Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2020, Vol. 14 Issue (1) : 76-89    https://doi.org/10.1007/s11705-019-1833-0
RESEARCH ARTICLE
Diversity-oriented synthesis of blue emissive nitrogen heterocycles and their conjugation with carbon nano-onions
Viviana Maffeis1, Lisa Moni2, Daniele Di Stefano2, Silvia Giordani1,3(), Renata Riva4()
1. Nano Carbon Materials, Istituto Italiano di Tecnologia (IIT), 10144 Torino, Italy
2. Department of Chemistry and Industrial Chemistry, University of Genova, 16146 Genova, Italy
3. School of Chemical Sciences, Dublin City University,?Dublin 9,?Ireland
4. Department of Pharmacy, University of Genova, 16147 Genova, Italy
 Download: PDF(1184 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The search for new fluorescent molecules for possible applications as functional p-electron systems and their conjugation with different nanomaterials is nowadays of paramount importance to broaden the availability of materials with different properties. Herein we present a diversity-oriented approach to heterocyclic luminophores based on a multicomponent Ugi reaction followed by a Pd-mediated cascade sequence. The new molecules are coupled to carbon nano-onions, and hybrid systems represent the first example of blue emitters conjugated with these carbon nanoparticles.

Keywords carbon nano-onions      multicomponent reactions      blue emitters      fluorescence      isoquinolines     
Corresponding Author(s): Silvia Giordani,Renata Riva   
Just Accepted Date: 29 April 2019   Online First Date: 26 June 2019    Issue Date: 20 January 2020
 Cite this article:   
Viviana Maffeis,Lisa Moni,Daniele Di Stefano, et al. Diversity-oriented synthesis of blue emissive nitrogen heterocycles and their conjugation with carbon nano-onions[J]. Front. Chem. Sci. Eng., 2020, 14(1): 76-89.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-019-1833-0
https://academic.hep.com.cn/fcse/EN/Y2020/V14/I1/76
Fig.1  Scheme 1 Synthetic strategy to furo[2,3-c]isoquinolines 2
Fig.2  Scheme 2 Synthesis of furo[2,3-c]isoquinolines 21–23
Fig.3  Scheme 3 Ligation of fluorophores 21–23 to ox-CNOs
Fig.4  (a) TGA analysis of CNOs before (ox-CNO) and after ligation (1-CNO, 2-CNO, 3-CNO), and (b) absorption and (c) emission spectra of fluorophores (21, 22 and 23) before and after ligation.
Fig.5  Effective hydrodynamic diameter obtained from DLS measurements of 1-CNO, 2-CNO and 3-CNO
1 H W Kroto, J R Heath, S C O’Brien, R F Curl, R E Smalley. C60: Buckminsterfullerene. Nature, 1985, 318(6042): 162–163
https://doi.org/10.1038/318162a0
2 D Ugarte. Curling and closure of graphitic networks under electron-beam irradiation. Nature, 1992, 359(6397): 707–709
https://doi.org/10.1038/359707a0
3 D Ugarte. Onion-like graphitic particles. Carbon, 1995, 33(7): 989–993
https://doi.org/10.1016/0008-6223(95)00027-B
4 O Mykhailiv, H Zubyk, M E Plonska-Brzezinska. Carbon nano-onions: Unique carbon nanostructures with fascinating properties and their potential applications. Inorganica Chimica Acta, 2017, 468: 49–66
https://doi.org/10.1016/j.ica.2017.07.021
5 A Palkar, F Melin, C M Cardona, B Elliott, A K Naskar, D D Edie, A Kumbhar, L Echegoyen. Reactivity differences between carbon nano onions (cnos) prepared by different methods. Chemistry, an Asian Journal, 2007, 2(5): 625–633
https://doi.org/10.1002/asia.200600426
6 V L Kuznetsov, I L Zilberberg, Y V Butenko, A L Chuvilin, B Segall. Theoretical study of the formation of closed curved graphite-like structures during annealing of diamond surface. Journal of Applied Physics, 1999, 86(2): 863–870
https://doi.org/10.1063/1.370816
7 N Sano, H Wang, I Alexandrou, M Chhowalla, K B K Teo, G A J Amaratunga, K Iimura. Properties of carbon onions produced by an arc discharge in water. Journal of Applied Physics, 2002, 92(5): 2783–2788
https://doi.org/10.1063/1.1498884
8 I Alexandrou, H Wang, N Sano, G A J Amaratunga. Structure of carbon onions and nanotubes formed by arc in liquids. Journal of Chemical Physics, 2004, 120(2): 1055–1058
https://doi.org/10.1063/1.1629274
9 D Dorobantu, P M Bota, I Boerasu, D Bojin, M Enachescu. Pulse laser ablation system for carbon nano-onions fabrication. Surface Engineering and Applied Electrochemistry, 2014, 50(5): 390–394
https://doi.org/10.3103/S1068375514050044
10 X H Chen, F M Deng, J X Wang, H S Yang, G T Wu, X B Zhang, J C Peng, W Z Li. New method of carbon onion growth by radio-frequency plasma-enhanced chemical vapor deposition. Chemical Physics Letters, 2001, 336(3): 201–204
https://doi.org/10.1016/S0009-2614(01)00085-9
11 J Bartelmess, S Giordani. Carbon nano-onions (multi-layer fullerenes): Chemistry and applications. Beilstein Journal of Nanotechnology, 2014, 5: 1980–1998
https://doi.org/10.3762/bjnano.5.207
12 V Georgakilas, D M Guldi, R Signorini, R Bozio, M Prato. Organic functionalization and optical properties of carbon onions. Journal of the American Chemical Society, 2003, 125(47): 14268–14269
https://doi.org/10.1021/ja0342805
13 Y Liu, R L Vander Wal, V N Khabashesku. Functionalization of carbon nano-onions by direct fluorination. Chemistry of Materials, 2007, 19(4): 778–786
https://doi.org/10.1021/cm062177j
14 A S Rettenbacher, M W Perpall, L Echegoyen, J Hudson, D W Smith. Radical addition of a conjugated polymer to multilayer fullerenes (carbon nano-onions). Chemistry of Materials, 2007, 19(6): 1411–1417
https://doi.org/10.1021/cm0626132
15 C T Cioffi, A Palkar, F Melin, A Kumbhar, L Echegoyen, M Melle-Franco, F Zerbetto, G M A Rahman, C Ehli, V Sgobba, D M Guldi, M Prato. A carbon nano-onion–ferrocene donor–acceptor system: Synthesis, characterization and properties. Chemistry (Weinheim an der Bergstrasse, Germany), 2009, 15(17): 4419–4427
https://doi.org/10.1002/chem.200801818
16 L Zhou, C Gao, D Zhu, W Xu, F F Chen, A Palkar, L Echegoyen, E S W Kong. Facile functionalization of multilayer fullerenes (carbon nano-onions) by nitrene chemistry and “grafting from” strategy. Chemistry (Weinheim an der Bergstrasse, Germany), 2009, 15(6): 1389–1396
https://doi.org/10.1002/chem.200801642
17 K Flavin, M N Chaur, L Echegoyen, S Giordani. Functionalization of multilayer fullerenes (carbon nano-onions) using diazonium compounds and “click” chemistry. Organic Letters, 2010, 12(4): 840–843
https://doi.org/10.1021/ol902939f
18 S Tomita, M Fujii, S Hayashi, K Yamamoto. Electron energy-loss spectroscopy of carbon onions. Chemical Physics Letters, 1999, 305(3): 225–229
https://doi.org/10.1016/S0009-2614(99)00374-7
19 M Chhowalla, H Wang, N Sano, K B K Teo, S B Lee, G A J Amaratunga. Carbon onions: Carriers of the 217.5 nm interstellar absorption feature. Physical Review Letters, 2003, 90(15): 155504
https://doi.org/10.1103/PhysRevLett.90.155504
20 S Sek, J Breczko, M E Plonska-Brzezinska, A Z Wilczewska, L Echegoyen. STM-based molecular junction of carbon nano-onion. ChemPhysChem, 2013, 14(1): 96–100
https://doi.org/10.1002/cphc.201200624
21 M Zeiger, N Jäckel, M Aslan, D Weingarth, V Presser. Understanding structure and porosity of nanodiamond-derived carbon onions. Carbon, 2015, 84: 584–598
https://doi.org/10.1016/j.carbon.2014.12.050
22 O Shenderova, T Tyler, G Cunningham, M Ray, J Walsh, M Casulli, S Hens, G McGuire, V Kuznetsov, S Lipa. Nanodiamond and onion-like carbon polymer nanocomposites. Diamond and Related Materials, 2007, 16(4): 1213–1217
https://doi.org/10.1016/j.diamond.2006.11.086
23 J Macutkevic, R Adomavicius, A Krotkus, D Seliuta, G Valusis, S Maksimenko, P Kuzhir, K Batrakov, V Kuznetsov, S Moseenkov, O Shenderova, A V Okotrub, R Langlet, P Lambin. Terahertz probing of onion-like carbon-PMMA composite films. Diamond and Related Materials, 2008, 17(7): 1608–1612
https://doi.org/10.1016/j.diamond.2007.11.018
24 J P Bartolome, L Echegoyen, A Fragoso. Reactive carbon nano-onion modified glassy carbon surfaces as DNA sensors for human papillomavirus oncogene detection with enhanced sensitivity. Analytical Chemistry, 2015, 87(13): 6744–6751
https://doi.org/10.1021/acs.analchem.5b00924
25 V Maffeis, R O McCourt, R Petracca, O Laethem, A Camisasca, P E Colavita, S Giordani, E M Scanlan. Photocatalytic initiation of radical thiol-ene reactions using carbon-B2O3 nanocomposites. ACS Applied Nano Materials, 2018, 1(8): 4120–4126
https://doi.org/10.1021/acsanm.8b00870
26 M Zeiger, N Jäckel, V N Mochalin, V Presser. Review: Carbon onions for electrochemical energy storage. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2016, 4(9): 3172–3196
https://doi.org/10.1039/C5TA08295A
27 D Zheng, G Yang, Y Zheng, P Fan, R Ji, J Huang, W Zhang, J Yu. Carbon nano-onions as a functional dopant to modify hole transporting layers for improving stability and performance of planar perovskite solar cells. Electrochimica Acta, 2017, 247: 548–557
https://doi.org/10.1016/j.electacta.2017.07.061
28 M D’Amora, M Rodio, J Bartelmess, G Sancataldo, R Brescia, F Cella Zanacchi, A Diaspro, S Giordani. Biocompatibility and biodistribution of functionalized carbon nano-onions (f-CNOs) in a vertebrate model. Scientific Reports, 2016, 6(1): 33923
https://doi.org/10.1038/srep33923
29 M D’Amora, A Camisasca, S Lettieri, S Giordani. Toxicity assessment of carbon nanomaterials in zebrafish during development. Nanomaterials (Basel, Switzerland), 2017, 7(12): 414
https://doi.org/10.3390/nano7120414
30 M Trusel, M Baldrighi, R Marotta, F Gatto, M Pesce, M Frasconi, T Catelani, F Papaleo, P P Pompa, R Tonini, S Giordani. Internalization of carbon nano-onions by hippocampal cells preserves neuronal circuit function and recognition memory. ACS Applied Materials & Interfaces, 2018, 10(20): 16952–16963
https://doi.org/10.1021/acsami.7b17827
31 S Lettieri, M d’Amora, A Camisasca, A Diaspro, S Giordani. Carbon nano-onions as fluorescent on/off modulated nanoprobes for diagnostics. Beilstein Journal of Nanotechnology, 2017, 8: 1878–1888
https://doi.org/10.3762/bjnano.8.188
32 T J J Müller, U H F Bunz. Functional Organic Materials. Syntheses, Strategies, and Applications. Weinheim: Wiley-VCH, 2007
33 F Arcudi, L Đorđević, M Prato. Rationally designed carbon nanodots towards pure white-light rmission. Angewandte Chemie International Edition, 2017, 56(15): 4170–4173
https://doi.org/10.1002/anie.201612160
34 M Frasconi, R Marotta, L Markey, K Flavin, V Spampinato, G Ceccone, L Echegoyen, E M Scanlan, S Giordani. Multi-functionalized carbon nano-onions as imaging probes for cancer cells. Chemistry (Weinheim an der Bergstrasse, Germany), 2015, 21(52): 19071–19080
https://doi.org/10.1002/chem.201503166
35 J Bartelmess, M Baldrighi, V Nardone, E Parisini, D Buck, L Echegoyen, S Giordani. Synthesis and characterization of far-red/NIR-fluorescent BODIPY dyes, solid-state fluorescence, and application as fluorescent tags attached to carbon nano-onions. Chemistry (Weinheim an der Bergstrasse, Germany), 2015, 21(27): 9727–9732
https://doi.org/10.1002/chem.201500877
36 S Lettieri, A Camisasca, M d’Amora, A Diaspro, T Uchida, Y Nakajima, K Yanagisawa, T Maekawa, S Giordani. Far-red fluorescent carbon nano-onions as a biocompatible platform for cellular imaging. RSC Advances, 2017, 7(72): 45676–45681
https://doi.org/10.1039/C7RA09442F
37 Y Liu, D Y Kim. Ultraviolet and blue emitting graphene quantum dots synthesized from carbon nano-onions and their comparison for metal ion sensing. Chemical Communications, 2015, 51(20): 4176–4179
https://doi.org/10.1039/C4CC07618D
38 K Müllen, U Scherf. Organic light-emitting diodes—synthesis, properties, and applications. Weinheim: Wiley-VCH, 2006
39 M Zhu, C Yang. Blue fluorescent emitters: Design tactics and applications in organic light-emitting diodes. Chemical Society Reviews, 2013, 42(12): 4963–4976
https://doi.org/10.1039/c3cs35440g
40 H Kuma, C Hosokawa. Blue fluorescent OLED materials and their application for high-performance devices. Science and Technology of Advanced Materials, 2014, 15(3): 34201
https://doi.org/10.1088/1468-6996/15/3/034201
41 X Yang, X Xu, G Zhou. Recent advances of the emitters for high performance deep-blue organic light-emitting diodes. Journal of Materials Chemistry. C, Materials for Optical and Electronic Devices, 2015, 3(5): 913–944
https://doi.org/10.1039/C4TC02474E
42 T T Bui, F Goubard, M Ibrahim-Ouali, D Gigmes, F Dumur. Thermally activated delayed fluorescence emitters for deep blue organic light emitting diodes: A review of recent advances. Applied Sciences (Basel, Switzerland), 2018, 8(4): 494
https://doi.org/10.3390/app8040494
43 J D Froehlich, R Young, T Nakamura, Y Ohmori, S Li, A Mochizuki, M Lauters, G E Jabbour. Synthesis of Multi-Functional POSS Emitters for OLED Applications. Chemistry of Materials, 2007, 19(20): 4991–4997
https://doi.org/10.1021/cm070726v
44 F Krujatz, O R Hild, K Fehse, M Jahnel, A Werner, T Bley. Exploiting the potential of oled-based photo-organic sensors for biotechnological applications. Chemical Sciences Journal, 2016, 7(3): 134
45 C W Cairo, J A Key, C M Sadek. Fluorescent small-molecule probes of biochemistry at the plasma membrane. Current Opinion in Chemical Biology, 2010, 14(1): 57–63
https://doi.org/10.1016/j.cbpa.2009.09.032
46 Y Hong, M Häußler, J W Y Lam, Z Li, K K Sin, Y Dong, H Tong, J Liu, A Qin, R Renneberg, B Z Tang. Label-free fluorescent probing of G-quadruplex formation and real-time monitoring of dna folding by a quaternized tetraphenylethene salt with aggregation-induced emission characteristics. Chemistry (Weinheim an der Bergstrasse, Germany), 2008, 14(21): 6428–6437
https://doi.org/10.1002/chem.200701723
47 V L Kuznetsov, A L Chuvilin, Y V Butenko, I Y Mal’kov, V M Titov. Onion-like carbon from ultra-disperse diamond. Chemical Physics Letters, 1994, 222(4): 343–348
https://doi.org/10.1016/0009-2614(94)87072-1
48 M Frasconi, V Maffeis, J Bartelmess, S Giordani. Highly surface functionalized carbon nano-onions for bright light bioimaging. Methods and Applications in Fluorescence, 2015, 3(4): 0044005
https://doi.org/10.1088/2050-6120/3/4/044005
49 L Moni, C F Gers-Panther, M Anselmo, T J J Müller, R Riva. Highly convergent synthesis of intensively blue emissive furo[2,3-c]isoquinolines by a palladium-catalyzed cyclization cascade of unsaturated Ugi products. Chemistry (Weinheim an der Bergstrasse, Germany), 2016, 22(6): 2020–2031
https://doi.org/10.1002/chem.201504335
50 A Dömling. Recent developments in isocyanide based multicomponent reactions in applied chemistry. Chemical Reviews, 2006, 106(1): 17–89
https://doi.org/10.1021/cr0505728
51 R Hu, N L C Leung, B Z Tang. AIE macromolecules: Syntheses, structures and functionalities. Chemical Society Reviews, 2014, 43(13): 4494–4562
https://doi.org/10.1039/C4CS00044G
52 L Banfi, A Basso, L Giardini, R Riva, V Rocca, G Guanti. Tandem Ugi MCR/Mitsunobu cyclization as a short, protecting-group-free route to benzoxazinones with four diversity points. European Journal of Organic Chemistry, 2010, 2011(1): 100–109
https://doi.org/10.1002/ejoc.201001077
53 B Söveges, T Imre, Á L Póti, P Sok, Z Kele, A Alexa, P Kele, K Németh. Tracking down protein–protein interactions via a FRET-system using site-specific thiol-labeling. Organic & Biomolecular Chemistry, 2018, 16(32): 5756–5763
https://doi.org/10.1039/C8OB00742J
54 J Bartelmess, E De Luca, A Signorelli, M Baldrighi, M Becce, R Brescia, V Nardone, E Parisini, L Echegoyen, P P Pompa, et al. Boron dipyrromethene (BODIPY) functionalized carbon nano-onions for high resolution cellular imaging. Nanoscale, 2014, 6(22): 13761–13769
https://doi.org/10.1039/C4NR04533E
55 S Giordani, J Bartelmess, M Frasconi, I Biondi, S Cheung, M Grossi, D Wu, L Echegoyen, D F O’Shea. NIR fluorescence labelled carbon nano-onions: Synthesis, analysis and cellular imaging. Journal of Materials Chemistry. B, Materials for Biology and Medicine, 2014, 2(42): 7459–7463
https://doi.org/10.1039/C4TB01087F
[1] Daniel T. Payne, Mandeep K. Chahal, Václav Březina, Whitney A. Webre, Katsuhiko Ariga, Francis D’Souza, Jan Labuta, Jonathan P. Hill. Diporphyrin tweezer for multichannel spectroscopic analysis of enantiomeric excess[J]. Front. Chem. Sci. Eng., 2020, 14(1): 28-40.
[2] Grant Perry, Fernando Cortezon-Tamarit, Sofia I. Pascu. Detection and monitoring prostate specific antigen using nanotechnology approaches to biosensing[J]. Front. Chem. Sci. Eng., 2020, 14(1): 4-18.
[3] Maria L. Odyniec, Jordan E. Gardiner, Adam C. Sedgwick, Xiao-Peng He, Steven D. Bull, Tony D. James. Dual enzyme activated fluorescein based fluorescent probe[J]. Front. Chem. Sci. Eng., 2020, 14(1): 117-121.
[4] Takeshi Hashimoto, Mio Kumai, Mariko Maeda, Koji Miyoshi, Yuji Tsuchido, Shoji Fujiwara, Takashi Hayashita. Structural effect of fluorophore on phenylboronic acid fluorophore/cyclodextrin complex for selective glucose recognition[J]. Front. Chem. Sci. Eng., 2020, 14(1): 53-60.
[5] Xin ZHANG, Zichen LI. Synthesis and fluorescence behavior of 2,5-diphenyl-1,3,4-oxadiazole-containing bismaleimides and bissuccinimides[J]. Front Chem Sci Eng, 2013, 7(4): 381-387.
[6] Meijiang LI, Rui HUANG, Changzhi WU, Hujin ZUO, Guoqiao LAI, Yongjia SHEN. Synthesis and properties of tetrathiafulvalene-porphyrin assemblies[J]. Front Chem Sci Eng, 2011, 5(4): 422-428.
[7] ZHU Xiaoqin, QIAN Ying, LU Zhifeng. Synthesis and characterization of 2,5-bis[4-(2-arylvinyl)phenyl]-1,3,4-oxadiazoles with two-photon fluorescence properties[J]. Front. Chem. Sci. Eng., 2007, 1(4): 381-384.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed