Sci Eng, 2014, 8(1): 123-131.
[12] Jingcai ZHAO, Xingfu SONG, Ze SUN, Jianguo YU. Simulation on thermodynamic state of ammonia carbonation at low temperature and low pressure[J]. Front Chem Sci Eng, 2013, 7(4): 447-455.
[13] Piyawat PUE-ON, Vissanu MEEYOO, Thirasak RIRKSOMBOOON. Methane partial oxidation over NiO-MgO/Ce0.75Zr0.25O2 catalysts[J]. Front Chem Sci Eng, 2013, 7(3): 289-296.
[14] Anton SHALYGIN, Evgenii PAUKSHTIS, Evgenii KOVALYOV, Bair BAL’ZHINIMAEV. Light olefins synthesis from С12 paraffins via oxychlorination processes[J]. Front Chem Sci Eng, 2013, 7(3): 279-288.
[15] Zhikai LI, Zhangfeng QIN, Yagang ZHANG, Zhiwei WU, Hui WANG, Shuna LI, Mei DONG, Weibin FAN, Jianguo WANG. A logic-based controller for the mitigation of ventilation air methane in a catalytic flow reversal reactor[J]. Front Chem Sci Eng, 2013, 7(3): 347-356.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed