Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2020, Vol. 14 Issue (1) : 4-18    https://doi.org/10.1007/s11705-019-1846-8
REVIEW ARTICLE
Detection and monitoring prostate specific antigen using nanotechnology approaches to biosensing
Grant Perry, Fernando Cortezon-Tamarit(), Sofia I. Pascu()
Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK
 Download: PDF(2476 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Prostate cancer has a high incidence in men and remains the second cause of mortality due to cancer worldwide. As the development of the disease is greatly correlated to age, the identification of novel detection methods reliable, efficient, and cost effective is a matter of significant importance in the ageing population of western societies. The detection of the prostate specific antigen (PSA) in blood samples has been the preferred method for the detection and monitoring of prostate cancer over the past decades. Despite the indications against its use in massive population screening, PSA still remains the best studied biomarker for prostate cancer and the detection of its different forms and incorporation in multiplexed designs with other biomarkers still remains a highly valuable indicator in the theranostics of prostate cancer. The latest developments in the use of nanomaterials towards the construction of PSA biosensors are reviewed hereby. The incorporation of gold nanoparticles, silica nanoparticles and graphene nanostructures to biosensing devices has represented a big leap forward in terms of sensitivity, stability and miniaturization. Both electrochemical and optical detection methods for the detection of PSA will be reviewed herein.

Keywords biosensing      immunosensor      PSA      prostate cancer      fluorescence     
Corresponding Author(s): Fernando Cortezon-Tamarit,Sofia I. Pascu   
Just Accepted Date: 29 April 2019   Online First Date: 17 July 2019    Issue Date: 20 January 2020
 Cite this article:   
Grant Perry,Fernando Cortezon-Tamarit,Sofia I. Pascu. Detection and monitoring prostate specific antigen using nanotechnology approaches to biosensing[J]. Front. Chem. Sci. Eng., 2020, 14(1): 4-18.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-019-1846-8
https://academic.hep.com.cn/fcse/EN/Y2020/V14/I1/4
Fig.1  Incidence rates of different cancers in men in the United States during the 1975 to 2014 period. The spike in prostate cancer cases during the mid-1990s was produced due to the introduction of PSA screening. Adapted from Ref. [3] with permission from the publisher
Fig.2  Single crystal X-ray structure of the PSA enzyme in a sandwich with two antibodies. Image adapted from data on Ref. [12] deposited on the Protein Data Bank
Fig.3  Conceptual representation of direct ELISA
Fig.4  Example of photoactive immunoassay for PSA. Adapted from Ref. [21]. AuNP: gold nanoparticles; *Including binding sequence to AuNP and enzymatic cleavage site
Fig.5  Field emission scanning electron microscope (FESEM) images of nano-spindles (a) 10 µm range, and (b) 1 µm range. Adapted from Ref. [34] with permission?from?the?publisher
Fig.6  Diagram showing dual capability of a sensor capable of detecting both vascular endothelial growth factor, of relevance in tumor microenvironment targeting (VEGF) and PSA. Adapted from Ref. [44] with permission from the publisher
Fig.7  FESEM (a1, b1, c1) and TEM (a2, b2, c2) images of the crumpled GR-Au composites. Adapted from Ref. [50] with permission from the publisher
Fig.8  Diagram showing immunosensor fabrication and reaction process when exposed to PSA. Adapted from Ref. [51] with permission from the publisher
Fig.9  PSA detection process with Fe3O4/graphene oxide nanoparticles. Adapted from Ref.?[53] with permission from the publisher
Fig.10  Diagram showing process scheme of PSA detection for the novel sandwich-type aptasensor. Adapted from Ref. [54] with permission from the publisher
Fig.11  Simplified ECL mechanism of (a) luminol and (b) Ru(bpy3)2+
Fig.12  Diagram showing process scheme of PSA detection giving a florescence emission. Adapted from Ref. [68] with permission from the publisher
Fig.13  Diagram of peptide/MNCPs sensor for the fluorescent detection of PSA. Adapted from Ref. [70] with permission from the publisher
1 J Ferlay, M Colombet, I Soerjomataram, T Dyba, G Randi, M Bettio, A Gavin, O Visser, F Bray. Cancer incidence and mortality patterns in Europe: Estimates for 40 countries and 25 major cancers in 2018. European Journal of Cancer, 2018, 103: 356–387 doi:10.1016/j.ejca.2018.07.005
2 R Luengo-Fernandez, J Leal, A Gray, R Sullivan. Economic burden of cancer across the European Union: A population-based cost analysis. Lancet. Oncology, 2013, 14(12): 1165–1174 doi:10.1016/S1470-2045(13)70442-X
3 R L Siegel, K D Miller, A Jemal. Cancer statistics, 2018. CA: A Cancer Journal for Clinicians, 2018, 68(1): 7–30 doi:10.3322/caac.21442
4 H Ge, P J Riss, V Mirabello, D G Calatayud, S E Flower, R L Arrowsmith, T D Fryer, Y Hong, S Sawiak, R M J Jacobs, et al.. Behavior of supramolecular assemblies of radiometal-filled and fluorescent carbon nanocapsules invitro and invivo. Chem, 2017, 3(3): 437–460 doi:10.1016/j.chempr.2017.06.013
5 C S S R Kumar, F Mohammad. Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery. Advanced Drug Delivery Reviews, 2011, 63(9): 789–808 doi:10.1016/j.addr.2011.03.008
6 A Heidenreich, P J Bastian, J Bellmunt, M Bolla, S Joniau, T van der Kwast, M Mason, V Matveev, T Wiegel, F Zattoni, N Mottet. EAU guidelines on prostate cancer. Part 1: Screening, diagnosis, and local treatment with curative intent-update 2013. European Urology, 2014, 65(1): 124–137 doi:10.1016/j.eururo.2013.09.046
7 U S P S T Force. Screening for prostate cancer: US preventive services task force recommendation statement. Journal of the American Medical Association, 2018, 319(18): 1901–1913 doi:10.1001/jama.2018.3710
8 J Yao, Y Wang, Y Dai, C C Liu. Bioconjugated, single-use biosensor for the detection of biomarkers of prostate cancer. ACS Omega, 2018, 3(6): 6411–6418 doi:10.1021/acsomega.8b00634
9 M Rigau, I Ortega, M C Mir, C Ballesteros, M Garcia, M Llauradó, E Colás, N Pedrola, M Montes, T Sequeiros, et al.. A three-gene panel on urine increases PSA specificity in the detection of prostate cancer. Prostate, 2011, 71(16): 1736–1745 doi:10.1002/pros.21390
10 S S Salami, F Schmidt, B Laxman, M M Regan, D S Rickman, D Scherr, G Bueti, J Siddiqui, S A Tomlins, J T Wei, et al.. Combining urinary detection of TMPRSS2:ERG and PCA3 with serum PSA to predict diagnosis of prostate cancer. Urologic Oncology: Seminars and Original Investigations, 2013, 31(5): 566–571 doi:10.1016/j.urolonc.2011.04.001
11 Å Lundwall, H Lilja. Molecular cloning of human prostate specific antigen cDNA. FEBS Letters, 1987, 214(2): 317–322 doi:10.1016/0014-5793(87)80078-9
12 E A Stura, B H Muller, M Bossus, S Michel, C Jolivet-Reynaud, F Ducancel. Crystal structure of human prostate-specific antigen in a sandwich antibody complex. Journal of Molecular Biology, 2011, 414(4): 530–544 doi:10.1016/j.jmb.2011.10.007
13 Z Cheng, N Choi, R Wang, S Lee, K C Moon, S Y Yoon, L Chen, J Choo. Simultaneous detection of dual prostate specific antigens using surface-enhanced Raman scattering-based immunoassay for accurate diagnosis of prostate cancer. ACS Nano, 2017, 11(5): 4926–4933 doi:10.1021/acsnano.7b01536
14 A Voller, A Bartlett, D E Bidwell. Enzyme immunoassays with special reference to ELISA techniques. Journal of Clinical Pathology, 1978, 31(6): 507–520 doi:10.1136/jcp.31.6.507
15 B Acevedo, Y Perera, M Ruiz, G Rojas, J Benítez, M Ayala, J Gavilondo. Development and validation of a quantitative ELISA for the measurement of PSA concentration. Clinica Chimica Acta, 2002, 317(1): 55–63 doi:10.1016/S0009-8981(01)00749-5
16 A A Luderer, Y T Chen, T F Soriano, W J Kramp, G Carlson, C Cuny, T Sharp, W Smith, J Petteway, M K Brawer, et al.. Measurement of the proportion of free to total prostate-specific antigen improves diagnostic performance of prostate-specific antigen in the diagnostic gray zone of total prostate-specific antigen. Urology, 1995, 46(2): 187–194 doi:10.1016/S0090-4295(99)80192-7
17 Z Chen, Y Lei, X Chen, Z Wang, J Liu. An aptamer based resonance light scattering assay of prostate specific antigen. Biosensors & Bioelectronics, 2012, 36(1): 35–40 doi:10.1016/j.bios.2012.03.041
18 P Sarkar, P S Pal, D Ghosh, S J Setford, I E Tothill. Amperometric biosensors for detection of the prostate cancer marker (PSA). International Journal of Pharmaceutics, 2002, 238(1): 1–9 doi:10.1016/S0378-5173(02)00015-7
19 N Dhenadhayalan, K Yadav, M I Sriram, H L Lee, K C Lin. Ultra-sensitive DNA sensing of a prostate-specific antigen based on 2D nanosheets in live cells. Nanoscale, 2017, 9(33): 12087–12095 doi:10.1039/C7NR03431H
20 P Jolly, V Tamboli, R L Harniman, P Estrela, C J Allender, J L Bowen. Aptamer-MIP hybrid receptor for highly sensitive electrochemical detection of prostate specific antigen. Biosensors & Bioelectronics, 2016, 75: 188–195 doi:10.1016/j.bios.2015.08.043
21 J H Choi, H S Kim, J W Choi, J W Hong, Y K Kim, B K Oh. A novel Au-nanoparticle biosensor for the rapid and simple detection of PSA using a sequence-specific peptide cleavage reaction. Biosensors & Bioelectronics, 2013, 49: 415–419 doi:10.1016/j.bios.2013.05.042
22 B V Chikkaveeraiah, A A Bhirde, N Y Morgan, H S Eden, X Chen. Electrochemical Immunosensors for Detection of Cancer Protein Biomarkers. ACS Nano, 2012, 6(8): 6546–6561 doi:10.1021/nn3023969
23 M Souada, B Piro, S Reisberg, G Anquetin, V Noël, M C Pham. Label-free electrochemical detection of prostate-specific antigen based on nucleic acid aptamer. Biosensors & Bioelectronics, 2015, 68: 49–54 doi:10.1016/j.bios.2014.12.033
24 D Damborska, T Bertok, E Dosekova, A Holazova, L Lorencova, P Kasak, J Tkac. Nanomaterial-based biosensors for detection of prostate specific antigen. Mikrochimica Acta, 2017, 184(9): 3049–3067 doi:10.1007/s00604-017-2410-1
25 C Pfister, J P Basuyau. Current usefulness of free/total PSA ratio in the diagnosis of prostate cancer at an early stage. World Journal of Urology, 2005, 23(4): 236–242 doi:10.1007/s00345-005-0506-4
26 Y X Dong, J T Cao, Y M Liu, S H Ma. A novel immunosensing platform for highly sensitive prostate specific antigen detection based on dual-quenching of photocurrent from CdSe sensitized TiO2 electrode by gold nanoparticles decorated polydopamine nanospheres. Biosensors & Bioelectronics, 2017, 91: 246–252 doi:10.1016/j.bios.2016.12.043
27 Y Wang, Z Li, D Hu, C T Lin, J Li, Y Lin. Aptamer/graphene oxide nanocomplex for in situ molecular probing in living cells. Journal of the American Chemical Society, 2010, 132(27): 9274–9276 doi:10.1021/ja103169v
28 J T Cao, J J Yang, L Z Zhao, Y L Wang, H Wang, Y M Liu, S H Ma. Graphene oxide@gold nanorods-based multiple-assisted electrochemiluminescence signal amplification strategy for sensitive detection of prostate specific antigen. Biosensors & Bioelectronics, 2018, 99: 92–98 doi:10.1016/j.bios.2017.07.050
29 X Wang, R Xu, X Sun, Y Wang, X Ren, B Du, D Wu, Q Wei. Using reduced graphene oxide-Ca:CdSe nanocomposite to enhance photoelectrochemical activity of gold nanoparticles functionalized tungsten oxide for highly sensitive prostate specific antigen detection. Biosensors & Bioelectronics, 2017, 96: 239–245 doi:10.1016/j.bios.2017.04.052
30 Z Yang, B Kasprzyk-Hordern, S Goggins, C G Frost, P Estrela. A novel immobilization strategy for electrochemical detection of cancer biomarkers: DNA-directed immobilization of aptamer sensors for sensitive detection of prostate specific antigens. Analyst (London), 2015, 140(8): 2628–2633 doi:10.1039/C4AN02277G
31 M S Wu, R N Chen, Y Xiao, Z X Lv. Novel “signal-on” electrochemiluminescence biosensor for the detection of PSA based on resonance energy transfer. Talanta, 2016, 161: 271–277 doi:10.1016/j.talanta.2016.08.060
32 P Jolly, P Zhurauski, J L Hammond, A Miodek, S Liébana, T Bertok, J Tkáč, P Estrela. Self-assembled gold nanoparticles for impedimetric and amperometric detection of a prostate cancer biomarker. Sensors and Actuators. B, Chemical, 2017, 251: 637–643 doi:10.1016/j.snb.2017.05.040
33 B Kavosi, A Salimi, R Hallaj, F Moradi. Ultrasensitive electrochemical immunosensor for PSA biomarker detection in prostate cancer cells using gold nanoparticles/PAMAM dendrimer loaded with enzyme linked aptamer as integrated triple signal amplification strategy. Biosensors & Bioelectronics, 2015, 74: 915–923 doi:10.1016/j.bios.2015.07.064
34 N Sattarahmady, A Rahi, H Heli. A signal-on built in-marker electrochemical aptasensor for human prostate-specific antigen based on a hairbrush-like gold nanostructure. Scientific Reports, 2017, 7(1): 11238 doi:10.1038/s41598-017-11680-5
35 A K Geim, K S Novoselov. The rise of graphene. Nature Materials, 2007, 6(3): 183–191 doi:10.1038/nmat1849
36 N Z M poor, L Baniasadi, M Omidi, G Amoabediny, F Yazdian, H Attar, A Heydarzadeh, A S H Zarami, M H Sheikhha. An inhibitory enzyme electrode for hydrogen sulfide detection. Enzyme and Microbial Technology, 2014, 63: 7–12
37 C Andronescu, W Schuhmann. Graphene-based field effect transistors as biosensors. Current Opinion in Electrochemistry, 2017, 3(1): 11–17 doi:10.1016/j.coelec.2017.03.002
38 N G Shang, P Papakonstantinou, M McMullan, M Chu, A Stamboulis, A Potenza, S S Dhesi, H Marchetto. Catalyst-free efficient growth, orientation and biosensing properties of multilayer graphene nanoflake films with sharp edge planes. Advanced Functional Materials, 2008, 18(21): 3506–3514 doi:10.1002/adfm.200800951
39 J J Zhang, M M Gu, T T Zheng, J J Zhu. Synthesis of gelatin-stabilized gold nanoparticles and assembly of carboxylic single-walled carbon nanotubes/au composites for cytosensing and drug uptake. Analytical Chemistry, 2009, 81(16): 6641–6648 doi:10.1021/ac900628y
40 S E McGrath, A Michael, H Pandha, R Morgan. Engrailed homeobox transcription factors as potential markers and targets in cancer. FEBS Letters, 2013, 587(6): 549–554 doi:10.1016/j.febslet.2013.01.054
41 K Settu, J T Liu, C J Chen, J Z Tsai. Development of carbon-graphene-based aptamer biosensor for EN2 protein detection. Analytical Biochemistry, 2017, 534: 99–107 doi:10.1016/j.ab.2017.07.012
42 M D Tezerjani, A Benvidi, M Rezaeinasab, S Jahanbani, S M Moshtaghioun, M Youssefi, K Zarrini. An impedimeric biosensor based on a composite of graphene nanosheets and polyaniline as a suitable platform for prostate cancer sensing. Analytical Methods, 2016, 8(41): 7507–7515 doi:10.1039/C6AY01524G
43 X Z Gao, H J Liu, F Cheng, Y Chen. Thermoresponsive polyaniline nanoparticles: Preparation, characterization, and their potential application in waterborne anticorrosion coatings. Chemical Engineering Journal, 2016, 283: 682–691 doi:10.1016/j.cej.2015.08.015
44 L H Pan, S H Kuo, T Y Lin, C W Lin, P Y Fang, H W Yang. An electrochemical biosensor to simultaneously detect VEGF and PSA for early prostate cancer diagnosis based on graphene oxide/ssDNA/PLLA nanoparticles. Biosensors & Bioelectronics, 2017, 89: 598–605 doi:10.1016/j.bios.2016.01.077
45 Q Zhou, Y Lin, J Shu, K Zhang, Z Yu, D Tang. Reduced graphene oxide-functionalized FeOOH for signal-on photoelectrochemical sensing of prostate-specific antigen with bioresponsive controlled release system. Biosensors & Bioelectronics, 2017, 98: 15–21 doi:10.1016/j.bios.2017.06.033
46 D K Padhi, K Parida. Facile fabrication of a-FeOOH nanorod/RGO composite: A robust photocatalyst for reduction of Cr(vi) under visible light irradiation. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2014, 2(26): 10300–10312 doi:10.1039/C4TA00931B
47 T T N Do, T Van Phi, T P Nguy, P Wagner, K Eersels, M C Vestergaard, L T N Truong. Anisotropic insitu-coated AuNPs on screen-printed carbon surface for enhanced prostate-specific antigen impedimetric aptasensor. Journal of Electronic Materials, 2017, 46(6): 3542–3552 doi:10.1007/s11664-016-5187-9
48 B Liu, L S Lu, E Hua, S T Jiang, G M Xie. Detection of the human prostate-specific antigen using an aptasensor with gold nanoparticles encapsulated by graphitized mesoporous carbon. Mikrochimica Acta, 2012, 178(1-2): 163–170 doi:10.1007/s00604-012-0822-5
49 S C Barman, M F Hossain, J Y Park. Gold nanoparticles assembled chemically functionalized reduced graphene oxide supported electrochemical immunosensor for ultra-sensitive prostate cancer detection. Journal of the Electrochemical Society, 2017, 164(6): B234–B239 doi:10.1149/2.1461706jes
50 H D Jang, S K Kim, H Chang, J W Choi. 3D label-free prostate specific antigen (PSA) immunosensor based on graphene-gold composites. Biosensors & Bioelectronics, 2015, 63: 546–551 doi:10.1016/j.bios.2014.08.008
51 L Liu, Y Li, L Tian, Q Wei, W Cao. Ultrasensitive sandwich-type prostate specific antigen immunosensor based on Ag overgrowth in Pd nano-octahedrons heterodimers decorated on amino functionalized multiwalled carbon nanotubes. Sensors and Actuators. B, Chemical, 2016, 237: 733–739 doi:10.1016/j.snb.2016.06.160
52 L Han, C M Liu, S L Dong, C X Du, X Y Zhang, L H Li, Y Wei. Enhanced conductivity of rGO/Ag NPs composites for electrochemical immunoassay of prostate-specific antigen. Biosensors & Bioelectronics, 2017, 87: 466–472 doi:10.1016/j.bios.2016.08.004
53 M Sharafeldin, G W Bishop, S Bhakta, A El-Sawy, S L Suib, J F Rusling. Fe3O4 nanoparticles on graphene oxide sheets for isolation and ultrasensitive amperometric detection of cancer biomarker proteins. Biosensors & Bioelectronics, 2017, 91: 359–366 doi:10.1016/j.bios.2016.12.052
54 J Feng, Y Li, M Li, F Li, J Han, Y Dong, Z Chen, P Wang, H Liu, Q Wei. A novel sandwich-type electrochemical immunosensor for PSA detection based on PtCu bimetallic hybrid (2D/2D) rGO/g-C3N4. Biosensors & Bioelectronics, 2017, 91: 441–448 doi:10.1016/j.bios.2016.12.070
55 P Damborský, J Švitel, J Katrlík. Optical biosensors. Essays in Biochemistry, 2016, 60(1): 91–100 doi:10.1042/EBC20150010
56 Z Jiang, Y Qin, Z Peng, S Chen, S Chen, C Deng, J Xiang. The simultaneous detection of free and total prostate antigen in serum samples with high sensitivity and specificity by using the dual-channel surface plasmon resonance. Biosensors & Bioelectronics, 2014, 62: 268–273 doi:10.1016/j.bios.2014.06.060
57 B Zhang, B Liu, G Chen, D Tang. Competitive-type displacement reaction for direct potentiometric detection of low-abundance protein. Biosensors & Bioelectronics, 2014, 53: 465–471 doi:10.1016/j.bios.2013.10.027
58 J Liang, C Yao, X Li, Z Wu, C Huang, Q Fu, C Lan, D Cao, Y Tang. Silver nanoprism etching-based plasmonic ELISA for the high sensitive detection of prostate-specific antigen. Biosensors & Bioelectronics, 2015, 69: 128–134 doi:10.1016/j.bios.2015.02.026
59 F Duan, S Zhang, L Yang, Z Zhang, L He, M Wang. Bifunctional aptasensor based on novel two-dimensional nanocomposite of MoS2 quantum dots and g-C3N4 nanosheets decorated with chitosan-stabilized Au nanoparticles for selectively detecting prostate specific antigen. Analytica Chimica Acta, 2018, 1036: 121–132 doi:10.1016/j.aca.2018.06.070
60 S Parveen, M S Aslam, L Hu, G Xu. Electrogenerated Chemiluminescence: Protocols and Applications. Dordrecht: Springer, 2013, 1–152
61 W Miao. Electrogenerated chemiluminescence and its biorelated applications. Chemical Reviews, 2008, 108(7): 2506–2553 doi:10.1021/cr068083a
62 W Deng, C Chu, S Ge, J Yu, M Yan, X Song. Electrochemiluminescence PSA assay using an ITO electrode modified with gold and palladium, and flower-like titanium dioxide microparticles as ECL labels. Mikrochimica Acta, 2015, 182(5): 1009–1016 doi:10.1007/s00604-014-1423-2
63 H Ma, X Li, T Yan, Y Li, Y Zhang, D Wu, Q Wei, B Du. Electrochemiluminescent immunosensing of prostate-specific antigen based on silver nanoparticles-doped Pb (II) metal-organic framework. Biosensors & Bioelectronics, 2016, 79: 379–385 doi:10.1016/j.bios.2015.12.080
64 K Shao, B Wang, A Nie, S Ye, J Ma, Z Li, Z Lv, H Han. Target-triggered signal-on ratiometric electrochemiluminescence sensing of PSA based on MOF/Au/G-quadruplex. Biosensors & Bioelectronics, 2018, 118: 160–166 doi:10.1016/j.bios.2018.07.029
65 W Zhu, M Saddam Khan, W Cao, X Sun, H Ma, Y Zhang, Q Wei. Ni(OH)2/NGQDs-based electrochemiluminescence immunosensor for prostate specific antigen detection by coupling resonance energy transfer with Fe3O4@MnO2 composites. Biosensors & Bioelectronics, 2018, 99: 346–352 doi:10.1016/j.bios.2017.08.005
66 J J Yang, J T Cao, H Wang, Y M Liu, S W Ren. Ferrocene-graphene sheets for high-efficiency quenching of electrochemiluminescence from Au nanoparticles functionalized cadmium sulfide flower-like three dimensional assemblies and sensitive detection of prostate specific antigen. Talanta, 2017, 167: 325–332 doi:10.1016/j.talanta.2017.01.077
67 C Tian, L Wang, F Luan, X Zhuang. An electrochemiluminescence sensor for the detection of prostate protein antigen based on the graphene quantum dots infilled TiO2 nanotube arrays. Talanta, 2019, 191: 103–108 doi:10.1016/j.talanta.2018.08.050
68 R M Kong, X Zhang, L Ding, D Yang, F Qu. Label-free fluorescence turn-on aptasensor for prostate-specific antigen sensing based on aggregation-induced emission-silica nanospheres. Analytical and Bioanalytical Chemistry, 2017, 409(24): 5757–5765 doi:10.1007/s00216-017-0519-z
69 T Hao, X Wu, L Xu, L Liu, W Ma, H Kuang, C Xu. Ultrasensitive detection of prostate-specific antigen and thrombin based on gold-upconversion nanoparticle assembled pyramids. Small, 2017, 13(19): 1603944 doi:10.1002/smll.201603944
70 L Yang, N Li, K Wang, X Hai, J Liu, F Dang. A novel peptide/Fe3O4@SiO2-Au nanocomposite-based fluorescence biosensor for the highly selective and sensitive detection of prostate-specific antigen. Talanta, 2018, 179: 531–537 doi:10.1016/j.talanta.2017.11.033
71 D D Xu, Y L Deng, C Y Li, Y Lin, H W Tang. Metal-enhanced fluorescent dye-doped silica nanoparticles and magnetic separation: A sensitive platform for one-step fluorescence detection of prostate specific antigen. Biosensors & Bioelectronics, 2017, 87: 881–887 doi:10.1016/j.bios.2016.09.034
72 X Li, L Wei, L Pan, Z Yi, X Wang, Z Ye, L Xiao, H W Li, J Wang. Homogeneous immunosorbent assay based on single-particle enumeration using upconversion nanoparticles for the sensitive detection of cancer biomarkers. Analytical Chemistry, 2018, 90(7): 4807–4814 doi:10.1021/acs.analchem.8b00251
73 K D Wegner, Z Jin, S Lindén, T L Jennings, N Hildebrandt. Quantum-dot-based Förster resonance energy transfer immunoassay for sensitive clinical diagnostics of low-volume serum samples. ACS Nano, 2013, 7(8): 7411–7419 doi:10.1021/nn403253y
74 O Tagit, N Hildebrandt. Fluorescence sensing of circulating diagnostic biomarkers using molecular probes and nanoparticles. ACS Sensors, 2017, 2(1): 31–45 doi:10.1021/acssensors.6b00625
75 M Garcia-Cortes, J R Encinar, J M Costa-Fernandez, A Sanz-Medel. Highly sensitive nanoparticle-based immunoassays with elemental detection: Application to Prostate-Specific Antigen quantification. Biosensors & Bioelectronics, 2016, 85: 128–134 doi:10.1016/j.bios.2016.04.090
76 K Zhang, S Lv, Z Lin, D Tang. CdS:Mn quantum dot-functionalized g-C3N4 nanohybrids as signal-generation tags for photoelectrochemical immunoassay of prostate specific antigen coupling DNAzyme concatamer with enzymatic biocatalytic precipitation. Biosensors & Bioelectronics, 2017, 95: 34–40 doi:10.1016/j.bios.2017.04.005
77 G Annio, T L Jennings, O Tagit, N Hildebrandt. Sensitivity enhancement of förster resonance energy transfer immunoassays by multiple antibody conjugation on quantum dots. Bioconjugate Chemistry, 2018, 29(6): 2082–2089 doi:10.1021/acs.bioconjchem.8b00296
78 L Mattera, S Bhuckory, K D Wegner, X Qiu, F Agnese, C Lincheneau, T Senden, D Djurado, L J Charbonnière, N Hildebrandt, P Reiss. Compact quantum dot-antibody conjugates for FRET immunoassays with subnanomolar detection limits. Nanoscale, 2016, 8(21): 11275–11283 doi:10.1039/C6NR03261C
79 B Kavosi, A Navaee, A Salimi. Amplified fluorescence resonance energy transfer sensing of prostate specific antigen based on aggregation of CdTe QDs/antibody and aptamer decorated of AuNPs-PAMAM dendrimer. Journal of Luminescence, 2018, 204: 368–374 doi:10.1016/j.jlumin.2018.08.012
80 T Yang, P Hou, L L Zheng, L Zhan, P F Gao, Y F Li, C Z Huang. Surface-engineered quantum dots/electrospun nanofibers as a networked fluorescence aptasensing platform toward biomarkers. Nanoscale, 2017, 9(43): 17020–17028 doi:10.1039/C7NR04817C
81 X Li, W Li, Q Yang, X Gong, W Guo, C Dong, J Liu, L Xuan, J Chang. Rapid and quantitative detection of prostate specific antigen with a quantum dot nanobeads-based immunochromatography test strip. ACS Applied Materials & Interfaces, 2014, 6(9): 6406–6414 doi:10.1021/am5012782
82 R M Kong, L Ding, Z Wang, J You, F Qu. A novel aptamer-functionalized MoS2 nanosheet fluorescent biosensor for sensitive detection of prostate specific antigen. Analytical and Bioanalytical Chemistry, 2015, 407(2): 369–377 doi:10.1007/s00216-014-8267-9
83 H Pei, S Zhu, M Yang, R Kong, Y Zheng, F Qu. Graphene oxide quantum dots@silver core-shell nanocrystals as turn-on fluorescent nanoprobe for ultrasensitive detection of prostate specific antigen. Biosensors & Bioelectronics, 2015, 74: 909–914 doi:10.1016/j.bios.2015.07.056
84 B Y Fang, C Y Wang, C Li, H B Wang, Y D Zhao. Amplified using DNase I and aptamer/graphene oxide for sensing prostate specific antigen in human serum. Sensors and Actuators. B, Chemical, 2017, 244: 928–933 doi:10.1016/j.snb.2017.01.045
[1] Maria L. Odyniec, Jordan E. Gardiner, Adam C. Sedgwick, Xiao-Peng He, Steven D. Bull, Tony D. James. Dual enzyme activated fluorescein based fluorescent probe[J]. Front. Chem. Sci. Eng., 2020, 14(1): 117-121.
[2] Takeshi Hashimoto, Mio Kumai, Mariko Maeda, Koji Miyoshi, Yuji Tsuchido, Shoji Fujiwara, Takashi Hayashita. Structural effect of fluorophore on phenylboronic acid fluorophore/cyclodextrin complex for selective glucose recognition[J]. Front. Chem. Sci. Eng., 2020, 14(1): 53-60.
[3] Daniel T. Payne, Mandeep K. Chahal, Václav Březina, Whitney A. Webre, Katsuhiko Ariga, Francis D’Souza, Jan Labuta, Jonathan P. Hill. Diporphyrin tweezer for multichannel spectroscopic analysis of enantiomeric excess[J]. Front. Chem. Sci. Eng., 2020, 14(1): 28-40.
[4] Viviana Maffeis, Lisa Moni, Daniele Di Stefano, Silvia Giordani, Renata Riva. Diversity-oriented synthesis of blue emissive nitrogen heterocycles and their conjugation with carbon nano-onions[J]. Front. Chem. Sci. Eng., 2020, 14(1): 76-89.
[5] Baojun Li,Gaohong He,Xiaobin Jiang,Yan Dai,Xuehua Ruan. Pressure swing adsorption/membrane hybrid processes for hydrogen purification with a high recovery[J]. Front. Chem. Sci. Eng., 2016, 10(2): 255-264.
[6] Shuna LI, Huawei YANG, Donghui ZHANG. Enrichment of CO from syngas with Cu(I)Y adsorbent by five-bed VPSA[J]. Front Chem Sci Eng, 2013, 7(4): 472-481.
[7] Xin ZHANG, Zichen LI. Synthesis and fluorescence behavior of 2,5-diphenyl-1,3,4-oxadiazole-containing bismaleimides and bissuccinimides[J]. Front Chem Sci Eng, 2013, 7(4): 381-387.
[8] Meijiang LI, Rui HUANG, Changzhi WU, Hujin ZUO, Guoqiao LAI, Yongjia SHEN. Synthesis and properties of tetrathiafulvalene-porphyrin assemblies[J]. Front Chem Sci Eng, 2011, 5(4): 422-428.
[9] ZHU Xiaoqin, QIAN Ying, LU Zhifeng. Synthesis and characterization of 2,5-bis[4-(2-arylvinyl)phenyl]-1,3,4-oxadiazoles with two-photon fluorescence properties[J]. Front. Chem. Sci. Eng., 2007, 1(4): 381-384.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed