Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2019, Vol. 13 Issue (4) : 654-664    https://doi.org/10.1007/s11705-019-1832-1
REVIEW ARTICLE
Current understanding and applications of the cold sintering process
Tong Yu1, Jiang Cheng2, Lu Li2, Benshuang Sun3, Xujin Bao1, Hongtao Zhang1()
1. Department of Materials, Loughborough University, Loughborough, LE11 3TU, UK
2. Research Institute for New Materials Technology, Chongqing University of Arts and Sciences, Chongqing 402160, China
3. Henan Province Industrial Technology Research Institute of Resources and Materials, Zhengzhou University, Zhengzhou 450001, China
 Download: PDF(2015 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In traditional ceramic processing techniques, high sintering temperature is necessary to achieve fully dense microstructures. But it can cause various problems including warpage, overfiring, element evaporation, and polymorphic transformation. To overcome these drawbacks, a novel processing technique called “cold sintering process (CSP)” has been explored by Randall et al. CSP enables densification of ceramics at ultra-low temperature (≤300°C) with the assistance of transient aqueous solution and applied pressure. In CSP, the processing conditions including aqueous solution, pressure, temperature, and sintering duration play critical roles in the densification and properties of ceramics, which will be reviewed. The review will also include the applications of CSP in solid-state rechargeable batteries. Finally, the perspectives about CSP is proposed.

Keywords cold sintering process      processing variables      solid-state rechargeable batteries     
Corresponding Author(s): Hongtao Zhang   
Just Accepted Date: 21 August 2019   Online First Date: 18 October 2019    Issue Date: 04 December 2019
 Cite this article:   
Tong Yu,Jiang Cheng,Lu Li, et al. Current understanding and applications of the cold sintering process[J]. Front. Chem. Sci. Eng., 2019, 13(4): 654-664.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-019-1832-1
https://academic.hep.com.cn/fcse/EN/Y2019/V13/I4/654
Fig.1  Schematics of CSP mechanism at various stages. Reproduced from ref. [2] with permission, copyright 2016 John Wiley and Sons.
Fig.2  Diagram of Gibbs free energy in a single component system. Reproduced from ref. [30] with permission, copyright 2001 Elsevier.
Fig.3  Theoretical predominance diagram for BaTiO3–H2O–CO2 system. Reproduced from ref. [37] with permission, copyright 2005 John Wiley and Sons.
Fig.4  Plots of relative density vs. pressure of CSP of NaCl and Mg-doped NASICON. Reproduced from ref. [32] and ref. [48] with permissions, copyright 2005 John Wiley and Sons, and 2018 Elsevier.
Fig.5  Plots of relative density vs. temperature of Li1.5Al0.5Ge1.5(PO4)3. Reproduced from ref. [45] with permission, copyright 2017 John Wiley and Sons.
Techniques Composition Water content /wt-% Heating rate /(°C·min1) Pressure /MPa Holding time /min Relative density /%
FAST/SPS ZnO/H2O 1.6 100 150 5 91.8
1.6 20 150 5 87.9
CSP 1.6 20 300 5 88.0
3.2 20 300 5 93.4
Tab.1  Summary of CSP conditions and relative densities of ZnO samples by field assisted sintering technique (FAST)/spark plasma sintering (SPS) and hand pressing techniques. Reproduced from ref. [36] with permission, copyright 2018 Elsevier.
Fig.6  TEM images of microstructure evolution of BaTiO3 cold-sintered at 180°C and annealed at 700°C and 900°C. Reproduced from ref. [25] with permission, copyright 2016 American Chemical Society.
Fig.7  (a) Plot of relative density vs. temperature of cold-sintered and dry-pressed Mg-doped NASICON specimens. Reproduced from ref. [48] with permission, copyright 2018 Elsevier; (b) Electrical conductivity of ZnO sample after cold sintered and post-annealed at different temperatures in argon and air. Reproduced from ref. [52] with permission, copyright 2018 Elsevier.
1 J Guo, H Guo, A L Baker, M T Lanagan, E R Kupp, G L Messing, C A Randall. Cold sintering: A paradigm shift for processing and integration of ceramics. Angewandte Chemie International Edition, 2016, 55(38): 11457–11461
https://doi.org/10.1002/anie.201605443
2 H Guo, A Baker, J Guo, C A Randall. Cold sintering process: A novel technique for low-temperature ceramic processing of ferroelectrics. Journal of the American Ceramic Society, 2016, 99(11): 3489–3507
https://doi.org/10.1111/jace.14554
3 D Richerson, D W Richerson, W E Lee. Modern Ceramic Engineering: Properties, Processing, and Use in Design. Roca Rato: CRC Press, 2005, 7–19
4 J Zhang, W Zhang, E Zhao, H J Jacques. Study of high-density AZO ceramic target. Materials Science in Semiconductor Processing, 2011, 14(3–4): 189–192
https://doi.org/10.1016/j.mssp.2011.02.004
5 L Y Han, Y C Shu. Study of large-scale aluminium-doped zinc oxide ceramic targets prepared by slip casting. Advances in Materials Science and Engineering, 2016, 2016: 6410848
https://doi.org/10.1155/2016/6410848
6 Y H Chou, J L H Chau, W L Wang, C S Chen, S H Wang, C C Yang. Preparation and characterization of solid-state sintered aluminum-doped zinc oxide with different alumina contents. Bulletin of Materials Science, 2011, 34(3): 477–482
https://doi.org/10.1007/s12034-011-0112-6
7 O Guillon, J Gonzalez-Julian, B Dargatz, T Kessel, G Schierning, J Räthel, M Herrmann. Field-assisted sintering technology/spark plasma sintering: Mechanisms, materials, and technology developments. Advanced Engineering Materials, 2014, 16(7): 830–849
https://doi.org/10.1002/adem.201300409
8 M Kikuchi, T Kato, K Ohkura, N Ayai, J Fujikami, K Fujino, S Kobayashi, E Ueno, K Yamazaki, S Yamade, et al. Recent development of drastically innovative BSCCO wire (DI-BISCCO). Physica C: Superconductivity and Its Applications, 2006, 445-448: 717–721
https://doi.org/10.1016/j.physc.2006.06.014
9 M L Gu, H Xu, J Zhang, Z Wei, A Xu. Influence of hot pressing sintering temperature and time on microstructure and mechanical properties of TiB2/TiN tool material. Materials Science and Engineering A, 2012, 545: 1–5
https://doi.org/10.1016/j.msea.2012.03.002
10 R E Jaeger, L Egerton. Hot pressing of potassium-sodium niobates. Journal of the American Ceramic Society, 1962, 45(5): 209–213
https://doi.org/10.1111/j.1151-2916.1962.tb11127.x
11 A S Helle, K E Easterling, M F Ashby. Hot-isostatic pressing diagrams: New developments. Acta Metallurgica, 1985, 33(12): 2163–2174
https://doi.org/10.1016/0001-6160(85)90177-4
12 H V Atkinson, S Davies. Fundamental aspects of hot isostatic pressing: An overview. Metallurgical and Materials Transactions. A, Physical Metallurgy and Materials Science, 2000, 31(12): 2981–3000
https://doi.org/10.1007/s11661-000-0078-2
13 M Cologna, B Rashkova, R Raj. Flash sintering of nanograin zirconia in<5 s at 850°C. Journal of the American Ceramic Society, 2010, 93(11): 3556–3559
https://doi.org/10.1111/j.1551-2916.2010.04089.x
14 M Cologna, A L G Prette, R Raj. Flash-sintering of cubic yttria-stabilized zirconia at 750°C for possible use in SOFC manufacturing. Journal of the American Ceramic Society, 2011, 94(2): 316–319
https://doi.org/10.1111/j.1551-2916.2010.04267.x
15 Z A Munir, U Anselmi-Tamburini, M Ohyanagi. The effect of electric field and pressure on the synthesis and consolidation of materials: A review of the spark plasma sintering method. Journal of Materials Science, 2006, 41(3): 763–777
https://doi.org/10.1007/s10853-006-6555-2
16 J F Li, K Wang, B P Zhang, L M Zhang. Ferroelectric and piezoelectric properties of fine-grained Na0.5K0.5NbO3 lead-free piezoelectric ceramics prepared by spark plasma sintering. Journal of the American Ceramic Society, 2006, 89(2): 706–709
https://doi.org/10.1111/j.1551-2916.2005.00743.x
17 M Oghbaei, O Mirzaee. Microwave versus conventional sintering: A review of fundamentals, advantages and applications. Journal of Alloys and Compounds, 2010, 494(1-2): 175–189
https://doi.org/10.1016/j.jallcom.2010.01.068
18 D D Upadhyaya, A Ghosh, G K Dey, R Prasad, A K Suri. Microwave sintering of zirconia ceramics. Journal of Materials Science, 2001, 36(19): 4707–4710
https://doi.org/10.1023/A:1017966703650
19 J Jiang, L Chen, S Bai, Q Yao, Q Wang. Thermoelectric properties of textured p-type (Bi,Sb)2Te3 fabricated by spark plasma sintering. Scripta Materialia, 2005, 52(5): 347–351
https://doi.org/10.1016/j.scriptamat.2004.10.038
20 R Chaim, Z Shen, M Nygren. Transparent nanocrystalline MgO by rapid and low-temperature spark plasma sintering. Journal of Materials Research, 2004, 19(9): 2527–2531
https://doi.org/10.1557/JMR.2004.0334
21 E Zapata-Solvas, S Bonilla, P R Wilshaw, R I Todd. Preliminary investigation of flash sintering of SiC. Journal of the European Ceramic Society, 2013, 33(13-14): 2811–2816
https://doi.org/10.1016/j.jeurceramsoc.2013.04.023
22 M Ohyanagi, T Yamamoto, H Kitaura, Y Kodera, T Ishii, Z A Munir. Consolidation of nanostructured SiC with disorder-order transformation. Scripta Materialia, 2004, 50(1): 111–114
https://doi.org/10.1016/j.scriptamat.2003.09.027
23 F K Van Dijen, E Mayer. Liquid phase sintering of silicon carbide. Journal of the European Ceramic Society, 1996, 16(4): 413–420
https://doi.org/10.1016/0955-2219(95)00129-8
24 D Sciti, A Bellosi. Effects of additives on densification, microstructure and properties of liquid-phase sintered silicon carbide. Journal of Materials Science, 2000, 35(15): 3849–3855
https://doi.org/10.1023/A:1004881430804
25 H Guo, J Guo, A Baker, C A Randall. Hydrothermal-assisted cold sintering process: A new guidance for low-temperature ceramic sintering. ACS Applied Materials & Interfaces, 2016, 8(32): 20909–20915
https://doi.org/10.1021/acsami.6b07481
26 H Guo, T J M Bayer, J Guo, A Baker, C A Randall. Cold sintering process for 8 mol-% Y2O3-stabilized ZrO2 ceramics. Journal of the European Ceramic Society, 2017, 37(5): 2303–2308
https://doi.org/10.1016/j.jeurceramsoc.2017.01.011
27 X Zhao, J Guo, K Wang, T Herisson De Beauvoir, B Li, C A Randall. Introducing a ZnO-PTFE (polymer) nanocomposite varistor via the cold sintering process. Advanced Engineering Materials, 2018, 20(7): 1700902
https://doi.org/10.1002/adem.201700902
28 J Guo, S S Berbano, H Guo, A L Baker, M T Lanagan, C A Randall. Cold sintering process of composites: Bridging the processing temperature gap of ceramic and polymer materials. Advanced Functional Materials, 2016, 26(39): 7115–7121
https://doi.org/10.1002/adfm.201602489
29 J A Liu, C H Li, J J Shan, J M Wu, R F Gui, Y S Shi. Preparation of high-density InGaZnO4 target by the assistance of cold sintering. Materials Science in Semiconductor Processing, 2018, 84: 17–23
https://doi.org/10.1016/j.mssp.2018.04.030
30 K Byrappa, M Yoshimura. Handbook of Hydrothermal Technology.Oxford: Elsevier, 2013, 29
31 M N Rahaman. Ceramic Processing. New York: CRC Press, 2017, 375–403
32 W B Hong, L Li, M Cao, X M Chen. Plastic deformation and effects of water in room-temperature cold sintering of NaCl microwave dielectric ceramics. Journal of the American Ceramic Society, 2018, 101(9): 4038–4043
https://doi.org/10.1111/jace.15572
33 F Bouville, A R Studart. Geologically-inspired strong bulk ceramics made with water at room temperature. Nature Communications, 2017, 8(1): 14655
https://doi.org/10.1038/ncomms14655
34 S Lewin. The Solubility Product Principle: An Introduction to Its Uses and Limitations. London: Interscience Publishers, 1960, 11–21
35 J H Seo, J Guo, H Guo, K Verlinde, D S B Heidary, R Rajagopalan, C A Randall. Cold sintering of a Li-ion cathode: LiFePO4-composite with high volumetric capacity. Ceramics International, 2017, 43(17): 15370–15374
https://doi.org/10.1016/j.ceramint.2017.08.077
36 J Gonzalez-Julian, K Neuhaus, M Bernemann, J Pereira da Silva, A Laptev, M Bram, O Guillon. Unveiling the mechanisms of cold sintering of ZnO at 250°C by varying applied stress and characterizing grain boundaries by Kelvin probe force microscopy. Acta Materialia, 2018, 144: 116–128
https://doi.org/10.1016/j.actamat.2017.10.055
37 P Bendale, S Venigalla, J R Ambrose, E D Verink Jr, J H Adair. Preparation of barium titanate films at 55°C by an electrochemical method. Journal of the American Ceramic Society, 1993, 76(10): 2619–2627
https://doi.org/10.1111/j.1151-2916.1993.tb03990.x
38 S Funahashi, J Guo, H Guo, K Wang, A L Baker, K Shiratsuyu, C A Randall. Demonstration of the cold sintering process study for the densification and grain growth of ZnO ceramics. Journal of the American Ceramic Society, 2017, 100(2): 546–553
https://doi.org/10.1111/jace.14617
39 H Guo, A Baker, J Guo, C A Randall. Protocol for ultralow-temperature ceramic sintering: An integration of nanotechnology and the cold sintering process. ACS Nano, 2016, 10(11): 10606–10614
https://doi.org/10.1021/acsnano.6b03800
40 D Wang, H Guo, C S Morandi, C A Randall, S Trolier-McKinstry. Cold sintering and electrical characterization of lead zirconate titanate piezoelectric ceramics. APL Materials, 2018, 6(1): 016101
https://doi.org/10.1063/1.5004420
41 J P Ma, X M Chen, W Q Ouyang, J Wang, H Li, J L Fang. Microstructure, dielectric, and energy storage properties of BaTiO3 ceramics prepared via cold sintering. Ceramics International, 2018, 44(4): 4436–4441
https://doi.org/10.1016/j.ceramint.2017.12.044
42 Y Hakuta, H Ura, H Hayashi, K Arai. Continuous production of BaTiO3 nanoparticles by hydrothermal synthesis. Industrial & Engineering Chemistry Research, 2005, 44(4): 840–846
https://doi.org/10.1021/ie049424i
43 T Yosenick. Synthesis and colloidal properties of anisotropic hydrothermal barium titanate. Dissertation for the Doctoral Degree. Pennsylvania: Pennsylvania State University, 2005, 16–20
44 R Boston, J Guo, S Funahashi, A L Baker, I M Reaney, C A Randall. Reactive intermedihate phase cold sintering in strontium titanate. RSC Advances, 2018, 8(36): 20372–20378
https://doi.org/10.1039/C8RA03072C
45 S S Berbano, J Guo, H Guo, M T Lanagan, C A Randall. Cold sintering process of Li1.5Al0.5Ge1.5(PO4)3 solid electrolyte. Journal of the American Ceramic Society, 2017, 100(5): 2123–2135
https://doi.org/10.1111/jace.14727
46 T Sato, M Shimada. Transformation of ceria-doped tetragonal zirconia polycrystals by annealing in water. American Ceramic Society Bulletin, 1985, 64(10): 1382–1384
47 H Guo, T J M Bayer, J Guo, A Baker, C A Randall. Current progress and perspectives of applying cold sintering process to ZrO2-based ceramics. Scripta Materialia, 2017, 136: 141–148
https://doi.org/10.1016/j.scriptamat.2017.02.004
48 H Leng, J Huang, J Nie, J Luo. Cold sintering and ionic conductivities of Na3.256Mg0.128Zr1.872Si2PO12 solid electrolytes. Journal of Power Sources, 2018, 391: 170–179
https://doi.org/10.1016/j.jpowsour.2018.04.067
49 N Neves, R Barros, E Antunes, J Calado, E Fortunato, R Martins, I Ferreira. Aluminum doped zinc oxide sputtering targets obtained from nanostructured powders: Processing and application. Journal of the European Ceramic Society, 2012, 32(16): 4381–4391
https://doi.org/10.1016/j.jeurceramsoc.2012.08.007
50 D Munz, T Fett. Ceramics: Mechanical Properties, Failure Behaviour, Materials Selection. New York: Springer Science & Business Media, 2013, 137–154
51 J Xu, Z Yang, X Zhang, H Wang, H Xu. Grain size control in ITO targets and its effect on electrical and optical properties of deposited ITO films. Journal of Materials Science Materials in Electronics, 2014, 25(2): 710–716
https://doi.org/10.1007/s10854-013-1633-0
52 Y Jing, N Luo, S Wu, K Han, X Wang, L Miao, Y Wei. Remarkably improved electrical conductivity of ZnO ceramics by cold sintering and post-heat-treatment. Ceramics International, 2018, 44(16): 20570–20574
https://doi.org/10.1016/j.ceramint.2018.07.192
53 D Wang, D Zhou, S Zhang, Y Vardaxoglou, W G Whittow, D Cadman, I M Reaney. Cold-sintered temperature stable Na0.5Bi0.5MoO4-Li2MoO4 microwave composite ceramics. ACS Sustainable Chemistry & Engineering, 2018, 6(2): 2438–2444
https://doi.org/10.1021/acssuschemeng.7b03889
54 I J Induja, M T Sebastian. Microwave dielectric properties of mineral sillimanite obtained by conventional and cold sintering process. Journal of the European Ceramic Society, 2017, 37(5): 2143–2147
https://doi.org/10.1016/j.jeurceramsoc.2017.01.007
55 I J Induja, M T Sebastian. Microwave dielectric properties of cold sintered Al2O3-NaCl composite. Materials Letters, 2018, 211: 55–57
https://doi.org/10.1016/j.matlet.2017.09.083
56 J Guo, H Guo, D S B Heidary, S Funahashi, C A Randall. Semiconducting properties of cold sintered V2O5 ceramics and Co-sintered V2O5-PEDOT:PSS composites. Journal of the European Ceramic Society, 2017, 37(4): 1529–1534
https://doi.org/10.1016/j.jeurceramsoc.2016.11.021
57 J Guo, N Pfeiffenberger, A Beese, A Rhoades, L Gao, A Baker, K Wang, A Bolvari, C A Randall. Cold sintering Na2Mo2O7 ceramic with polyetherimide (PEI) polymer to realize high performance composites and integrated multilayer circuits. ACS Applied Nano Materials, 2018, 1(8): 3837–3844
https://doi.org/10.1021/acsanm.8b00609
58 D S B Heidary, J Guo, J H Seo, H Guo, R Rajagopalan, C A Randall. Microstructures and electrical properties of V2O5 and carbon-nanofiber composites fabricated by cold sintering process. Japanese Journal of Applied Physics, 2018, 57(2): 025702
https://doi.org/10.7567/JJAP.57.025702
59 H Guo, J Guo, A Baker, C A Randall. Cold sintering process for ZrO2-based ceramics: Significantly enhanced densification evolution in yttria-doped ZrO2. Journal of the American Ceramic Society, 2017, 100(2): 491–495
https://doi.org/10.1111/jace.14593
60 J H Seo, K Verlinde, J Guo, D S B Heidary, R Rajagopalan, T E Mallouk, C A Randall. Cold sintering approach to fabrication of high rate performance binderless LiFePO4 cathode with high volumetric capacity. Scripta Materialia, 2018, 146: 267–271
https://doi.org/10.1016/j.scriptamat.2017.12.005
61 H Nakaya, M Iwasaki, T Herisson de Beauvoir, C A Randall. Applying cold sintering process to a proton electrolyte material: CsH2PO4. Journal of the European Ceramic Society, 2019, 39(2-3): 396–401
https://doi.org/10.1016/j.jeurceramsoc.2018.09.001
62 A Baker, H Guo, J Guo, C Randall. Utilizing the cold sintering process for flexible-printable electroceramic device fabrication. Journal of the American Ceramic Society, 2016, 99(10): 3202–3204
https://doi.org/10.1111/jace.14467
63 M Mazaheri, A M Zahedi, S K Sadrnezhaad. Two-step sintering of nanocrystalline ZnO compacts: Effect of temperature on densification and grain growth. Journal of the American Ceramic Society, 2008, 91(1): 56–63
https://doi.org/10.1111/j.1551-2916.2007.02029.x
64 H Cheng, X J Xu, H H Hng, J Ma. Characterization of Al-doped ZnO thermoelectric materials prepared by RF plasma powder processing and hot press sintering. Ceramics International, 2009, 35(8): 3067–3072
https://doi.org/10.1016/j.ceramint.2009.04.010
65 T Seiyama, N Yamazoe, H Arai. Ceramic humidity sensors. Sensors and Actuators, 1983, 4: 85–96
https://doi.org/10.1016/0250-6874(83)85012-4
66 K M Abraham, Z Jiang. A polymer electrolyte-based rechargeable lithium/oxygen battery. Journal of the Electrochemical Society, 1996, 143(1): 1–5
https://doi.org/10.1149/1.1836378
67 D Capsoni, M Bini, S Ferrari, E Quartarone, P Mustarelli. Recent advances in the development of Li-air batteries. Journal of Power Sources, 2012, 220: 253–263
https://doi.org/10.1016/j.jpowsour.2012.07.123
68 K Meier, T Laino, A Curioni. Solid-state electrolytes: Revealing the mechanisms of Li-ion conduction in tetragonal and cubic LLZO by first-principles calculations. Journal of Physical Chemistry C, 2014, 118(13): 6668–6679
https://doi.org/10.1021/jp5002463
69 X F Zhang, K X Wang, X Wei, J S Chen. Carbon-coated V2O5 nanocrystals as high performance cathode material for lithium ion batteries. Chemistry of Materials, 2011, 23(24): 5290–5292
https://doi.org/10.1021/cm202812z
70 K I Park, H M Song, Y Kim, S Mho, W I Cho, I H Yeo. Electrochemical preparation and characterization of V2O5/polyaniline composite film cathodes for Li battery. Electrochimica Acta, 2010, 55(27): 8023–8029
https://doi.org/10.1016/j.electacta.2009.12.047
71 W D Richards, L J Miara, Y Wang, J C Kim, G Ceder. Interface stability in solid-state batteries. Chemistry of Materials, 2016, 28(1): 266–273
https://doi.org/10.1021/acs.chemmater.5b04082
[1] Bilyaminu Suleiman, Qinghua Yu, Yulong Ding, Yongliang Li. Fabrication of form stable NaCl-Al2O3 composite for thermal energy storage by cold sintering process[J]. Front. Chem. Sci. Eng., 2019, 13(4): 727-735.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed