Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2020, Vol. 14 Issue (1) : 97-104    https://doi.org/10.1007/s11705-019-1828-x
COMMUNICATION
Synthesis and properties of water-soluble 1,9-dialkyl-substituted BF2 azadipyrromethene fluorophores
Dan Wu, Gonzalo Durán-Sampedro, Donal F. O’Shea()
Department of Chemistry, Royal College of Surgeons in Ireland (RCSI), Dublin 2, Ireland
 Download: PDF(1267 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Bis-alkylsulfonic acid and polyethylene glycol (PEG)-substituted BF2 azadipyrromethenes have been synthesized by an adaptable and versatile route. Only four synthetic stages were required to produce the penultimate fluorophore compounds, containing either two alcohol or two terminal alkyne substituents. The final synthetic step introduced either sulfonic acid or polyethylene glycol groups to impart aqueous solubility. Sulfonic acid groups were introduced by reaction of the bis-alcohol-substituted fluorophore with sulfur trioxide, and a double Cu(I)-catalyzed cycloaddition reaction between the bis-alkyne fluorophore and methoxypolyethylene glycol azide yielded a neutral bis-pegylated derivative. Both fluorophores exhibited excellent near-infrared (NIR) photophysical properties in methanol and aqueous solutions. Live cell microscopy imaging revealed efficient uptake and intracellular labelling of cells for both fluorophores. Their simple synthesis, with potential for last-step structural modifications, makes the present NIR-active azadipyrromethene derivatives potentially useful as NIR fluorescence imaging probes for live cells.

Keywords NIR-fluorophores      live cell imaging      NIR-AZA     
Corresponding Author(s): Donal F. O’Shea   
Just Accepted Date: 30 August 2019   Online First Date: 30 October 2019    Issue Date: 20 January 2020
 Cite this article:   
Dan Wu,Gonzalo Durán-Sampedro,Donal F. O’Shea. Synthesis and properties of water-soluble 1,9-dialkyl-substituted BF2 azadipyrromethene fluorophores[J]. Front. Chem. Sci. Eng., 2020, 14(1): 97-104.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-019-1828-x
https://academic.hep.com.cn/fcse/EN/Y2020/V14/I1/97
Fig.1  Different substituent patterns and corresponding spectroscopic characteristics in CHCl3 for NIR-AZA fluorophores.
Fig.2  Bis-alcohol and bis-alkyne substituted NIR-AZA targets 1a and 1b.
Fig.3  Scheme 1 Synthesis of azadipyrromethene precursors.
Fig.4  Scheme 2 Synthesis of NIR-AZA fluorophores 1a and 1b.
NIR-AZA labs,max /nm
CHCl3 (MeOH)
lflu,max /nm
CHCl3 (MeOH)
Ffa)
CHCl3 (MeOH)
1a 660 (650) 695 (678) 0.27 (0.14)
1b 653 (651) 680 (677) 0.21 (0.16)
Tab.1  Spectroscopic properties of 1a and 1b compounds
Fig.5  Absorption and emission spectra of 1a (red) and 1b (black) at a concentration of 5 µm.
Fig.6  Scheme 3 Synthesis of water-soluble NIR-AZA derivatives.
Fluorophore Solvent labs, max /nm lflu, max /nm Ff
MB PBS 670 690 0.01
6a MeOH 650 675 0.12
6a PBS 651 690 0.03
6a DMEM 651 691 0.03
6b MeOH 651 679 0.12
6b PBS 657 694 0.06
6b DMEM 658 694 0.05
Tab.2  Spectroscopic properties of 6a, 6b, and MBa)
Fig.7  Absorption and emission spectra of 6a (red), 6b (black), and MB (blue) in PBS at a concentration of 5 µm. Inset: Emission image of cuvette containing 6a in PBS.
Fig.8  Widefield microscopy images of live HeLa cells upon incubation with 6a and 6b for 1 h. Top: fluorescence images of cells stained with 6a (5 µmol/L); Bottom: fluorescence images of 6b (5 µmol/L) in HeLa cells. The right panels in each row display enlargements of the areas within the red boxes shown in the left panels. Scale bars= 20 mm.
1 L Yuan, W Lin, K Zheng, L He, W Huang. Far-red to near infrared analyte-responsive fluorescent probes based on organic fluorophore platforms for fluorescence imaging. Chemical Society Reviews, 2013, 42(2): 622–661
https://doi.org/10.1039/C2CS35313J
2 V J Pansare, S Hejazi, W J Faenza, R K Prud’homme. Review of long-wavelength optical and NIR imaging materials: Contrast agents, fluorophores and multifunctional nano carriers. Chemistry of Materials, 2012, 24(5): 812–827
https://doi.org/10.1021/cm2028367
3 Y Ge, D F O’Shea. Azadipyrromethenes: From traditional dye chemistry to leading edge applications. Chemical Society Reviews, 2016, 45(14): 3846–3864
https://doi.org/10.1039/C6CS00200E
4 J Killoran, L Allen, J F Gallagher, W M Gallagher, D F O’Shea. Synthesis of BF2 chelates of tetraarylazadipyrromethenes and evidence for their photodynamic therapeutic behavior. Chemical Communications, 2002, 17: 1862–1863
https://doi.org/10.1039/B204317C
5 M Grossi, A Palma, S O McDonnell, M J Hall, D K Rai, J Muldoon, D F O’Shea. Mechanistic insight into the formation of tetraarylazadipyrromethenes. Journal of Organic Chemistry, 2012, 77(20): 9304–9312
https://doi.org/10.1021/jo301972w
6 A E O’Connor, M M Mc Gee, Y Likar, V Ponomarev, J J Callanan, D F O’Shea, A T Byrne, W M Gallagher. Mechanism of cell death mediated by a BF2-chelated tetraaryl-azadipyrromethene photodynamic therapeutic: Dissection of the apoptotic pathway in vitro and in vivo. International Journal of Cancer, 2012, 130(3): 705–715
https://doi.org/10.1002/ijc.26073
7 S Cheung, D F O’Shea. Directed self-assembly of fluorescence responsive nanoparticles and their use for real-time surface and cellular imaging. Nature Communications, 2017, 8(1): 1885
https://doi.org/10.1038/s41467-017-02060-8
8 D Wu, D F O’Shea. Synthesis and properties of BF2-3,3′-dimethyldiarylazadipyrromethene near-infrared fluorophores. Organic Letters, 2013, 15(13): 3392–3395
https://doi.org/10.1021/ol401434c
9 J Olmsted. Calorimetric determinations of absolute fluorescence quantum yields. Journal of Physical Chemistry, 1979, 83(20): 2581–2584
https://doi.org/10.1021/j100483a006
10 J E Berlier, A Rothe, G Buller, J Bradford, D R Gray, B J Filanoski, W G Telford, S Yue, J Liu, C Y Cheung, et al. Quantitative comparison of long-wavelength alexa fluor dyes to cy dyes: Fluorescence of the dyes and their bioconjugates. Journal of Histochemistry and Cytochemistry, 2003, 51(12): 1699–1712
https://doi.org/10.1177/002215540305101214
11 D Wu, S Cheung, G Sampedro, Z L Chen, R A Cahill, D F O’Shea. A DIE responsive NIR-fluorescent cell membrane probe. Biochimica et Biophysica Acta–Biomembranes, 2018, 1860(11): 2272–2280
https://doi.org/10.1016/j.bbamem.2018.09.006
12 D Wu, H C Daly, E Conroy, B Li, W M Gallagher, R A Cahill, D F O’Shea. PEGylated BF2-Azadipyrromethene (NIR-AZA) fluorophores, for intraoperative imaging. European Journal of Medicinal Chemistry, 2019, 161: 343–353
https://doi.org/10.1016/j.ejmech.2018.10.046
13 H C Daly, G Sampedro, C Bon, D Wu, G Ismail, R A Cahill, D F O’Shea. BF2-azadipyrromethene NIR-emissive fluorophores with research and clinical potential. European Journal of Medicinal Chemistry, 2017, 135: 392–400
https://doi.org/10.1016/j.ejmech.2017.04.051
14 M P Monopoli, A Zendrini, D Wu, S Cheung, G Sampedro, B Ffrench, J Nolan, O Piskareva, R L Stalings, S Ducoli, et al. Endogenous exosome labelling with an amphiphilic NIR-fluorescent probe. Chemical Communications, 2018, 54(52): 7219–7222
https://doi.org/10.1039/C8CC02135J
15 D B Denney, L C Smith, J Song, C J Rossi, C D Hall. Reactions of phosphoranes with peracids. Journal of Organic Chemistry, 1963, 28(3): 778–780
https://doi.org/10.1021/jo01038a044
16 Y Yamamoto, K Kurihara, A Yamada, M Takahashi, Y Takahashi, N Miyaura. Intramolecular allylboration of γ-(ω-formylalkoxy)allylboronates for syntheses of trans- or cis-2-(ethenyl)tetrahydropyran-3-ol and 2-(ethenyl)oxepan-3-ol. Tetrahedron, 2003, 59(4): 537–542
https://doi.org/10.1016/S0040-4020(02)01557-0
17 F P Verbeek, J R van der Vorst, B E Schaafsma, R J Swijnenburg, K N Gaarenstroom, H W Elzevier, C J van de Velde, J V Frangioni, A L Vahrmeijer. Intraoperative near infrared fluorescence guided identification of the ureters using low dose methylene blue: A first in human experience. Journal of Urology, 2013, 190(2): 574–579
https://doi.org/10.1016/j.juro.2013.02.3187
18 M Al-Taher, J van den Bos, R M Schols, N D Bouvy, L P Stassen. Fluorescence ureteral visualization in human laparoscopic colorectal surgery using methylene blue. Journal of Laparoendoscopic & Advanced Surgical Techniques. Part A., 2016, 26(11): 870–875
https://doi.org/10.1089/lap.2016.0264
19 A Matsui, E Tanaka, H S Choi, V Kianzad, S Gioux, S J Lomnes, J V Frangioni. Real-time, near-infrared, fluorescence-guided identification of the ureters using methylene blue. Surgery, 2010, 148(1): 78–86
https://doi.org/10.1016/j.surg.2009.12.003
[1] FCE-18105-OF-WD_suppl_1 Download
[2] FCE-18105-WD-Cell_vesicles_stained_with_6a Download
[3] FCE-18105-WD-Cell_vesicles_stained_with_6b Download
[4] FCE-18105-WD-Z-stack_of_cell_with_6a Download
[5] FCE-18105-WD-Z-stack_of_cell_with_6b Download
[6] FCE-18105-WD-Z-stack_of_cell_with_6a Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed