Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2016, Vol. 10 Issue (3) : 301-347    https://doi.org/10.1007/s11705-016-1578-y
REVIEW ARTICLE
Hierarchically porous materials: Synthesis strategies and emerging applications
Minghui Sun1,Chen Chen1,Lihua Chen1,*(),Baolian Su1,2,*()
1. State Key Laboratory of Advanced Technology for Material Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
2. Laboratory of Inorganic Materials Chemistry, Namur B-5000, Belgium
 Download: PDF(2635 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Great interests have arisen over the last decade in the development of hierarchically porous materials. The hierarchical structure enables materials to have maximum structural functions owing to enhanced accessibility and mass transport properties, leading to improved performances in various applications. Hierarchical porous materials are in high demand for applications in catalysis, adsorption, separation, energy and biochemistry. In the present review, recent advances in synthesis routes to hierarchically porous materials are reviewed together with their catalytic contributions.

Keywords hierarchically porous materials      synthesis      application     
PACS:     
Fund: 
Corresponding Author(s): Lihua Chen,Baolian Su   
Just Accepted Date: 13 July 2016   Online First Date: 10 August 2016    Issue Date: 23 August 2016
 Cite this article:   
Minghui Sun,Chen Chen,Lihua Chen, et al. Hierarchically porous materials: Synthesis strategies and emerging applications[J]. Front. Chem. Sci. Eng., 2016, 10(3): 301-347.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-016-1578-y
https://academic.hep.com.cn/fcse/EN/Y2016/V10/I3/301
Fig.1  Overview of hard templating strategies using carbon: (a?d) graphical sketches of zeolite-carbon composites, (e?h) electron micrographs of final mesoporous zeolite products [265]. (e) ZSM-5 single crystals templated by carbon nanoparticles (a) [12], (f) silicalite-1 single crystals templated by carbon nanotubes (b) [13], (g) ordered mesoporous silicalite-1 made with KIT-6 silica replicated CMK-L carbon (c) [14], (h) three dimensionally ordered mesoporous beta templated by three dimensionally ordered mesoporous carbon replicas (d) [15]
Fig.2  (a) Schematic representation of the crystallization process of macroporous zeolite crystals. (I) Starting mesoporous silica particles (MSPs) after calcination; (II) MSPs impregnated with TPAOH solution; (III) initial stage during the transformation of MSPs; (IV) formation of large zeolite crystals with cores of MSPs still embedded in the zeolite crystals after steam assisted crystallization process; (V) final macroporous zeolite crystals. (b) SEM image and (c) TEM image (taken without aperture) of an individual zeolite crystal [28]
Fig.3  (a) Schematic diagram for fabricating 3DOM polyethylene by gaseous infiltration method; (b) SEM images of three-dimensionally ordered macroporous polyethylene [29]
Fig.4  Dual soft templating method used to obtain solids presenting hierarchical macro-mesopores [39]
Fig.5  (a) Molecular model of C18H37?N+(CH3)2–C6H12–N+(CH3)2–C6H12–N+(CH3)2–C18H37(Br)3 18-N3-18 surfactant (white spheres, hydrogen; gray spheres, carbon; red spheres, nitrogen); (b) SEM image, (c,d) TEM image, ((c,d), insets) Fourier diffractogram, and (e) XRD pattern of hexagonally ordered crystalline MMS after surfactant removal. For structural comparison, an MFI framework model is given in the bottom right inset of (d) [45]
Fig.6  (a) TEM images of the as-obtained α-Fe2O3 and (b) High-magnification TEM image of the petal of the flowerlike structure of the as-obtained α-Fe2O3. Inset: a high-resolution TEM (HRTEM) image taken from the as-obtained α-Fe2O3 nanoparticlem [48]
Fig.7  (a) Schematic illustration of preparation strategy of the three-dimensional hierarchical ordered porous carbons (3D HOPCs), (b) TEM and (c) HRTEM images of 3D HOPCs [54]
Fig.8  (a) Schematic illustration for the preparation of hierarchically ordered porous carbon, (b) SEM and (c) TEM images of the bimodal porous carbons [62]
Fig.9  (a) Schematic illustrations for the transition process of butterfly wings onto the fluorinedoped tin oxide (FTO) glass slices. (b) Nature picture and low-magnification optical microscopy, low-magnification FESEM images and high-resolution FESEM images showing the wing of the blue male (I–III) and black male (IV–VI). The insets in the lower left-hand (III,VI) corner show the two-dimensional, logarithmic Fourier power spectra of square areas selected from the images. (c) FESEM images of as-synthesized titania photoanodes templated from butterfly wings with different colors. (I,II) Quasi-beehive structures synthesized in different conditions [68]
Fig.10  Proposed micro-emulsion mechanism for the formation of hierarchically tri-modal porous zeolites [88]
Fig.11  (a) Schematic diagram and (b,c) TEM images of hollow mesoporous silica spheres prepared via emulsion technology assisted by CO2 gas bubbles [94]
Fig.12  (a) Graphical illustration of the proposed model for the formation of a silicalite-1 layer on a ZSM-5 crystal and SEM images of (b) uncoated H-ZSM-5 and (c) H-ZSM-5 after synthesis for 24 h [96]
Fig.13  (a) Photograph of the crack-free sodalite zeolite monolith cladded with a heat-shrinkable DERAY-PTFE clad; (b) SEM images of original bi-modal silica monolith and (c) its pseudomorphic transformed sodalite all-zeolite monolith [110]
Fig.14  (a) Schematic representation of the synthesis of hierarchically micro-meso-macroporous aluminosilicates constructed from zeolite nanocrystals by a quasi-solid-state crystallization process; (b) SEM images and (c) HRTEM images of micro-meso-macroporous aluminosilicate [111]
Fig.15  Mechanism column: (a?c) Optical microscopy images showing the growth and formation of a marochannel pattern [131]; Structure column (d) SEM image of meso-macroporous ZrO2, (e?g) TEM images of meso-macroporous ZrO2 [118]; Morphology column (h) SEM image of the meso-macroporous products controlled polymerization of a Zr(OC3H7)4 drop [129], (i) Typical SEM image viewed along the direction of the resultant microtubular zirconias [126], (j) low-magnification TEM image of an ultrathin section of CMI-Ti-80 [142], (k) TEM images of bimodal nanoporous aluminosilicates with a hierarchically macroporous core inside an ordered mesoporous shell [134]
Fig.16  (a,b) SEM images of synthesized zirconia particles showing uniform macroporosity [127]; (c) low-magnification TEM image and (d) high magnification TEM image of a crosssection of synthesized zirconia [127]; (e,f) SEM images of titanium oxide materials synthesized at pH 11.5 using Ti(OPri)4 and Ti(OBun)4; (g) TEM images of ultrathin sections of the mesoporous titanias at the local domains of macroporous structured cores and (h) dense shell layers [140,142]
Fig.17  (a,b) SEM images and (c,d) TEM images of meso-macroporous Al2O3 [119]
Fig.18  SEM images of (a) meso-macroporous niobium oxides and (b) meso-macroporous yttrium oxides [141]
Fig.19  SEM image of meso-macroporous TZ composite with Ti/Zr ratio of (a) 5/5 and (b) 8/2; (c) low-magnification and (d) high-magnification TEM images of meso-macroporous TZ composite with Ti/Zr ratio of 5/5; SEM images of the meso-macroporous TA samples with Ti/Al ratio of (e) 3/7 and (f) 5/5; (g) low-magnification and (h) high-magnification TEM images of meso-macroporous TA samples with Ti/Al ratio of 5/5; SEM images of meso-macroporous AS samples with Al/Si ratio of (i) 5/5 and (j) 3/7; (k) low-magnification and (l) high-magnification TEM images of meso-macroporous AS sample with Al/Si= 5/5 [144]
Fig.20  SEM images of meso-macroporous AZ oxides with Al/Zr ratio of (a) 5/5 and (b) 3/7 and meso-macroporous ZS samples with Zr/Si ratio of (c) 3/7 and (d) 7/3 [144]
Fig.21  (a,b) SEM images and (c,d) TEM images of hierarchical ZrPO synthesized in absence of surfactant [145]; (e,f) SEM images and (g,h) TEM images of hierarchical TiPO synthesized with a 10% content of surfactant [146]; (i,j) SEM images and (k,l) TEM images of hierarchical PAl synthesized in presence of Brij 56 [147]
Fig.22  (a) Schematic illustration of the formation process of the yolk-shell porous carbon spheres through three steps: (1) gradient sol-gel process, (2) carbonization process, (3) silica removal by HF. (b) HR-SEM and (c) TEM images of the yolk-shell porous carbon spheres synthesized at CTAB 0.1 g. In all figures, the scale bar is 500 nm [152]
Fig.23  (a) Schematic illustration of C18TMS-TESPTS organosilica and its topological transformations; (b) TEM images of as-prepared C18TMS-TESPTS organosilica, (c) after calcination in air, and (d) in N2 followed by silica etching. The scale bars represent 100 nm [154]
Fig.24  (a) Scheme of proposed formation mechanism of thin film with hierarchical porous architecture via an evaporation induced self-assembly process combined with thermally induced phase separation: (i) proposed structure of the film after aging at ?6 °C, with PPG uniformly distributed throughout the polar titania matrix, (ii) after raising the temperature during drying and initial heating of the film, and (iii) after calcination. (b) (i) low-magnification SEM image, (ii) high-magnification SEM image and (iii) TEM image of calcined TiO2 thin films [171]
Fig.25  (a) A scheme showing the formation mechanism of ordered porous films via the BF templating approach [178], (b) surface and (c) cross-sectional SEM images of hierarchical porous films composed of Al2O3 nanoparticles [173]
Fig.26  (a) Model illustrates the formation of macropores by ice templating: (I) The microstructure formed by the phase separation during unidirectional freezing of silica hydrogels. An array of straight ice rods with polygonal cross sections is formed. Silica framework is formed at the interspace of the ice rods. (II) After removal of the ice rods by thawing and drying, macropores are formed as a replica of the ice rods. (b,c) SEM images of the cross sections of silica gel microhoneycombs [190]
Fig.27  (a) Formation mechanism of the hierarchically mesoporous LTO in supercritical alcohols and carbon coating; (b) SEM image and corresponding TEM image (inset) of LTO synthesized in scMeOH after calcination in Ar/H2 3%; (c) SEM image and corresponding TEM image (inset) of LTO synthesized in scMeOH after calcination in Air [211]
Fig.28  SEM images of (a) uncoated pollen grain and (b) inorganic replica consisting of silica [216]; SEM images of (c) initial diatomite and (d) TiO2 coated diatomite, TCD5 [221]; SEM micrograph of (e) the Luffa sponge struts and (f) the silicalite-1 replica of Luffa gourd (particular of the struts) [222]
Fig.29  (a) Schematic illustration of the nanocasting pathway [233] and the example of nanocasting procedure for NCS-1 and the corresponding TEM images of (b) template SBA-15, (c) composite CMK-3, and (d) replica NCS-1 [229]
Fig.30  (a) Schematic illustration for the synthesis of HCMS carbon capsules and (b) SEM image and low-magnification TEM image (inset) of HCMS carbon capsules with core diameters of 500 nm and shell thicknesses of 90 nm [242]
Fig.31  (a) Schematic illustration of the formation of porous SnO2@C microboxes via selective leaching and carbon nanocoating; (b) SEM and (c) TEM images of single crystalline ZnSn(OH)6 microboxes; (d) SEM and (e) TEM images of porous SnO2 microboxes; (f) SEM and (g) TEM images of SnO2@C microboxes [251]
Fig.32  (a) SEM micrograph of LZ-nt; (b–e) SEM-EDX images of polished untreated (b,c) and alkaline-treated (d,e) crystals. Blue and yellow colors represent aluminum and silicon, respectively; (f) SEM micrograph of untreated SZ-5 crystals; (g) 3D-TEM virtual cross sections through the reconstruction of an alkaline-treated 400 nm crystal; (h) surface rendering of alkaline-treated 400 nm crystal; zeolite material in orange, porosity in blue [258]
Fig.33  (a) The cross section of hierarchical macro/mesoporous heterostructures in the multicomponent artificial systems (left) and Z scheme in artificial photosynthesis; (b) TEM image of a granum—the layered nanostructure of thylakoid membranes, with the inset as a schematic illustration; (c) HRTEM image of CdS/Au/N-TiO2 heterostructures with the inset of the schematic illustration; (d) TEM image of nanolayered structures of CdS/Au/N-TiO2 with the inset of the schematic illustration; (e) Calculated H2 evolution rates under visible light irradiation, indicating the probably trend for H2 evolution as a function of the CdS contents [270]
Fig.34  (a,b) TEM images of hierarchical-TS-1 zeolites and (c) corresponding DBT catalytic oxidation using n-heptane catalyzed by different catalysts [275]
Fig.35  (a) TEM image of HIO@MgSi nanorod and (b) effect of contact time on methylene blue sorption to HIO@MgSi nanorods and the pseudo-second order kinetic plots (initial concentration of HIO@MgSi: 0.5 g·L?1, initial concentration of methylene blue: 15 mg·L?1 and 150 mg·L?1, pH= 3), the inset is a photo of the color of the remaining MB solution under different time [276]
Fig.36  (a) SEM images (cross section) of one A. thaliana cell entrapped within a porous silica-based matrix and (b) Photosynthetic production of oxygen by the hybrid material. 100% corresponds to the photosynthetic activity of free cells [283]
Fig.37  TEM images of carbon supported catalysts. (a) E-TEK, (b) PtRu-C-68, (c) PtRu-C-245, and (d) PtRu-C-512; Voltage and power density responses of porous carbon supported Pt50Ru50 alloy catalysts as compared to that of E-TEK catalyst in direct methanol fuel cell. The DMFCs were operated (e) at 30 °C and (f) at 70 °C. Anode: supported Pt-Ru alloy catalyst (3.0 mg·cm?2); Cathode: Johnson Matthey Pt black (5.0 mg·cm?2) [296]
Fig.38  (a) LiFePO4/C composite prepared at 700 °C and (b) Rate capability of LiFePO4/C composite samples prepared at different temperatures [315]. (c) TEM images of mesoporous LiMn2O4 along the [111] directions and (d) Variation in discharge capacities versus cycle number for mesoporous LiMn2O4 and solid-state reaction LiMn2O4 [318]
Fig.39  (a) SEM images of a hierarchically porous NiO film and the inset corresponds to side views of the films, (b) CV curves of the three NiO film electrodes at the first cycle [319]
Fig.40  (a) Constructing designed for bone tissue engineering composed by a bioceramic scaffold interacting with signals and cells. (b) Schematic representation of the action of bioceramic scaffolds: bone regeneration [333]
Fig.41  (a) TEM images of hydroxyapatite hollow microspheres and (d) The in vitro vancomycin release profile of vancomycin-loaded hierarchical porous hydroxyapatite microsphere in PBS with different pH; (b) TEM images of hollow mesoporous silica nanocages and (e) Doxorubicin-release profiles for DOX-loaded RITC-labeled HMS-PEG nanocages measured at pH 5.1 in acetate buffer and at pH 7.4 in PBS buffer at 37 °C; (c) SEM image of Gd2O3 hollow spheres. Inset: TEM image of Gd2O3 hollow spheres and (f) Cumulative ibuprofen release from ibuprofen-Gd2O3:Yb/Er as a function of release time in PBS [346]
Fig.42  (a) Schematic illustration for the synthesis of YSNs-PEG/FA. (b) A possible mechanism accounting for killing of MCF-7 cells by DOX-YSNs [364]
1 Baerlocher C, Meier W, Olson D. Atlas of Zeolite Framework Types. Elsevier, 2007, 10–45
2 Kresge C T, Leonowicz M E, Roth W J, Vrtuli J C, Beck J S. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature, 1992, 359(6397): 710–712
https://doi.org/10.1038/359710a0
3 Zhao D, Feng J, Huo Q, Melosh W, Fredrickson G H, Chmelka B F, Stucky G D. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science, 1998, 279(5350): 548–552
https://doi.org/10.1126/science.279.5350.548
4 Holland B, Blanford C, Stein A. Synthesis of macroporous minerals with highly ordered three-dimensional arrays of spheroidal voids. Science, 1998, 281(5376): 538–540
https://doi.org/10.1126/science.281.5376.538
5 Sing K, Everett D, Haul R, Moscou L, Pierotti R, Rouquerol J, Siemieniewska T. Reporting physisorption data for gas solid system. Pure and Applied Chemistry, 1985, 57: 603–619
6 Su B L, Sanchez C, Yang X Y. Hierarchically structured porous materials: From nanoscience to catalysis, separation, optics, energy, and life science. Germany: Wiley-VCH, 2012, 15–45
7 Yang P, Tao D, Zhao D, Feng P, Pine D, Chmelka B, Whitesides G, Stucky G. Hierarchically ordered oxides. Science, 1998, 282(5397): 2244–2246
https://doi.org/10.1126/science.282.5397.2244
8 Yuan Z, Su B L. Insights into hierarchically meso-macroporous structured material. Journal of Materials Chemsitry A, 2006, 16(7): 663–677
https://doi.org/10.1039/B512304F
9 Pérez Ramirez J, Christensen C, Egeblad K, Christensen H, Groen J. Hierarchical zeolites: Enhanced utilisation of microporous crystals in catalysis by advances in materials design. Chemical Society Reviews, 2008, 37: 2530–2542
10 Yang X Y, Li Y, Lemaire A, Yu J, Su B L. Hierarchically structured functional materials: Synthesis strategies for multimodal porous networks. Pure and Applied Chemistry, 2009, 81(12): 2265–2307
https://doi.org/10.1351/PAC-CON-09-05-06
11 Yang X Y, Alexandre L, Arnaud L, Tian G, Su B L. Self-formation phenomenon to hierarchically structured porous materials: Design, synthesis, formation mechanism and applications, Chemical Communications, 2011, 47(10): 2763–2786
12 Jacobsen C J H, Madsen C, Houzvicka J, Schmidt I, Carlsson A. Mesoporous zeolite single crystals. Journal of the American Chemical Society, 2000, 122(29): 7116–7117
https://doi.org/10.1021/ja000744c
13 Schmidt I, Boisen A, Gustavsson E, Stahl K, Pehrson S, Dahl S, Carlsson A, Jacobsen C J H. Carbon nanotube templated growth of mesoporous zeolite single crystals. Chemistry of Materials, 2001, 13(12): 4416–4418
https://doi.org/10.1021/cm011206h
14 Cho H S, Ryoo R. Synthesis of ordered mesoporous MFI zeolite using CMK carbon templates. Microporous and Mesoporous Materials, 2012, 151: 107–112
https://doi.org/10.1016/j.micromeso.2011.11.007
15 Chen H, Wydra J, Zhang X, Lee P S, Wang Z, Fan W, Tsapatsis M. Hydrothermal synthesis of zeolites with three-dimensionally ordered mesoporous-imprinted structure. Journal of Materials Chemsitry A, 2011, 133: 12390–12393
16 Kustova M, Egeblad K, Zhu K, Christensen C H. Versatile route to zeolite single crystals with controlled mesoporosity: In situ sugar decomposition for templating of hierarchical zeolites. Chemistry of Materials, 2007, 19(12): 2915–2917
https://doi.org/10.1021/cm071168n
17 Chu N B, Wang J Q, Zhang Y, Yang J H, Lu J M, Yin D H. Nestlike hollow hierarchical MCM-22 microspheres: Synthesis and exceptional catalytic properties. Chemistry of Materials, 2010, 22(9): 2757–2763
https://doi.org/10.1021/cm903645p
18 Wang X D, Yang W L, Tang Y, Wang Y J, Fu S K, Gao Z. Fabrication of hollow zeolite spheres. Chemical Communications, 2000, 21: 2161–2162
https://doi.org/10.1039/b006539k
19 Valtchev V. Core-shell polystyrene/zeolite A microbeads. Chemistry of Materials, 2002, 14(3): 956–958
https://doi.org/10.1021/cm010927d
20 Petkovich N D, Stein A. Controlling macro- and mesostructures with hierarchical porosity through combined hard and soft templating. Chemical Society reviews, 2013, 42: 3721–3739
https://doi.org/10.1039/c2cs35308c
21 Huang L, Wang Z, Sun J, Miao L, Li Q, Yan Y, Zhao D. Fabrication of ordered porous structures by self-assembly of zeolite nanocrystals. Journal of the American Chemical Society, 2000, 122(14): 3530–3531
https://doi.org/10.1021/ja994240u
22 Zhu G, Qiu S, Gao F, Li D, Li Y, Wang R, Terasaki O. Template-assisted self-assembly of macro-micro bifunctional porous materials. Journal of Materials Chemistry, 2001, 11(6): 1687–1693
https://doi.org/10.1039/b008801n
23 Sanchez C, Arribart H, Guille M M G. Biomimetism and bioinspiration as tools for the design of innovative materials and systems. Nature Materials, 2005, 4: 277–288
https://doi.org/10.1038/nmat1339
24 Dong A, Wang Y, Tang Y, Zhang Y, Hong A, Ren N, Gao Z. Mechanically stable zeolite monoliths with three-dimensional ordered macropores by the transformation of mesoporous silica spheres. Advanced Materials, 2002, 14(20): 1506–1510
https://doi.org/10.1002/1521-4095(20021016)14:20<1506::AID-ADMA1506>3.0.CO;2-Z
25 Justin Thomas K R, Lin J T, Velusamy M, Tao Y T, Chuen C H. Color tuning in benzo [1, 2, 5] thiadiazole-based small molecules by amino conjugation/deconjugation: Bright red-light-emitting diode. Advanced Functional Materials, 2004, 14(1): 83–90
https://doi.org/10.1002/adfm.200304486
26 Song W, Kanthasamy R, Grassian V H, Larsen S C. Hexagonal, hollow, aluminium-containing ZSM-5 tubes prepared from mesoporous silica templates. Chemical Communications, 2004, 17: 1920–1921
https://doi.org/10.1039/b406753c
27 Ren N, Yang Y H, Zhang Y H, Wang Q R, Tang Y. Heck coupling in zeolitic microcapsular reactor: A test for encaged quasi-homogeneous catalysis. Journal of Catalysis, 2007, 246(1): 215–222
https://doi.org/10.1016/j.jcat.2006.11.028
28 Machoke A G, Beltrán A M, Inayat A, Winter B, Weissenberger T, Kruse N, Güttel R, Spiecker E, Schwieger W. Micro/macroporous system: MFI-type zeolite crystals with embedded macropores. Advanced Materials, 2015, 27(6): 1066–1070
https://doi.org/10.1002/adma.201404493
29 Zhang X, Yan W, Yang H, Liu B, Li H. Gaseous infiltration method for preparation of three-dimensionally ordered macroporous polyethylene. Polymer, 2008, 49(25): 5446–5451
https://doi.org/10.1016/j.polymer.2008.09.064
30 Lodge T P, Rasdal A, Li Z, Hillmyer M A. Simultaneous, segregated storage of two agents in a multicompartment micelle. Journal of the American Chemical Society, 2005, 127(50): 17608–17609
https://doi.org/10.1021/ja056841t
31 Sun J H, Shan Z, Maschmeyer T, Coppens M O. Synthesis of bimodal nanostructured silicas with independently controlled small and large mesopore sizes. Langmuir, 2003, 19(20): 8395–8402
https://doi.org/10.1021/la0351156
32 Antonietti M, Berton B, Göltner C, Hentze H P. Synthesis of mesoporous silica with large pores and bimodal pore size distribution by templating of polymer latices. Advanced Materials, 1998, 10(2): 154–159
https://doi.org/10.1002/(SICI)1521-4095(199801)10:2<154::AID-ADMA154>3.0.CO;2-I
33 Groenewolt M, Antonietti M, Polarz S. Mixed micellar phases of nonmiscible surfactants: Mesoporous silica with bimodal pore size distribution via the nanocasting process. Langmuir, 2004, 20(18): 7811–7819
https://doi.org/10.1021/la049147k
34 Avera S, Boissiere C, Grosso D, Asakawa T, Sanchez C, Linden M. One-pot aerosol synthesis of ordered hierarchical mesoporous core-shell silica nanoparticles. Chemical Communications, 2004, 10(14): 1630–1631
35 Zhou Y, Antonietti M. A novel tailored bimodal porous silica with well-defined inverse opal microstructure and super-microporous lamellar nanostructure. Chemical Communications, 2003, 20(20): 2564–2565
https://doi.org/10.1039/b307444g
36 Kuang D, Brezesinski T, Smarsly B. Hierarchical porous silica materials with a trimodal pore system using surfactant templates. Journal of the American Chemical Society, 2004, 126(34): 10534–10535
https://doi.org/10.1021/ja0470618
37 Liu J, Yang T Y, Wang D W, Lu G Q, Zhao D Y, Qiao S Z. A facile soft-template synthesis of mesoporous polymeric and carbonaceous nanospheres. Nature Communications, 2013, 4: 2798
38 Cao S, Gody G, Zhao W, Perrier S, Peng X Y, Ducati C, Zhao D Y, Cheetham A K. Hierarchical bicontinuous porosity in metal-organic frameworks templated from functional block co-oligomer micelles. Chemical Science (Cambridge), 2013, 4(9): 3573–3577
https://doi.org/10.1039/c3sc51336j
39 Martins L, Rosa M M A, Pulcinelli S H, Santilli C V. Preparation of hierarchically structured porous aluminas by a dual soft template method. Microporous and Mesoporous Materials, 2010, 132(1-2): 268–275
https://doi.org/10.1016/j.micromeso.2010.03.006
40 Choi M, Cho H S, Srivastava R, Venkatesan C, Choi D H, Ryoo R. Amphiphilic organosilane-directed synthesis of crystalline zeolite with tunable mesoporosity. Nature Materials, 2006, 5(9): 718–723
https://doi.org/10.1038/nmat1705
41 Cho K, Cho H S, De Menorval L C, Ryoo R. Generation of mesoporosity in LTA zeolites by organosilane surfactant for rapid molecular transport in catalytic application. Chemistry of Materials, 2009, 21(23): 5664–5673
https://doi.org/10.1021/cm902861y
42 Wang H, Pinnavaia T J. MFI zeolite with small and uniform intracrystal mesopores. Angewandte Chemie International Edition, 2006, 45(45): 7603–7606
https://doi.org/10.1002/anie.200602595
43 Choi M, Na K, Kim J, Sakamoto Y, Terasaki O, Ryoo R. Stable single-unit-cell nanosheets of zeolite MFI as active and long-lived catalysts. Nature, 2009, 461(7261): 246–249
https://doi.org/10.1038/nature08288
44 Na K, Choi M, Park W, Sakamoto Y, Terasaki O, Ryoo R. Pillared MFI zeolite nanosheets of a single-unit-cell thickness. Journal of the American Chemical Society, 2010, 132(12): 4169–4177
https://doi.org/10.1021/ja908382n
45 Na K, Jo C, Kim J, Cho K, Jung J, Seo Y, Messinger R J, Chmelka B F, Ryoo R. Directing zeolite structures into hierarchically nanoporous architectures. Science, 2011, 333(6040): 328–332
https://doi.org/10.1126/science.1204452
46 Xiao F S, Wang L, Yin C, Lin K, Di Y, Li J, Xu R, Su D S, Schlögl R, Yokoi T, Tatsumi T. Catalytic properties of hierarchical mesoporous zeolites templated with a mixture of small organic ammonium salts and mesoscale cationic polymers. Angewandte Chemie, 2006, 118(19): 3162–3165
https://doi.org/10.1002/ange.200600241
47 Song J, Ren L, Yin C, Ji Y, Wu Z, Li J, Xiao F S. Stable, porous, and bulky particles with high external surface and large pore volume from self-assembly of zeolite nanocrystals with cationic polymer. Journal of Physical Chemistry C, 2008, 112(23): 8609–8613
https://doi.org/10.1021/jp800598p
48 Zhong L S, Hu J S, Liang H P, Cao A M, Song W G, Wan L J. Self-Assembled 3D flowerlike iron oxide nanostructures and their application in water treatment. Advanced Materials, 2006, 18(18): 2426–2431
https://doi.org/10.1002/adma.200600504
49 Xu L, Sithambaram S, Zhang Y, Chen C H, Jin L, Joesten R, Suib S L. Novel urchin-like CuO synthesized by a facile reflux method with efficient olefin epoxidation catalytic performance. Chemistry of Materials, 2009, 21(7): 1253–1259
https://doi.org/10.1021/cm802915m
50 Holland B T, Abrams L, Stein A. Dual templating of macroporous silicates with zeolitic microporous frameworks. Journal of the American Chemical Society, 1999, 121(17): 4308–4309
https://doi.org/10.1021/ja990425p
51 Bian S W, Ma Z, Zhang L S, Niu F, Song W G. Silica nanotubes with mesoporous walls and various internal morphologies using hard/soft dual templates. Chemical Communications, 2009, 10(10): 1261–1263
https://doi.org/10.1039/b821196e
52 Stein A, Rudisill S G, Petkovich N D. Perspective on the influence of interactions between hard and soft templates and precursors on morphology of hierarchically structured porous materials. Chemistry of Materials, 2014, 26(1): 259–276
https://doi.org/10.1021/cm402184h
53 Yang R C, Ma F Y, Tang D X. Template synthesis to fabrication of 3D ordered hierarchical materials. Advanced Materials Research, 2013, 602: 1355–1358
54 Zhao Q L, Wang X Y, Liu J, Wang H, Zhang Y W, Gao J, Lu Q, Zhou H Y. Design and synthesis of three-dimensional hierarchical ordered porous carbons for supercapacitors. Electrochimica Acta, 2015, 154: 110–118
https://doi.org/10.1016/j.electacta.2014.12.052
55 Gundiah G. Macroporous silica-alumina composites with mesoporous walls. Bulletin of Materials Science, 2001, 24(2): 211–214
https://doi.org/10.1007/BF02710103
56 Drisko G L, Zelcer A, Luca V, Caruso R A, Soler-Illia G J D A. One-pot synthesis of hierarchically structured ceramic monoliths with adjustable porosity. Chemistry of Materials, 2010, 22(15): 4379–4385
https://doi.org/10.1021/cm100764e
57 Mandlmeier B, Szeifert J M, Fattakhova-Rohlfing D, Amenitsch H, Bein T. Formation of interpenetrating hierarchical titania structures by confined synthesis in inverse opal. Journal of the American Chemical Society, 2011, 133(43): 17274–17282
https://doi.org/10.1021/ja204667e
58 Petkovich N D, Stein A. Controlling macro-and mesostructures with hierarchical porosity through combined hard and soft templating. Chemical Society Reviews, 2013, 42(9): 3721–3739
https://doi.org/10.1039/C2CS35308C
59 Danumah C, Vaudreuil S, Bonneviot L, Bousmina M, Giasson S, Kaliaguine S. Synthesis of macrostructured MCM-48 molecular sieves. Microporous and Mesoporous Materials, 2001, 44: 241–247
https://doi.org/10.1016/S1387-1811(00)00287-0
60 Oh C G, Baek Y, Ihm S K. Synthesis of skeletal-structured biporous silicate powders through microcolloidal crystal templating. Advanced Materials, 2005, 17(3): 270–273
https://doi.org/10.1002/adma.200400192
61 Deng Y, Liu C, Yu T, Liu F, Zhang F, Wan Y, Zhang L, Wang C, Tu B, Webley P A, Wang H, Zhao D. Facile synthesis of hierarchically porous carbons from dual colloidal crystal/block copolymer template approach. Chemistry of Materials, 2007, 19(13): 3271–3277
https://doi.org/10.1021/cm070600y
62 Zhang S, Chen L, Zhou S, Zhao D, Wu L. Facile synthesis of hierarchically ordered porous carbon via in situ self-assembly of colloidal polymer and silica spheres and its use as a catalyst support. Chemistry of Materials, 2010, 22(11): 3433–3440
https://doi.org/10.1021/cm1002274
63 Zhang F, Wang K X, Li G D, Chen J S. Hierarchical porous carbon derived from rice straw for lithium ion batteries with high-rate performance. Electrochemistry Communications, 2009, 11(1): 130–133
https://doi.org/10.1016/j.elecom.2008.10.041
64 Huang W T, Zhang H, Huang Y Q, Wang W K, Wei S H. Hierarchical porous carbon obtained from animal bone and evaluation in electric double-layer capacitors. Carbon, 2011, 49(3): 838–843
https://doi.org/10.1016/j.carbon.2010.10.025
65 Smith C J, Field M, Coakley C J, Awschalom D D. Organizing nanometer-scale magnets with bacterial threads. IEEE Transactions on Magnetics, 1998, 34(4): 988–990
https://doi.org/10.1109/20.706333
66 Zhi L, Zhang L, Schalchi A B , Tan X H, Xu Z W, Wang H L, Olsen B C, Holt C M B, David M. Carbonized Chicken Eggshell Membranes with 3D Architectures as High-Performance Electrode Materials for Supercapacitors. Advanced Energy Materials, 2012, 2(4): 431–437
https://doi.org/10.1002/aenm.201290018
67 Song N, Jiang H, Cui T, Chang L, Wang X. Synthesis and enhanced gas-sensing properties of mesoporous hierarchical α-Fe2O3 architectures from an eggshell membrane. Micro & Nano Letters, 2012, 7(9): 943–946
https://doi.org/10.1049/mnl.2012.0631
68 Zhang W, Zhang D, Fan T J, Gu J J, Ding J, Wang H, Guo Q X, Ogawa H. Novel photoanode structure templated from butterfly wing scales. Chemistry of Materials, 2009, 21(1): 33–40
https://doi.org/10.1021/cm702458p
69 Zhu W J, Huang H, Zhang W K, Tao X Y, Gan Y P, Xia Y, Yang H, Guo X Z. Synthesis of MnO/C composites derived from pollen template for advanced lithium-ion batteries. Electrochimica Acta, 2015, 152(10): 286–293
https://doi.org/10.1016/j.electacta.2014.11.092
70 Kim H, Kim H J, Huh H K, Hwang H J, Lee S J. Structural design of a double-layered porous hydrogel for effective mass transport. Biomicrofluidics, 2015, 9(2): 18–24
https://doi.org/10.1063/1.4914383
71 Wang L Q, Shin Y, Samuels W D, Exarhos G J, Moudrakovski I L, Terskikh V V, Ripmeester J A. Magnetic resonance studies of hierarchically ordered replicas of wood cellular structures prepared by surfactant-mediated mineralization. Journal of Physical Chemistry B, 2003, 107(50): 13793–13802
https://doi.org/10.1021/jp030027f
72 You J, Cao G. Synthesis and characterization of hierarchical biomorphic mesoporous TiO2 nanosheets using caltrop-stem as biotemplate. Journal of Inorganic and Organometallic Polymers and Materials, 2013, 23(6): 1417–1424
https://doi.org/10.1007/s10904-013-9944-4
73 Yang X Y, Li Z Q, Liu B, Klein-Hofmann A, Tian G, Feng Y F, Ding Y, Su D S, Xiao F S. “Fish-in-Net” encapsulation of enzymes in macroporous cages for stable, reusable, and active heterogeneous biocatalysts. Advanced Materials, 2006, 18(4): 410–414
https://doi.org/10.1002/adma.200502003
74 Huang L, Wang H, Hayashi C Y, Tian B, Zhao D, Yan Y. Single-strand spider silk templating for the formation of hierarchically ordered hollow mesoporous silica fibers. Journal of Materials Chemistry, 2003, 13(4): 666–668
https://doi.org/10.1039/b212126c
75 Zhu S, Zhang D, Chen Z, Zhou G, Jiang H, Li J. Sonochemical fabrication of morpho-genetic TiO2 with hierarchical structures for photocatalyst. Journal of Nanoparticle Research, 2010, 12(7): 2445–2456
https://doi.org/10.1007/s11051-009-9807-7
76 Ogasawara W, Shenton W, Davis S A, Mann S. Template mineralization of ordered macroporous chitin-silica composites using a cuttlebone-derived organic matrix. Chemistry of Materials, 2000, 12(10): 2835–2837
https://doi.org/10.1021/cm0004376
77 Pedroni V, Schulz P C, Gschaider de Ferreira M E, Morini M A. A chitosan-templated monolithic siliceous mesoporous-macroporous material. Colloid & Polymer Science, 2000, 278(10): 964–971
https://doi.org/10.1007/s003960000348
78 Walsh D, Arcelli L, Ikoma T, Tanaka J, Mann S. Dextran templating for the synthesis of metallic and metal oxide sponges. Nature Materials, 2003, 2(6): 386–390
https://doi.org/10.1038/nmat903
79 Caruso R A, Antonietti M. Silica films with bimodal pore structure prepared by using membranes as templates and amphiphiles as porogens. Advanced Functional Materials, 2002, 12(4): 307–312
https://doi.org/10.1002/1616-3028(20020418)12:4<307::AID-ADFM307>3.0.CO;2-9
80 Giunta P R, Washington R P, Campbell T D, Steinbock O, Stiegman A E. Preparation of mesoporous silica monoliths with ordered arrays of macrochannels templated from electric-field-oriented hydrogels. Angewandte Chemie International Edition, 2004, 43(12): 1505–1507
https://doi.org/10.1002/anie.200352813
81 Zhao D, Yang P, Chmelka B, Stucky G. Multiphase assembly of mesoporous-macroporous membranes. Chemistry of Materials, 1999, 11(5): 1174–1178
https://doi.org/10.1021/cm980782j
82 Stubenrauch C, Tessendorf R, Strey R, Lynch I, Dawson K A. Gelled polymerizable microemulsions phase behavior. Langmuir, 2007, 23(14): 7730–7737
https://doi.org/10.1021/la700685g
83 Li X, Sun G, Li Y, Yu J C, Wu J, Ma G H, Ngai T. Porous TiO2 materials through pickering high-internal phase emulsion templating. Langmuir, 2014, 30(10): 2676–2683
https://doi.org/10.1021/la404930h
84 Carn F, Colin A, Achard M F, Deleuze H, Sellier E, Birot M, Backov R, Capadona J R, Shanmuganathan K, Tyler D J, Rowan S J, Weder C. General synthesis of ordered crystallized metal oxide nanoarrays replicated by microwave-digested mesoporous silica. Journal of the American Chemical Society, 2014, 14(9): 1370–1374
85 Sen T, Tiddy G J T, Casci J L, Anderson M W. Macro-cellular silica foams: Synthesis during the natural creaming process of an oil-in-water emulsion. Chemical Communications, 2003, 17: 2182–2183
https://doi.org/10.1039/b303349j
86 Zhang H F, Hardy G C, Rosseinsky M J, Cooper A I. Uniform emulsion-templated silica beads with high pore volume and hierarchical porosity. Advanced Materials, 2003, 15(1): 78–81
https://doi.org/10.1002/adma.200390017
87 Carn F, Colin A, Achard M F, Deleuze H, Sellier E, Birot M, Backov R. Inorganic monoliths hierarchically textured via concentrated direct emulsion and micellar templates. Journal of Materials Chemistry, 2004, 14(9): 1370–1376
https://doi.org/10.1039/b400984c
88 Li H, Jin J, Wu W, Chen C, Li L, Li Y, Zhao W, Gu J, Chen G, Shi J. Synthesis of a hierarchically macro-/mesoporous zeolite based on a micro-emulsion mechanism. Journal of Materials Chemistry, 2011, 21(48): 19395–19401
https://doi.org/10.1039/c1jm14249f
89 Hu X F, Cheng F Y, Han X P, Zhang T R, Chen J. Oxygen bubble-templated hierarchical porous ε-MnO2 as a superior catalyst for rechargeable Li-O2 batteries. Small, 2015, 11(7): 809–813
https://doi.org/10.1002/smll.201401790
90 Bagshaw S A. Morphosynthesis of macrocellular mesoporous silicate foams. Chemical Communications, 1999, 9(9): 767–768
https://doi.org/10.1039/a901480b
91 Carn F, Colin A, Achard M F, Deleuze H, Saadi Z, Backov R. Rational design of macrocellular silica scaffolds obtained by a tunable sol-gel foaming process. Advanced Materials, 2004, 16(2): 140–144
https://doi.org/10.1002/adma.200306067
92 Carn F, Colin A, Achard M F, Deleuze H, Sanchez C, Backov R. Anatase and rutile TiO2 macrocellular foams: Air-liquid foaming sol-gel process towards controlling cell sizes, morphologies, and topologies. Advanced Materials, 2005, 17(1): 62–66
https://doi.org/10.1002/adma.200401080
93 Suzuki K, Ikari K, Imai H. Synthesis of mesoporous silica foams with hierarchical trimodal pore structures. Journal of Materials Chemistry, 2003, 13(7): 1812–1816
https://doi.org/10.1039/b302466k
94 Wang J G, Li F, Zhou H J, Sun P C, Ding D T, Chen T H. Silica hollow spheres with ordered and radially oriented amino-functionalized mesochannels. Chemistry of Materials, 2009, 21(4): 612–620
https://doi.org/10.1021/cm803124a
95 Li Y, Shi J. Hollow-structured mesoporous materials: Chemical synthesis, functionalization and applications. Advanced Materials, 2014, 26(20): 3176–3205
https://doi.org/10.1002/adma.201305319
96 Miyamoto M, Kamei T, Nishiyama N, Egashira Y, Ueyama K. Single crystals of ZSM-5/silicalite composites. Advanced Materials, 2005, 17(16): 1985–1988
https://doi.org/10.1002/adma.200500522
97 Porcher F, Dusausoy Y, Souhassou M, Lecomte C. Epitaxial growth of zeolite X on zeolite A and twinning in zeolite A: Structural and topological analysis. Mineralogical Magazine, 2000, 64(1): 1–8
https://doi.org/10.1180/002646100549012
98 Thomas J M, Millward G R. Direct, real-space determination of intergrowths in ZSM-5/ZSM-11 catalysts. Journal of the Chemical Society. Chemical Communications, 1982, (24): 1380–1383
https://doi.org/10.1039/c39820001380
99 Goossens A M, Wouters B H, Buschmann V, Martens J A. Oriented FAU zeolite films on micrometer-sized EMT crystals. Advanced Materials, 1999, 11(7): 561–564
https://doi.org/10.1002/(SICI)1521-4095(199905)11:7<561::AID-ADMA561>3.0.CO;2-Q
100 Lillerud K P, Raeder J H. On the synthesis of erionite-offretite intergrowth zeolites. Zeolites, 1986, 6(6): 474–483
https://doi.org/10.1016/0144-2449(86)90032-1
101 Bouizi Y, Rouleau L, Valtchev V P. Bi-phase MOR/MFI-type zeolite core-shell composite. Microporous and Mesoporous Materials, 2006, 91(1-3): 70–77
https://doi.org/10.1016/j.micromeso.2005.11.016
102 Yonkeu A L, Miehe G, Fuess H, Goossens A M, Martens J A. A new overgrowth of mazzite on faujasite zeolite crystal investigated by X-ray diffraction and electron microscopy. Microporous and Mesoporous Materials, 2006, 96(1-3): 396–404
https://doi.org/10.1016/j.micromeso.2006.07.018
103 Wakihara T, Yamakita S, Iezumi K, Okubo T. Heteroepitaxial growth of a zeolite film with a patterned surface-texture. Journal of Americal Chemistry Society, 2003, 125(41): 12388–12389
https://doi.org/10.1021/ja0363765
104 Bouizi Y, Diaz I, Rouleau L, Valtchev V P. Core-shell zeolite microcomposites. Advanced Functional Materials, 2005, 15(12): 1955–1960
https://doi.org/10.1002/adfm.200500231
105 Zheng J J, Zeng Q H, Ma J H, Zhang X W, Sun W F, Li R F. Synthesis of hollow zeolite composite spheres by using. BETA zeolite crystal as template. Chemistry Letters, 2010, 39(4): 330–331
https://doi.org/10.1246/cl.2010.330
106 Tsang C, Dai P, Petty R H. Upgrading and catalytic cracking catalyst. US Patent 5888921, <Date>1999-03-30</Date>
107 Lei Q, Zhao T B, Li F, Wang Y Y, Zheng M F. Fabrication of hierarchically structured monolithic silicalite-1 through steam-assisted conversion of macroporous silica gel. Chemistry Letters, 2006, 35(5): 490–491
https://doi.org/10.1246/cl.2006.490
108 Lei Q, Zhao T L F, Li Y, Zhang L L, Wang Y. Catalytic cracking of large molecules over hierarchical zeolites. Chemical Communications, 2006, 16: 1769–1771
https://doi.org/10.1039/b600547k
109 Lei Q, Zhao T, Li F, Wang Y F, Hou L. Zeolite beta monoliths with hierarchical porosity by the transformation of bimodal pore silica gel. Journal of Porous Materials, 2008, 15(6): 643–646
https://doi.org/10.1007/s10934-007-9144-0
110 Sachse A, Galarneau A, Di Renzo F, Fajula F, Coq B. Synthesis of zeolite monoliths for flow continuous processes: The case of sodalite as a basic catalyst. Chemistry of Materials, 2010, 22(14): 4123–4125
https://doi.org/10.1021/cm1014064
111 Yang X Y, Tian G, Chen L H, Li Y, Rooke J C, Wei Y X, Liu Z M, Deng Z, Van Tendeloo G, SuB L. Well organized zeolite nanocrystal aggregates with interconnected hierarchically micro-meso- macropore systems showing enhanced catalytic performance. Chemistry European Journal A, 2011, 17(52): 14987–14995
https://doi.org/10.1002/chem.201101594
112 SUN M H, Huang S Z, Chen L H, Li Y, Yang X Y, Yuan Z Y, Su B L. Applications of hierarchically structured porous materials from energy storage and conversion, catalysis, photocatalysis, adsorption, separation, and sensing to biomedicine Chemical Society reviews, 2016, 45: 3479–3563
https://doi.org/10.1039/c6cs00135a
113 Li X Y, Chen L H, Li Y, Rooke J C, Deng Z, Hu Z Y, Liu J, Krief A, Yang X Y, Su B L. Tuning the structure of a hierarchically porous ZrO2 for dye molecule depollution. Microporous and Mesoporous Materials, 2012, 152: 110–121
https://doi.org/10.1016/j.micromeso.2011.11.050
114 Li X Y, Chen L H, Li Y, Rooke J C, Wang C, Lu Y, Krief A, Yang X Y, Su B L. Self-generated hierarchically porous titania with high surface area: Photocatalytic activity enhancement by macrochannel structure. Journal of Colloid and Interface Science, 2012, 368(1): 128–138
https://doi.org/10.1016/j.jcis.2011.10.018
115 Chen L H, Li X Y, Tian G, Li Y, Tan H Y, Van Tendeloo G, Zhu G S, Qiu S L, Yang X Y, Su B L. Multimodal zeolite-beta-based catalysts with a hierarchical, three-level pore structure. ChemSusChem, 2011, 4(10): 1452–1456
https://doi.org/10.1002/cssc.201100181
116 Chen L H, Li X Y, Tian G, Li Y, Rooke J C, Zhu G S, Qiu S L, Yang X Y, Su B L. Highly stable and reusable multimodal zeolite TS-1 based catalysts with hierarchically interconnected three-level micro-meso-macroporous structure. Angewandte Chemie International Edition, 2011, 50(47): 11156–11161
https://doi.org/10.1002/anie.201105678
117 Chen L H, Xu S T, Li X Y, Tian G, Li Y, Rooke J C, Su B L. Multimodal Zr-Silicalite-1 zeolite nanocrystal aggregates with interconnected hierarchically micro-meso-macroporous architecture and enhanced mass transport property. Journal of Colloid and Interface Science, 2012, 377(1): 368–374
https://doi.org/10.1016/j.jcis.2012.03.018
118 Blin J L, Leonard A, Yuan Z Y, Gigot L, Vantomme A, Cheetham A K, Su B L. Hierarchically mesoporous/macroporous metal oxides templated from polyethylene oxide surfactant assemblies. Angewand Chemie International Edit ion, 2003, 42: 2872–2875
119 Li Y, Yang X Y, Tian G, Vantomme A, Yu J, Van T G, Su B L. Chemistry of trimethyl aluminum: A spontaneous route to thermally stable 3D crystalline macroporous alumina foams with a hierarchy of pore sizes. Chemistry of Materials, 2010, 22(10): 3251–3258
https://doi.org/10.1021/cm100491r
120 Yuan Z Y, Vantomme A, Léonard A, Su B L. Surfactant-assisted synthesis of unprecedented hierarchical meso-macrostructured zirconia. Chemical Communications, 2003, 9(13): 1558–1559
https://doi.org/10.1039/B303272H
121 Deng W, Toepke M W, Shanks B H. Surfactant-assisted synthesis of alumina with hierarchical nanopores. Advanced Functional Materials, 2003, 13(1): 61–65
https://doi.org/10.1002/adfm.200390007
122 Collins A, Carriazo D, Davis S A, Mann S. Spontaneous template-free assembly of ordered macroporous titania. Chemical Communications, 2004, 5(5): 568–569
https://doi.org/10.1039/b315018f
123 Léonard A, Blin J L, Su B L. One-pot surfactant assisted synthesis of aluminosilicate macrochannels with tunable micro- or mesoporous wall structure. Chemistry Communications, 2003: 2568–2569
https://doi.org/10.1039/B307720A
124 Ren T Z, Yuan Z Y, Su B L. Microwave-assisted preparation of hierarchical mesoporous-macroporous boehmite AlOOH and g-Al2O3. Langmuir, 2004, 20(4): 1531–1534
https://doi.org/10.1021/la0361767
125 Ren T Z, Yuan Z Y, Su B L. A novel macroporous structure of mesoporous titanias: Synthesis and characterisation. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2004, 241(1-3): 67–73
https://doi.org/10.1016/j.colsurfa.2004.04.033
126 Deng W, Shanks B H. Synthesis of hierarchically structured aluminas under controlled hydrodynamic conditions. Chemistry of Materials, 2005, 17(12): 3092–3100
https://doi.org/10.1021/cm050315j
127 Su B L, Léonard A, Yuan Z Y. Highly ordered mesoporous CMI-n materials and hierarchically structured meso-macroporous compositions. Comptes Rendus. Chimie, 2005, 8(3-4): 713–726
https://doi.org/10.1016/j.crci.2004.10.012
128 Yuan Z Y, Ren T Z, Azioune A, Pireaux J J, Su B L. Marvelous self-assembly of hierarchically nanostructured porous zirconium phosphate solid acids with high thermal stability. Catalysis Today, 2005, 105(105): 647–654
https://doi.org/10.1016/j.cattod.2005.06.038
129 Lemaire A, Wang Q Y, Wei Y X, Liu Z M, Su B L. Hierarchically structured meso-macroporous aluminosilicates with high tetrahedral aluminium content in acid catalysed esterification of fatty acids. Journal of Colloid & Interface Science, 2011, 363: 511–520
https://doi.org/10.1016/j.jcis.2011.08.017
130 Vantomme A, Léonard A, Yuan Z Y, Su B L. Hierarchically nanostructured porous functional ceramics key. Engineering Materials, 2007, 336: 1933–1938
131 Lemaire A, Su B L. Tailoring the porous hierarchy and the tetrahedral aluminum content by using carboxylate ligands: hierarchically structured macro-mesoporous aluminosilicates from a single molecular source. Langmuir, 2010, 26(22): 17603–17616
https://doi.org/10.1021/la1033355
132 Lemaire A, Rooke J C, Chen L H, Su B L. Direct observation of macrostructure formation of hierarchically structured meso-macroporous aluminosilicates with 3D interconnectivity by optical microscope. Langmuir, 2011, 27(6): 3030–3043
https://doi.org/10.1021/la104679h
133 Zhang K B, Fu Z Y, Nakayama T, Suzuki T, Suematsu H, Niihara K. One-pot synthesis of hierarchically macro/mesoporous Al2O3 monoliths from a facile sol–gel process. Materials Research Bulletin, 2011, 46(11): 2155–2162
https://doi.org/10.1016/j.materresbull.2011.04.015
134 Yang X Y, Li Y, Van T G, Xiao F, Su B L. One-pot synthesis of catalytically stable and active nanoreactors: Encapsulation of size-controlled nanoparticles within a hierarchically macroporous core@ ordered mesoporous shell system. Advanced Materials, 2009, 21(13): 1368–1372
https://doi.org/10.1002/adma.200802914
135 Kloestra K R, van Bekkum H, Jansen J C. Mesoporous material containing framework tectosilicate by pore-wall recrystallization. Chemical Communications, 1997, 23(23): 2281–2282
https://doi.org/10.1039/a705681h
136 Hu M C, Zielke J T, Byers C H, Lin J S, Harris M T. Probing the early-stage/rapid processes in hydrolysis and condensation of metal alkoxides. Journal of Materials Science, 2000, 35(8): 1957–1971
https://doi.org/10.1023/A:1004722603945
137 Su B L, Vantomme A, Surahy L, Pirard R, Pirard J P. Hierarchical multimodal mesoporous carbon materials with parallel macrochannels. Chemistry of Materials, 2007, 19(13): 3325–3333
https://doi.org/10.1021/cm070294o
138 Vantomme A, Yuan Z Y, Su B L. One-pot synthesis of a high-surface-area zirconium oxide material with hierarchically three-length-scaled pore structure. New Journal of Chemistry, 2004, 28(9): 1083–1085
https://doi.org/10.1039/b402915a
139 Léonard A, Su B L. Hierarchical aluminosilicate macrochannels with structured mesoporous walls: Towards a single catalyst for multistep reactions. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2007, 300(1-2): 129–135
https://doi.org/10.1016/j.colsurfa.2006.11.015
140 Hakim S H, Shanks B H. A comparative study of macroporous metal oxides synthesized via a unified approach. Chemistry of Materials, 2009, 21(10): 2027–2038
https://doi.org/10.1021/cm801691g
141 Léonard A, Vantomme A, Bouvy C, Moniotte N, Mariaulle P, Su B L. Highly ordered mesoporous and hierarchically nanostructured meso-macroporous materials for nanotechnology, biotechnology, information technology and medical applications. Nanopages, 2006, 1(1): 1–44
https://doi.org/10.1556/NANO.1.2006.1.1
142 Yuan Z Y, Ren T Z, Su B L. Hierarchically mesostructured titania materials with an unusual interior macroporous structure. Advanced Materials, 2003, 15(17): 1462–1465
https://doi.org/10.1002/adma.200305075
143 Ren T Z, Yuan Z Y, Su B L. Template-free synthesis of hierarchical mesoporous alumina-based materials with uniform channel-like macrostructures. Studies in Surface Science & Catalysis, 2007, 165: 287–290
https://doi.org/10.1016/S0167-2991(07)80319-3
144 Yuan Z Y, Ren T Z, Vantomme A, Su B L. Facile and generalized preparation of hierarchically mesoporous-macroporous binary metal oxide materials. Chemistry of Materials, 2004, 16(24): 5096–5106
https://doi.org/10.1021/cm0494812
145 Ren T Z, Yuan Z Y, Su B L. Thermally stable macroporous zirconium phosphates with supermicroporous walls: A self-formation phenomenon of hierarchy. Chemical Communications, 2004, (23): 2730–2731
https://doi.org/10.1039/b410763b
146 Ren T Z, Yuan Z Y, Azioun A, Pireaux J J, Su B L. Tailoring the porous hierarchy of titanium phosphates. Langmuir, 2006, 22(8): 3886–3894
https://doi.org/10.1021/la0533011
147 Yuan Z Y, Ren T Z, Azioune A, Pireaux J J, Su B L. Self-assembly of hierarchically mesoporous-macroporous phosphated nanocrystalline aluminum (oxyhydr) oxide materials. Chemistry of Materials, 2006, 18(7): 1753–1767
https://doi.org/10.1021/cm0520160
148 Wan Y, Zhao D. On the controllable soft-templating approach to mesoporous silicates. Chemical Reviews, 2007, 107(7): 2821–2860
https://doi.org/10.1021/cr068020s
149 Zhao D, Huo Q, Feng J, Chmelka B F, Stucky G D. Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures. Journal of the American Chemical Society, 1998, 120(24): 6024–6036
https://doi.org/10.1021/ja974025i
150 Ryoo R, Ko C H, Kruk M, Antochshuk V, Jaroniec M. Block-copolymer- templated ordered mesoporous silica: Array of uniform mesopores or mesopore-micropore network. Journal of Physical Chemistry B, 2000, 104(48): 11465–11471
https://doi.org/10.1021/jp002597a
151 Imperor-Clerc M, Davidson P, Davidson A. Existence of a microporous corona around the mesopores of silica-based SBA-15 materials templated by triblock copolymers. Journal of the American Chemical Society, 2000, 122(48): 11925–11933
https://doi.org/10.1021/ja002245h
152 Wang J, Feng S, Song Y, Li W, Gao W, Elzatahry A A, Aldhayan D, Xia Y, Zhao D. Elzatahry, Zhao A A. Synthesis of hierarchically porous carbon spheres with yolk-shell structure for high performance supercapacitors. Catalysis Today, 2015, 243: 199–208
https://doi.org/10.1016/j.cattod.2014.08.037
153 Haskouri E I, de Zárate J, Guillem D O, Latorre C, Caldés J, Beltrán M, Beltrán A, Descalzo D, Rodríguez-López A B, Gertrudis Martínez-Máñez R. Silica-based powders and monoliths with bimodal pore systems. Chemical Communications, 2002, 4(4): 330–331
154 Kim J H, Fang B, Song M Y, Yu J S. Topological transformation of thioether-bridged organosilicas into nanostructured functional materials. Chemistry of Materials, 2012, 24(12): 2256–2264
https://doi.org/10.1021/cm203520a
155 Wu D, Fu R, Dresselhaus M S, Dresselhaus G. Nano-structure control of carbon aerogels via a microemulsion-templated sol-gel polymerization method. Carbon, 2006, 44(4): 675–681
https://doi.org/10.1016/j.carbon.2005.09.022
156 Fu R, Zheng B, Liu J, Dresselhaus M S, Dresselhaus G, Satcher J H, Baumann T F. The fabrication and characterization of carbon aerogels by gelation and supercritical drying in isopropanol. Advanced Functional Materials, 2003, 13(7): 558–562
https://doi.org/10.1002/adfm.200304289
157 Nakanishi K, Soga N. Phase separation in gelling silica-organic polymer solution: Systems containing poly(sodium styrenesulfonate). Journal of the American Ceramic Society, 1991, 74(10): 2518–2530
https://doi.org/10.1111/j.1151-2916.1991.tb06794.x
158 Sun Y. Porous zirconium phosphates prepared by surfactant-assistedprecipitation. Journal of Materials Chemistry, 2000, 10(10): 2320–2324
https://doi.org/10.1039/B004845N
159 Unger K K, Tanaka N, Machtejevas E. Monolithic silicas in separation science: Concepts, syntheses, characterization, modeling and applications. Germany: Wiley-VCH, 2010, 125–161
160 Inagaki S, Guan S, Fukushima Y, Ohsuna T, Terasaki O. Novel mesoporous materials with a uniform distribution of organic groups and inorganic oxide in their frameworks. Journal of the American Chemical Society, 1999, 121(41): 9611–9614
https://doi.org/10.1021/ja9916658
161 Sun X H, Zheng C M, Qiao M Q, Yan J L, Wang X P, Guan N J. Bioinspired synthesis of hierarchical macro-mesoporous titania with tunable macroporous morphology using cell-assemblies as macrotemplates. Chemical Communications, 2009: 4750–4752
https://doi.org/10.1039/B908294H
162 Konishi J, Fujit K, Nakanishi K, Hirao K. Monolithic TiO2 with controlled multiscale porosity via a template-free sol-gel process accompanied by phase separation. Chemistry of Materials, 2006, 18(25): 6069–6074
https://doi.org/10.1021/cm0617485
163 Smått J H, Schunk S, Lindén M. Versatile double-templating synthesis route to silica monoliths exhibiting a multimodal hierarchical porosity. Chemistry of Materials, 2003, 15(12): 2354–2361
https://doi.org/10.1021/cm0213422
164 Takahashi R, Sato S, Sodesawa T, Suzuki K, Tafu M, Nakanishi K, Soga N. Phase separation in sol-gel process of alkoxide-derived silica-zirconia in the presence of polyethylene oxide. Journal of the American Ceramic Society, 2001, 84(9): 1968–1976
https://doi.org/10.1111/j.1151-2916.2001.tb00944.x
165 Murai S, Fujita K, Nakanishi K, Hirao K. Morphology control of phase-separation-induced alumina-silica macroporous gels for rare-earth-doped scattering media. Journal of Physical Chemistry B, 2004, 108(43): 16670–16676
https://doi.org/10.1021/jp0481658
166 Nakanishi K, Kobayashi Y, Amatani T, Hirao K, Kodaira T. Spontaneous formation of hierarchical macro-mesoporous ethane-silica monolith. Chemistry of Materials, 2004, 16(19): 3652–3658
https://doi.org/10.1021/cm049320y
167 Amatani T, Nakanishi K, Hirao K, Kodaira T. Monolithic periodic mesoporous silica with well-defined macropores. Chemistry of Materials, 2005, 17(8): 2114–2119
https://doi.org/10.1021/cm048091c
168 Brandhuber D, Torma V, Raab C, Peterlik H, Kulak A, Hüsing N. Glycol-modified silanes in the synthesis of mesoscopically organized silica monoliths with hierarchical porosity. Chemistry of Materials, 2005, 17(16): 4262–4271
https://doi.org/10.1021/cm048483j
169 Konishi J, Fujita K, Nakanishi K, Hirao K, Komarneni S, Parker J C. Macroporous Morphology Induced by Phase Separation in Sol-Gel Systems Derived from Titania Colloid, MRS Proceedings. Cambridge: Cambridge University Press, 2003, 788: 8–11
170 Huesing N, Raab C, Torma V, Roig A, Peterlik H. Periodically mesostructured silica monoliths from diol-modified silanes. Chemistry of Materials, 2003, 15(14): 2690–2692
https://doi.org/10.1021/cm034036c
171 Wu Q L, Subramanian N, Rankin S E. Hierarchically porous titania thin film prepared by controlled phase separation and surfactant templating. Langmuir, 2011, 27(15): 9557–9566
https://doi.org/10.1021/la201388n
172 François B, Pitois O, François J. Polymer films with a self-organized honeycomb morphology. Advanced Materials, 1995, 7(12): 1041–1044
https://doi.org/10.1002/adma.19950071217
173 Saito Y, Shimomura M, Yabu H. Dispersion of Al2O3 nanoparticles stabilized with mussel-inspired amphiphilic copolymers in organic solvents and formation of hierarchical porous films by the breath figure technique. Chemical Communications, 2013, 49(54): 6081–6083
https://doi.org/10.1039/c3cc42826e
174 Kon K, Brauer C N, Hidaka K, Löhmannsröben H G, Karthaus O. Preparation of patterned zinc oxide films by breath figure templating. Langmuir, 2010, 26(14): 12173–12176
https://doi.org/10.1021/la904897m
175 Peng J, Han Y, Yang Y, Li B. The influencing factors on the macroporous formation in polymer films by water droplet templating. Polymer, 2004, 45(2): 447–452
https://doi.org/10.1016/j.polymer.2003.11.019
176 Sel O, Laberty-Robert C, Azais T, Sanchez C. Designing meso-and macropore architectures in hybrid organic-inorganic membranes by combining surfactant and breath figure templating (BFT). Physical Chemistry Chemical Physics, 2009, 11(19): 3733–3741
https://doi.org/10.1039/b821506e
177 Böker A, Lin Y, Chiapperini K, Horowitz R, Thompson M, Carreon V, Xu T, Abetz C, Skaff H, Dinsmore A D, Emrick T, RussellT P. Hierarchical nanoparticle assemblies formed by decorating breath figures. Nature Materials, 2004, 3(5): 302–306
https://doi.org/10.1038/nmat1110
178 Srinivasarao M, Collings D, Philips A, Patel S. Three-dimensionally ordered array of air bubbles in a polymer film. Science, 2001, 292(5514): 79–83
https://doi.org/10.1126/science.1057887
179 Gao Y, Hou Y, Beaujuge P M. Arrays of hollow silica half-nanospheres via the breath figure approach. Advanced Materials Interfaces, 2015, 2(9): 1500078
180 Deville S. Freeze-casting of porous ceramics: A review of current achievements and issues. Advanced Engineering Materials, 2008, 10(3): 155–169
https://doi.org/10.1002/adem.200700270
181 Chatterji S. Aspects of the freezing process in a porous material–water system: Part 1. Freezing and the properties of water and ice. Cement and Concrete Research, 1999, 29(4): 627–630
https://doi.org/10.1016/S0008-8846(99)00035-6
182 DeSimone J M, Guan Z, Elsbernd C S. Synthesis of fluoropolymers in supercritical carbon dioxide. Science, 1992, 257(5072): 945–947
https://doi.org/10.1126/science.257.5072.945
183 Ho M H, Kuo P Y, Hsieh H J, Hsien T Y, Hou L T, Lai J Y, Wang D M. Preparation of porous scaffolds by using freeze-extraction and freeze-gelation methods. Biomaterials, 2004, 25(1): 129–138
https://doi.org/10.1016/S0142-9612(03)00483-6
184 Kang H W, Tabata Y, Ikada Y. Fabrication of porous gelatin scaffolds for tissue engineering. Biomaterials, 1999, 20(14): 1339–1344
https://doi.org/10.1016/S0142-9612(99)00036-8
185 Hsieh C Y, Tsai S P, Ho M H, Wang D M, Liu C E, Hsieh C H, Hsieh H J. Analysis of freeze-gelation and cross-linking processes for preparing porous chitosan scaffolds. Carbohydrate Polymers, 2007, 67(1): 124–132
https://doi.org/10.1016/j.carbpol.2006.05.002
186 Daamen W F, Van Moerkerk H T B, Hafmans T, Buttafoco L, Poot A A, Veerkamp J H, Van Kuppevelt T H. Preparation and evaluation of molecularly-defined collagen-elastin-glycosaminoglycan scaffolds for tissue engineering. Biomaterials, 2003, 24(22): 4001–4009
https://doi.org/10.1016/S0142-9612(03)00273-4
187 Yannas I V, Burke J F, Gordon P L, Huang C, Rubenstein R H. Design of an artificial skin. II. Control of chemical composition. Journal of Biomedical Materials Research, 1980, 14(2): 107–132
https://doi.org/10.1002/jbm.820140203
188 Shalaby W S W, Peck G E, Park K. Release of dextromethorphan hydrobromide from freeze-dried enzyme-degradable hydrogels. Journal of Controlled Release, 1991, 16(3): 355–363
https://doi.org/10.1016/0168-3659(91)90013-4
189 Mukai S R, Nishihara H, Tamon H. Formation of monolithic silica gel microhoneycombs (SMHs) using pseudosteady state growth of microstructural ice crystals. Chemical Communications, 2004, 7(7): 874–875
https://doi.org/10.1039/b316597c
190 Nishihara H, Mukai S R, Yamashita D, Tamon H. Ordered macroporous silica by ice templating. Chemistry of Materials, 2005, 17(3): 683–689
https://doi.org/10.1021/cm048725f
191 Mahler W, Bechtold M F. Freeze-formed silica fibres. Nature, 1980, 285(5759): 27–28
https://doi.org/10.1038/285027a0
192 Fukasawa T, Ando M, Ohji T, Kanzaki S. Synthesis of porous ceramics with complex pore structure by freeze-dry processing. Journal of the American Ceramic Society, 2001, 84(1): 230–232
https://doi.org/10.1111/j.1151-2916.2001.tb00638.x
193 Sofie S W, Dogan F. Freeze casting of aqueous alumina slurries with glycerol. Journal of the American Ceramic Society, 2001, 84(7): 1459–1464
https://doi.org/10.1111/j.1151-2916.2001.tb00860.x
194 Gutiérrez M C, Jobbágy M, Rapún N, Ferrer M L, del Monte F A. Biocompatible bottom-up route for the preparation of hierarchical biohybrid materials. Advanced Materials, 2006, 18(9): 1137–1140
https://doi.org/10.1002/adma.200502550
195 Zhang H, Hussain I, Brust M, Butler M F, Rannard S P, Cooper A I. Aligned two-and three-dimensional structures by directional freezing of polymers and nanoparticles. Nature Materials, 2005, 4(10): 787–793
https://doi.org/10.1038/nmat1487
196 Perriman A W, Brogan A P, Cölfen H, Tsoureas N, Owen G R, Mann S. Reversible dioxygen binding in solvent-free liquid myoglobin. Nature Chemistry, 2010, 2(8): 622–626
https://doi.org/10.1038/nchem.700
197 Eckert C A, Knutson B L, Debenedetti P G. Supercritical fluids as solvents for chemical and materials processing. Nature, 1996, 383(6598): 313–318
https://doi.org/10.1038/383313a0
198 Cooper A I. Porous materials and supercritical fluids. Advanced Materials, 2003, 15(13): 1049–1059
https://doi.org/10.1002/adma.200300380
199 DeSimone J M, Maury E E, Menceloglu Y Z, McClain J B, Romack T J, Combes J R. Dispersion polymerizations in supercritical carbon dioxide. Science, 1994, 265(5170): 356–359
https://doi.org/10.1126/science.265.5170.356
200 Kendall J L, Canelas D A, Young J L, DeSimone J M. Polymerizations in supercritical carbon dioxide. Chemical Reviews, 1999, 99(2): 543–564
https://doi.org/10.1021/cr9700336
201 DeSimone J M. Practical approaches to green solvents. Science, 2002, 297(5582): 799–803
https://doi.org/10.1126/science.1069622
202 Partap S, Rehman I, Jones J R, Darr J A. Supercritical carbon dioxide in water emulsion-templated synthesis of porous calcium alginate hydrogels. Advanced Materials, 2006, 18(4): 501–504
https://doi.org/10.1002/adma.200501423
203 Palocci C, Barbetta A, La Grotta A, Dentini M. Porous biomaterials obtained using supercritical CO2-water emulsions. Langmuir, 2007, 23(15): 8243–8251
https://doi.org/10.1021/la700947g
204 Butler R, Hopkinson I, Cooper A I. Synthesis of porous emulsion-templated polymers using high internal phase CO2-in-water emulsions. Journal of the American Chemical Society, 2003, 125(47): 14473–14481
https://doi.org/10.1021/ja037570u
205 Langer R, Vacanti J. Tissue engineering. Science, 1993, 260(5110): 920–926
https://doi.org/10.1126/science.8493529
206 Sui R, Charpentier P. Synthesis of metal oxide nanostructures by direct sol-gel chemistry in supercritical fluids. Chemical Reviews, 2012, 112(6): 3057–3082
https://doi.org/10.1021/cr2000465
207 Xu S, Yang H, Wang K, Wang B, Xu Q. Effect of supercritical CO2 on fabrication of free-standing hierarchical graphene oxide/carbon nanofiber/polypyrrole film and its electrochemical property. Physical Chemistry Chemical Physics, 2014, 16(16): 7350–7357
https://doi.org/10.1039/c3cp54957g
208 Wang M, Zhao B, Xu S, Lin L, Liu S, He D. Synthesis of hierarchically structured ZnO nanomaterials via a supercritical assisted solvothermal process. Chemical Communications, 2014, 50(8): 930–932
https://doi.org/10.1039/C3CC48306A
209 Nugroho A, Kim S J, Chang W, Chung K Y, Kim J. Design and fabrication of hierarchically porous carbon with a template-free method. Scientific Reports, 2014, 4: 6349
210 Wang L, Zhuo L, Zhang C, Zhao F. Supercritical carbon dioxide assisted deposition of Fe3O4 nanoparticles on hierarchical porous carbon and their lithium-storage performance. Chemistry (Weinheim an der Bergstrasse, Germany), 2014, 20(15): 4308–4315
https://doi.org/10.1002/chem.201304700
211 Nugroho A, Yoon D, Joo O S, Chung K Y, Kim J. Continuous synthesis of Li4Ti5O12 nanoparticles in supercritical fluids and their electrochemical performance for anode in Li-ion batteries. Chemical Engineering Journal, 2014, 258: 357–366
https://doi.org/10.1016/j.cej.2014.07.099
212 Davis S A, Burkett S L, Mendelson N H, Mann S. Bacterial templating of ordered macrostructures in silica and silica-surfactant mesophases. Nature, 1997, 385(6615): 420–423
https://doi.org/10.1038/385420a0
213 Meldrum F C, Seshadri R. Porous gold structures through templating by echinoidskeletal plates. Chemical Communications, 2000, 1(1): 29–30
https://doi.org/10.1039/a907074e
214 Qi L, Li J, Ma J. Biomimetic morphogenesis of calcium carbonate in mixed solutions of surfactants and double-hydrophilic block copolymers. Advanced Materials, 2002, 14(4): 300–303
https://doi.org/10.1002/1521-4095(20020219)14:4<300::AID-ADMA300>3.0.CO;2-P
215 Cook G, Timms P L, Göltner Spickermann C. Exact replication of biological structures by chemical vapor deposition of silica. Angewandte Chemie International Edition, 2003, 42(5): 557–559
https://doi.org/10.1002/anie.200390160
216 Hall S R, Bolger H, Mann S. Morphosynthesis of complex inorganic forms using pollen grain templates. Chemical Communications, 2003, 22(22): 2784–2785
https://doi.org/10.1039/b309877j
217 Valtchev V P, Smaihi M, Faust A C, Vidal L. Biomineral-silica-induced zeolitzation of equisetum arvense. Angewandte Chemie International Edition, 2003, 42(24): 2782–2785
https://doi.org/10.1002/anie.200351175
218 Sim K, Youn H J. Preparation of porous sheets with high mechanical strength by the addition of cellulose nanofibrils. Cellulose, 2016, 23(2): 1383–1392
https://doi.org/10.1007/s10570-016-0865-6
219 Farin D, Peleg S, Yavin D, Avnir D. Applications and limitations of boundary-line fractal analysis of irregular surfaces: Proteins, aggregates, and porous materials. Langmuir, 1985, 1(4): 399–407
https://doi.org/10.1021/la00064a003
220 Shim I K, Jung M R, Kim K H, Seol Y J B, Park Y J D, Park W H, Lee S J. Novel three-dimensional scaffolds of poly(L-lactic acid) microfibers using electrospinning and mechanical expansion: Fabrication and bone regeneration. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2010, 95(1): 150–160
https://doi.org/10.1002/jbm.b.31695
221 Jia Y, Han W, Xiong G, Yang W. Layer-by-layer assembly of TiO2 colloids onto diatomite to build hierarchical porous materials. Journal of Colloid and Interface Science, 2008, 323(2): 326–331
https://doi.org/10.1016/j.jcis.2008.04.020
222 Zampieri A, Mabande G T P, Selvam T, Schwieger W, Rudolph A, Hermann R, Sieber H, Greil P. Biotemplating of Luffa cylindrica sponges to self-supporting hierarchical zeolite macrostructures for bio-inspired structured catalytic reactors. Materials Science and Engineering, 2006, 26(1): 130–135
https://doi.org/10.1016/j.msec.2005.08.036
223 Holmes S M, Graniel-Garcia B E, Foran P, Hill P, Roberts E P L, Sakakini B H, Newton J M. A novel porous carbon based on diatomaceous earth. Chemical Communications, 2006, 25(25): 2662–2663
https://doi.org/10.1039/b600708b
224 Vrieling E G, Beelen T P M, van Santen R A, Gieskes W W. Mesophases of (bio) polymer-silica particles inspire a model for silica biomineralization in diatoms. Angewandte Chemie International Edition, 2002, 41(9): 1543–1546
https://doi.org/10.1002/1521-3773(20020503)41:9<1543::AID-ANIE1543>3.0.CO;2-B
225 Wang Y, Tang Y, Dong A, Wang X, Ren N, Gao Z. Zeolitization of diatomite to prepare hierarchical porous zeolite materials through a vapor-phase transport process. Journal of Materials Chemistry, 2002, 12(6): 1812–1818
https://doi.org/10.1039/b201113a
226 Yang H, Zhao D. Synthesis of replica mesostructures by the nanocasting strategy. Journal of Materials Chemistry, 2005, 15: 1217–1231
227 Polarz S, Antonietti M. Porous materials via nanocasting procedures: Innovative materials and learning about soft-matter organization. Chemical Communications, 2002, 22(22): 2593–2604
https://doi.org/10.1039/b205708p
228 Kyotani T, Nagai T, Inoue S, Tomita A. Formation of new type of porous carbon by carbonization in zeolite nanochannels. Chemistry of Materials, 1997, 9(2): 609–615
https://doi.org/10.1021/cm960430h
229 Lu A, Schmidt W, Spliethoff B, Schüth F. Synthesis and characterization of nanocast silica NCS-1 with CMK-3 as a template. Chemistry (Weinheim an der Bergstrasse, Germany), 2004, 10(23): 6085–6092
https://doi.org/10.1002/chem.200400180
230 Ryoo R, Joo S H, Jun S. Synthesis of highly ordered carbon molecular sieves via template-mediated structural transformation. Journal of Physical Chemistry B, 1999, 103(37): 7743–7746
https://doi.org/10.1021/jp991673a
231 Schüth F. Endo- und exotemplate zur erzeugung von anorganischen materialien mit großer spezifischer oberfläChe. Angewandte Chemie, 2003, 115(31): 3730–3750
https://doi.org/10.1002/ange.200300593
232 Velev O D, Jede T A, Lobo R F, Lenhoff A M. Porous silica via colloidal crystallization. Nature, 1997, 389(6650): 447–448
https://doi.org/10.1038/38921
233 Lu A H, Schüth F. Nanocasting: A versatile strategy for creating nanostructured porous materials. Advanced Materials, 2006, 18(14): 1793–1805
https://doi.org/10.1002/adma.200600148
234 Jun S, Joo S H, Ryoo R, Kruk M, Jaroniec M, Liu Z, Ohsuna T, Terasaki O. Synthesis of new, nanoporous carbon with hexagonally ordered mesostructure. Journal of the American Chemical Society, 2000, 122(43): 10712–10713
https://doi.org/10.1021/ja002261e
235 Ryoo R, Joo S H, Kruk M, Jaroniec M. Ordered mesoporous carbons. Advanced Materials, 2001, 13(9): 677–681
https://doi.org/10.1002/1521-4095(200105)13:9<677::AID-ADMA677>3.0.CO;2-C
236 Kang M, Kim D, Yi S H, Han J U, Yie J E, Kim J M. Preparation of stable mesoporous inorganic oxides via nano-replication technique. Catalysis Today, 2004, 93-95: 695–699
https://doi.org/10.1016/j.cattod.2004.06.063
237 Marsh H, Heintz E A, Rodriguez R F. Introduction to Carbon Technologies. Spain: University of Alicante, Secretariado de Publicaciones, 1997, 151–167
238 Lee J, Kim J, Hyeon T. A facile synthesis of bimodal mesoporous silica and its replication for bimodal mesoporous carbon. Chemical Communications, 2003, 10(10): 1138–1139
https://doi.org/10.1039/b301535a
239 Taguchi A, Smått J H, Lindén M. Carbon monoliths possessing a hierarchical, fully interconnected porosity. Advanced Materials, 2003, 15(14): 1209–1211
https://doi.org/10.1002/adma.200304848
240 Lu A H, Smått J H, Lindén M. Combined surface and volume templating of highly porous nanocast carbon monoliths. Advanced Functional Materials, 2005, 15(5): 865–871
https://doi.org/10.1002/adfm.200305183
241 Chai G S, Shin I S, Yu J S. Synthesis of ordered, uniform, macroporous carbons with mesoporous walls templated by aggregates of polystyrene spheres and silica particles for use as catalyst supports in direct methanol fuel cells. Advanced Materials, 2004, 16(22): 2057–2061
https://doi.org/10.1002/adma.200400283
242 Yoon S B, Sohn K, Kim J Y, Shin C H, Yu J S, Hyeon T. Fabrication of carbon capsules with hollow macroporous core/mesoporous shell structures. Advanced Materials, 2002, 14(1): 19–21
https://doi.org/10.1002/1521-4095(20020104)14:1<19::AID-ADMA19>3.0.CO;2-X
243 Kim M, Sohn K, Na H B, Hyeon T. Synthesis of nanorattles composed of gold nanoparticles encapsulated in mesoporous carbon and polymer shells. Nano Letters, 2002, 2(12): 1383–1387
https://doi.org/10.1021/nl025820j
244 Zhang X, Tu K N, Xie Y H, Tung C H, Xu S. Single-step fabrication of nickel films with arrayed macropores and nanostructured skeletons. Advanced Materials, 2006, 18(14): 1905–1909
https://doi.org/10.1002/adma.200502155
245 Martin C R, Che G, Lakshmi B B, Fisher E R. Carbon nanotubule membranes for electrochemical energy storage and production. Nature, 1998, 393(6683): 346–349
https://doi.org/10.1038/30694
246 Chen X, Steinhart M, Hess C, Gösele U. Ordered arrays of mesoporous microrods from recyclable macroporous silicon templates. Advanced Materials, 2006, 18(16): 2153–2156
https://doi.org/10.1002/adma.200600365
247 Panda M, Seshadri R, Gopalakrishnan J. Preparation of PbZrO3/AsO4 composites (A= Ca, Sr, Ba) and PbZrO3 by metathetic reactions in the solid state: Metathetic exchange of divalent species. Chemistry of Materials, 2003, 15(7): 1554–1559
https://doi.org/10.1021/cm021065z
248 Panda M, Rajamathi M, Seshadri R. A template-free, combustion-chemical route to macroporous nickel monoliths displaying a hierarchy of pore sizes. Chemistry of Materials, 2002, 14(11): 4762–4767
https://doi.org/10.1021/cm020590v
249 Toberer E S, Schladt T D, Seshadri R. Macroporous manganese oxides with regenerative mesopores. Journal of the American Chemical Society, 2006, 128(5): 1462–1463
https://doi.org/10.1021/ja0579412
250 Muir D M. A review of the selective leaching of gold from oxidised copper-gold ores with ammonia-cyanide and new insights for plant control and operation. Minerals Engineering, 2011, 24(6): 576–582
https://doi.org/10.1016/j.mineng.2010.08.022
251 Zhang L, Wu H B, Liu B, Lou X W D. Formation of porous SnO2 microboxes via selective leaching for highly reversible lithium storage. Energy & Environmental Science, 2014, 7(3): 1013–1017
https://doi.org/10.1039/c3ee43305f
252 Yuan Z Y, Blin J L, Su B L. Design of bimodal mesoporous silicas with interconnected pore systems by ammonia post-hydrothermal treatment in the mild-temperature range. Chemical Communications, 2002, 5(5): 504–505
https://doi.org/10.1039/b200322h
253 Sun Z, Liu Y, Li B, Wei J, Wang M, Yue Q, Deng Y, Kaliaguine S, Zhao D. General synthesis of discrete mesoporous carbon microspheres through a confined self-assembly process in inverse opals. ACS Nano, 2013, 7(10): 8706–8714
https://doi.org/10.1021/nn402994m
254 Tao Y, Kanoh H, Abrams L, Kaneko K. Mesopore-modified zeolites: Preparation, characterization, and applications. Chemical Reviews, 2006, 106(3): 896–910
https://doi.org/10.1021/cr040204o
255 van Donk S, Janssen A H, Bitter J H, deJong K P. Generation, characterization, and impact of mesopores in zeolite catalysts. Catalysis Reviews, 2003, 45(2): 297–319
https://doi.org/10.1081/CR-120023908
256 Mei C, Liu Z, Wen P, Xie Z, Hua W, Gao Z. Regular HZSM-5 microboxes prepared via a mild alkaline treatment. Journal of Materials Chemistry, 2008, 18(29): 3496–3500
https://doi.org/10.1039/b805385e
257 Zhou J, Hua Z, Shi J, He Q, Guo L, Ruan M. Synthesis of a hierarchical micro/mesoporous structure by steam-assisted post-crystallization. Chemistry (Weinheim an der Bergstrasse, Germany), 2009, 15(47): 12949–12954
https://doi.org/10.1002/chem.200901034
258 Groen J C, Bach T, Ziese U, Paulaime-van Donk A M, de Jong K P, Moulijn J A, Pérez-Ramírez J. Creation of hollow zeolite architectures by controlled desilication of Al-zoned ZSM-5 crystals. Journal of the American Chemical Society, 2005, 127(31): 10792–10793
https://doi.org/10.1021/ja052592x
259 Verboekend D, Vilé G, Pérez-Ramírez J. Hierarchical Y and USY zeolites designed by post-synthetic strategies. Advanced Functional Materials, 2012, 22(5): 916–928
https://doi.org/10.1002/adfm.201102411
260 Dähne L, Leporatti S, Donath E, Möhwald H. Fabrication of micro reaction cages with tailored properties. Journal of the American Chemical Society, 2001, 123(23): 5431–5436
https://doi.org/10.1021/ja002911e
261 Lin K J, Chen L J, Prasad M R, Cheng C Y. Core-shell synthesis of a novel, spherical, mesoporous silica/platinum nanocomposite: Pt/PVP@ MCM-41. Advanced Materials, 2004, 16(20): 1845–1849
https://doi.org/10.1002/adma.200400349
262 Liu Y, Zhang W, Pinnavaia T J. Steam-stable MSU-S aluminosilicate mesostructures assembled from zeolite ZSM-5 and zeolite beta seeds. Angewandte Chemie International Edition, 2001, 40(7): 1255–1258
https://doi.org/10.1002/1521-3773(20010401)40:7<1255::AID-ANIE1255>3.0.CO;2-U
263 Xiao F S, Han Y, Yu Y, Meng X, Yang M, Wu S. Hydrothermally stable ordered mesoporous titanosilicates with highly active catalytic sites. Journal of the American Chemical Society, 2002, 124(6): 888–889
https://doi.org/10.1021/ja0170044
264 Chal R, Gerardin C, Bulut M, van Donk S. Overview and industrial assessment of synthesis strategies towards zeolites with mesopores. ChemCatChem, 2011, 3(1): 67–81
https://doi.org/10.1002/cctc.201000158
265 Möller K, Bein T. Mesoporosity—A new dimension for zeolites. Chemical Society Reviews, 2013, 42(9): 3689–3707
https://doi.org/10.1039/c3cs35488a
266 Rolison D R. Catalytic nanoarchitectures—The importance of nothing and the unimportance of periodicity. Science, 2003, 299(5613): 1698–1701
https://doi.org/10.1126/science.1082332
267 Wang X, Yu J C, Ho C, Hou Y, Fu X. Photocatalytic activity of a hierarchically macro/mesoporous titania. Langmuir, 2005, 21(6): 2552–2559
https://doi.org/10.1021/la047979c
268 Shi J W, Zong X, Wu X, Cui H J, Xu B, Wang L Z, Fu M L. Carbon-doped titania hollow spheres with tunable hierarchical macroporous channels and enhanced visible light-induced photocatalytic activity. Chemcatchem, 2012, 4(4): 488–491
https://doi.org/10.1002/cctc.201200019
269 Yu J G, Su Y R, Cheng B. Template-free fabrication and enhanced photocatalytic activity of hierarchical macro-mesoporous titania. Advanced Functional Materials, 2007, 17(12): 1984–1990
https://doi.org/10.1002/adfm.200600933
270 Zhou H, Ding L, Fan T, Ding J, Zhang D, Guo Q. Leaf-inspired hierarchical porous CdS/Au/N-TiO2 heterostructures for visible light photocatalytic hydrogen evolution. Applied Catalysis B: Environmental, 2014, 147: 221–228
https://doi.org/10.1016/j.apcatb.2013.08.025
271 Schnepp Z, Yang W, Antonietti M, Giordano C. Biotemplating of metal carbide microstructures: The magnetic leaf. Angewandte Chemie International Edition, 2010, 49(37): 6564–6566
https://doi.org/10.1002/anie.201001626
272 Zhu J, Zhu Y, Zhu L, Rigutto M, van der Made A, Yang C, Pan S, Wang L, Zhu L, Jin Y, Sun Q, Wu Q, Meng X, Zhang D, Han Y, Li J, Chu Y, Zheng A, Qiu S, Zheng X, Xiao F S, van der Made A, Yang C, Pan S X, Xiao F S. Highly mesoporous single-crystalline zeolite beta synthesized using a nonsurfactant cationic polymer as a dual-function template. Journal of the American Chemical Society, 2014, 136(6): 2503–2510
https://doi.org/10.1021/ja411117y
273 Corma A, Diaz-Cabanas M J, Martínez-Triguero J, Rey F, Rius J. A large-cavity zeolite with wide pore windows and potential as an oil refining catalyst. Nature, 2002, 418(6897): 514–517
https://doi.org/10.1038/nature00924
274 Tang T, Yin C, Wang L, Ji Y, Xiao F S. Superior performance in deep saturation of bulky aromatic pyrene over acidic mesoporous beta zeolite-supported palladium catalyst. Journal of Catalysis, 2007, 249(1): 111–115
https://doi.org/10.1016/j.jcat.2007.03.031
275 Serrano D P, Sanz R, Pizarro P, Moreno I, Medina S. Hierarchical TS-1 zeolite as an efficient catalyst for oxidative desulphurization of hydrocarbon fractions. Applied Catalysis B: Environmental, 2014, 146: 35–42
https://doi.org/10.1016/j.apcatb.2013.05.025
276 Zhang S, Xu W, Zeng M, Li J, Li J, Xu J, Wang X. Superior adsorption capacity of hierarchical iron oxide @ magnesium silicate magnetic nanorods for fast removal of organic pollutants from aqueous solution. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2013, 1(38): 11691–11697
https://doi.org/10.1039/c3ta12767b
277 Ma T Y, Zhang X J, Yuan Z Y. Hierarchical meso-/macroporous aluminum phosphonate hybrid materials as multifunctional adsorbents. Journal of Physical Chemistry C, 2009, 113(29): 12854–12862
https://doi.org/10.1021/jp903412m
278 Xiao H, Ai Z, Zhang L. Nonaqueous sol-gel synthesized hierarchical CeO2 nanocrystal microspheres as novel adsorbents for wastewater treatment. Journal of Physical Chemistry C, 2009, 113(38): 16625–16630
https://doi.org/10.1021/jp9050269
279 Han S, Sohn K, Hyeon T. Fabrication of new nanoporous carbons through silica templates and their application to the adsorption of bulky dyes. Chemistry of Materials, 2000, 12(11): 3337–3341
https://doi.org/10.1021/cm000106t
280 Ayad M, Zaghlol S. Nanostructured crosslinked polyaniline with high surface area: Synthesis, characterization and adsorption for organic dye. Chemical Engineering Journal, 2012, 79: 204–206
281 Iwasaki M, Miwa S, Ikegami T, Tomita M, Tanaka N, Ishihama Y. One-dimensional capillary liquid chromatographic separation coupled with tandem mass spectrometry unveils the Escherichia coli proteome on a microarray scale. Analytical Chemistry, 2010, 82(7): 2616–2620
https://doi.org/10.1021/ac100343q
282 Miyamoto K, Hara T, Kobayashi H, Morisaka H, Tokuda D, Horie K, Koduki K, Makino S, Núñez O, Yang C, Kawabe T, Ikegami T, Takubo H, Ishihama Y, TanakaN. High-efficiency liquid chromatographic separation utilizing long monolithic silica capillary columns. Analytical Chemistry, 2008, 80(22): 8741–8750
https://doi.org/10.1021/ac801042c
283 Meunier C F, Rooke J C, Léonard A, Van Cutsem P, Su B L. Design of photochemical materials for carbohydrate production via the immobilisation of whole plant cells into a porous silica matrix. Journal of Materials Chemistry, 2010, 20(5): 929–936
https://doi.org/10.1039/B919763J
284 Léonard A, Rooke J C, Meunier C F, Sarmento H, Descy J P, Su B L. Cyanobacteria immobilised in porous silica gels: Exploring biocompatible synthesis routes for the development of photobioreactors. Energy & Environmental Science, 2010, 3(3): 370–377
https://doi.org/10.1039/b923859j
285 Meunier C F, Rooke J C, Léonard A, Xie H, Su B L. Living hybrid materials capable of energy conversion and CO2 assimilation. Chemical Communications, 2010, 46(22): 3843–3859
https://doi.org/10.1039/c001799j
286 Rooke J C, Léonard A, Meunier C F, Sarmento H, Descy J P, Su B L. Hybrid photosynthetic materials derived from microalgae cyanidium caldarium encapsulated within silica gel. Journal of Colloid and Interface Science, 2010, 344(2): 348–352
https://doi.org/10.1016/j.jcis.2009.12.053
287 Rooke J C, Meunier C, Léonard A, Su B L. Energy from photobioreactors: Bioencapsulation of photosynthetically active molecules, organelles, and whole cells within biologically inert matrices. Pure and Applied Chemistry, 2008, 80(11): 2345–2376
https://doi.org/10.1351/pac200880112345
288 Xiong J, Das S N, Shin B, Kar J P, Choi J H, Myoung J M. Biomimetic hierarchical ZnO structure with superhydrophobic and antireflective properties. Journal of Colloid and Interface Science, 2010, 350(1): 344–347
https://doi.org/10.1016/j.jcis.2010.06.053
289 Hajdu K, Gergely C, Martin M, Cloitre T, Zimányi L, Tenger K, Khoroshyy P, Palestino G, Agarwal V, Hernádi K, Németh Z, Nagy L, HernAdi K, Nemeth Z. Porous silicon/photosynthetic reaction center hybrid nanostructure. Langmuir, 2012, 28(32): 11866–11873
https://doi.org/10.1021/la301888p
290 Léonard A, Dandoy P, Danloy E, Leroux G, Meunier C F, Rooke J C, Su B L. Whole-cell based hybrid materials for green energy production, environmental remediation and smart cell-therapy. Chemical Society Reviews, 2011, 40(2): 860–885
https://doi.org/10.1039/c0cs00024h
291 Rooke J C, Léonard A, Meunier C F, Su B L. Designing photobioreactors based on living cells immobilized in silica gel for carbon dioxide mitigation. ChemSusChem, 2011, 4(9): 1249–1257
https://doi.org/10.1002/cssc.201000442
292 Zhou H, Li P, Guo J, Yan R, Fan T, Zhang D, Ye J. Artificial photosynthesis on tree trunk derived alkaline tantalates with hierarchical anatomy: Towards CO2 photo-fixation into CO and CH4. Nanoscale, 2015, 7(1): 113–120
https://doi.org/10.1039/C4NR03019B
293 Steele B C H, Heinze A. Materials for fuel-cell technologies. Nature, 2001, 414(6861): 345–352
https://doi.org/10.1038/35104620
294 Winter M, Brodd R J. What are batteries, fuel cells, and supercapacitors? Chemical Reviews, 2004, 104(10): 4245–4270
https://doi.org/10.1021/cr020730k
295 Bang J H, Han K, Skrabalak S E, Kim H, Suslick K S. Porous carbon supports prepared by ultrasonic spray pyrolysis for direct methanol fuel cell electrodes. Journal of Physical Chemistry C, 2007, 111(29): 10959–10964
https://doi.org/10.1021/jp071624v
296 Chai G S, Yoon S B, Yu J S, Choi J H, Sung Y E. Ordered porous carbons with tunable pore sizes as catalyst supports in direct methanol fuel cell. Physical of Chemistry B, 2004, 108(22): 7074–7079
https://doi.org/10.1021/jp0370472
297 Walcarius A. Mesoporous materials and electrochemistry. Chemical Society Reviews, 2013, 42(9): 4098–4140
https://doi.org/10.1039/c2cs35322a
298 Jin J, Huang S Z, Li Y, Tian H, Wang H E, Yu Y, Chen L H, Hasan T, Su B L. Hierarchical nanosheet-constructed yolk-shell TiO2 porous microspheres for lithium batteries with high capacity, superior rate and long cycle capability. Nanoscale, 2015, 7(30): 12979–12989
https://doi.org/10.1039/C5NR02800K
299 Huang S Z, Cai Y, Jin J, Liu J, Li Y, Yu Y, Wang H E, Chen L H, Su B L. Hierarchical mesoporous urchin-like Mn3O4/carbon microspheres with highly enhanced lithium battery performance by in-situ carbonization of new lamellar manganese alkoxide (Mn-DEG). Nano Energy, 2015, 12: 833–844
https://doi.org/10.1016/j.nanoen.2015.01.040
300 Jin J, Huang S Z, Liu J, Li Y, Chen L H, Yu Y, Wang H E, Grey C P, Su B L. Phases hybriding and hierarchical structuring of mesoporous TiO2 nanowire bundles for high rate and high capacity lithium batteries. Advancement of Science, 2015, 2: 1500070
301 Huang S Z, Cai Y, Jin J, Li Y, Zheng X F, Wang H E, Wu M, Chen L H, Su B L. Annealed vanadium oxide nanowires and nanotubes as high performance cathode materials for lithium ion battery. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2014, 2(34): 14099–14108
https://doi.org/10.1039/C4TA02339K
302 Jin J, Huang S Z, Liu J, Li Y, Chen D S, Wang H E, Yu Y, Chen L H, Su B L. Design of new anode material structure on the basis of hierarchically three dimensionally ordered macro-mesoporous TiO2 for high performance lithium ion batteries. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2014, 2(25): 9699–9708
https://doi.org/10.1039/c4ta01775g
303 Huang S Z, Jin J, Cai Y, Li Y, Tan H Y, Wang H E, Van Tendeloo G, Su B L. Engineering single crystalline Mn3O4 nano-octahedra with exposed highly active {011} facets for high performance lithium ion batteries. Nanoscale, 2014, 6(12): 6819–6827
https://doi.org/10.1039/c4nr01389a
304 Zheng X F, Shen G F, Li Y, Duan H N, Yang X Y, Huang S Z, Wang H E, Wang C, Deng Z, Su B L. Self-templated synthesis of microporous CoO nanoparticles with highly enhanced performance for both photocatalysis and lithium-ion batteries. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2013, 1(4): 1394–1400
https://doi.org/10.1039/C2TA00536K
305 Wang H E, Chen D S, Cai Y, Zhang R L, Xu J M, Deng Z, Zheng X F, Li Y, Bello I, Su B L. Facile synthesis of hierarchical and porous V2O5 microspheres as cathode materials for lithium ion batteries. Journal of Colloid and Interface Science, 2014, 418: 74–80
https://doi.org/10.1016/j.jcis.2013.12.011
306 Wang H E, Jin J, Cai Y, Xu J M, Chen D S, Zheng X F, Deng Z, Li Y, Bello I, Su B L. Facile and fast synthesis of porous TiO2 spheres for use in lithium ion batteries. Journal of Colloid and Interface Science, 2014, 417: 144–151
https://doi.org/10.1016/j.jcis.2013.11.035
307 Cai Y, Wang H E, Huang S Z, Jin J, Wang C, Yu Y, Li Y, Su B L. Hierarchical nanotube-constructed porous TiO2-B spheres for high performance lithium ion batteries. Scientific Reports, 2015, 5: 11557
https://doi.org/10.1038/srep11557
308 Zhou H, Zhu S, Hibino M, Honma I, Ichihara M. Lithium storage in ordered mesoporous carbon (CMK-3) with high reversible specific energy capacity and good cycling performance. Advanced Materials, 2003, 15(24): 2107–2111
https://doi.org/10.1002/adma.200306125
309 Wang Z, Li F, Ergang N S, Stein A. Effects of hierarchical architecture on electronic and mechanical properties of nanocast monolithic porous carbons and carbon-carbon nanocomposites. Chemistry of Materials, 2006, 18(23): 5543–5553
https://doi.org/10.1021/cm062050u
310 Hu Y S, Adelhelm P, Smarsly B M, Hore S, Antonietti M, Maier J. Synthesis of hierarchically porous carbon monoliths with highly ordered microstructure and their application in rechargeable lithium batteries with high-rate capability. Advanced Functional Materials, 2007, 17(12): 1873–1878
https://doi.org/10.1002/adfm.200601152
311 Hao G P, Li W C, Qian D, Wang G H, Zhang W P, Zhang T, Wang A Q, Schüth F, Bongard H J, Lu A H. Structurally designed synthesis of mechanically stable poly (benzoxazine-co-resol)-based porous carbon monoliths and their application as high-performance CO2 capture sorbents. Journal of the American Chemical Society, 2011, 133(29): 11378–11388
https://doi.org/10.1021/ja203857g
312 Xia Y, Yoshio M, Noguchi H. Improved electrochemical performance of LiFePO4 by increasing its specific surface area. Electrochimica Acta, 2006, 52(1): 240–245
https://doi.org/10.1016/j.electacta.2006.05.002
313 Doherty C M, Caruso R A, Smarsly B M, Drummond C J. Colloidal crystal templating to produce hierarchically porous LiFePO4 electrode materials for high power lithium ion batteries. Chemistry of Materials, 2009, 21(13): 2895–2903
https://doi.org/10.1021/cm900698p
314 Doherty C M, Caruso R A, Smarsly B M, Adelhelm P, Drummond C J, Doherty C M, Caruso R A, Smarsly B M. Hierarchically porous monolithic LiFePO4/carbon composite electrode materials for high power lithium ion batteries. Chemistry of Materials, 2009, 21(21): 5300–5306
https://doi.org/10.1021/cm9024167
315 Sinha N N, Shivakumara C, Munichandraiah N. High rate capability of a dual-porosity LiFePO4/C composite. ACS Applied Materials & Interfaces, 2010, 2(7): 2031–2038
https://doi.org/10.1021/am100309w
316 Liu J, Conry T E, Song X, Doeff M M, Richardson T J. Nanoporous spherical LiFePO4 for high performance cathodes. Energy & Environmental Science, 2011, 4(3): 885–888
https://doi.org/10.1039/c0ee00662a
317 Jiao F, Bao J, Hill A H, Bruce P G. Synthesis of ordered mesoporous Li-Mn-O spinel as a positive electrode for rechargeable lithium batteries. Angewandte Chemie International Edition, 2008, 47(50): 9711–9716
https://doi.org/10.1002/anie.200803431
318 Luo J, Wang Y, Xiong H, Xia Y. Ordered mesoporous spinel LiMn2O4 by a soft-chemical process as a cathode material for lithium-ion batteries. Chemistry of Materials, 2007, 19(19): 4791–4795
https://doi.org/10.1021/cm0714180
319 Xia X H, Tu J P, Wang X L, Gu C D, Zhao X B. Hierarchically porous NiO film grown by chemical bath deposition via a colloidal crystal template as an electrochemical pseudocapacitor material. Journal of Materials Chemistry, 2011, 21(3): 671–679
https://doi.org/10.1039/C0JM02784G
320 Elimelech M, Phillip W A. The future of seawater desalination: Energy, technology, and the environment. Science, 2011, 333(6043): 712–717
https://doi.org/10.1126/science.1200488
321 Xia X, Tu J, Xiang J, Huang X, Wang X, Zhao X. Hierarchical porous cobalt oxide array films prepared by electrodeposition through polystyrene sphere template and their applications for lithium ion batteries. Journal of Power Sources, 2010, 195(7): 2014–2022
https://doi.org/10.1016/j.jpowsour.2009.11.009
322 Yuan Y, Xia X, Wu J, Yang J, Chen Y, Guo S. Hierarchically ordered porous nickel oxide array film with enhanced electrochemical properties for lithium ion batteries. Electrochemistry Communications, 2010, 12(7): 890–893
https://doi.org/10.1016/j.elecom.2010.04.013
323 Jung H G, Oh S W, Ce J, Jayaprakash N, Sun Y K. Mesoporous TiO2 nano networks: Anode for high power lithium battery applications. Electrochemistry Communications, 2009, 11(4): 756–759
https://doi.org/10.1016/j.elecom.2009.01.030
324 Yan H, Sokolov S, Lytle J C, Stein A, Zhang F, Smyrl W H. Colloidal-crystal-templated synthesis of ordered macroporous electrode materials for lithium secondary batteries. Journal of the Electrochemical Society, 2003, 150(8): A1102–A1107
https://doi.org/10.1149/1.1590324
325 Jiao F, Shaju K M, Bruce P G. Synthesis of nanowire and mesoporous low-temperature LiCoO2 by a post-templating reaction. Angewandte Chemie International Edition, 2005, 44(40): 6550–6553
https://doi.org/10.1002/anie.200501663
326 Fan L Z, Hu Y S, Maier J, Adelhelm P, Smarsly B, Antonietti M, Fan L Z, Hu Y S, Maier J. High electroactivity of polyaniline in supercapacitors by using a hierarchically porous carbon monolith as a support. Advanced Functional Materials, 2007, 17(16): 3083–3087
https://doi.org/10.1002/adfm.200700518
327 Song H K, Jung Y H, Lee K H, Dao L H. Electrochemical impedance spectroscopy of porous electrodes: The effect of pore size distribution. Electrochimica Acta, 1999, 44(20): 3513–3519
https://doi.org/10.1016/S0013-4686(99)00121-8
328 Rose M, Korenblit Y, Kockrick E, Borchardt L, Oschatz M, Kaskel S, Yushin G. Hierarchical micro-and mesoporous carbide-derived carbon as a high-performance electrode material in supercapacitors. Small, 2011, 7(8): 1108–1117
https://doi.org/10.1002/smll.201001898
329 Xia K, Gao Q, Jiang J, Hu J. Hierarchical porous carbons with controlled micropores and mesopores for supercapacitor electrode materials. Carbon, 2008, 46(13): 1718–1726
https://doi.org/10.1016/j.carbon.2008.07.018
330 Eliaz N. Degradation of implant materials. Springer Science Business Media, 2012, 151–173
331 Xu M, Li H, Zhai D, Chang J, Chen S, Wu C. Hierarchically porous nagelschmidtite bioceramic-silk scaffolds for bone tissue engineering. Journal of Materials Chemistry. B, Materials for Biology and Medicine, 2015, 3(18): 3799–3809
https://doi.org/10.1039/C5TB00435G
332 Fu Q, Saiz E, Rahaman M N, Tomsia A P. Bioactive glass scaffolds for bone tissue engineering: State of the art and future perspectives. Materials Science and Engineering C, 2011, 31(7): 1245–1256
https://doi.org/10.1016/j.msec.2011.04.022
333 Manzano M, Vallet-Regí M. Revisiting bioceramics: Bone regenerative and local drug delivery systems. Progress in Solid State Chemistry, 2012, 40(3): 17–30
https://doi.org/10.1016/j.progsolidstchem.2012.05.001
334 Saiz E, Zimmermann E A, Lee J S, Wegst U G, Tomsia A P. Perspectives on the role of nanotechnology in bone tissue engineering. Dental Materials, 2013, 29(1): 103–115
https://doi.org/10.1016/j.dental.2012.08.001
335 Porter J R, Ruckh T T, Popat K C. Bone tissue engineering: A review in bone biomimetics and drug delivery strategies. Biotechnology Progress, 2009, 25(6): 1539–1560
336 Hollister S J. Porous scaffold design for tissue engineering. Nature Materials, 2005, 4(7): 518–524
https://doi.org/10.1038/nmat1421
337 Chen Q Z, Thompson I D, Boccaccini A R. 45S5 Bioglass®-derived glass-ceramic scaffolds for bone tissue engineering. Biomaterials, 2006, 27(11): 2414–2425
https://doi.org/10.1016/j.biomaterials.2005.11.025
338 Baino F, Vitale-Brovarone C. Three-dimensional glass-derived scaffolds for bone tissue engineering: Current trends and forecasts for the future. Journal of Biomedical Materials Research. Part A, 2011, 97(4): 514–535
https://doi.org/10.1002/jbm.a.33072
339 Anselme K. Osteoblast adhesion on biomaterials. Biomaterials, 2000, 21(7): 667–681
https://doi.org/10.1016/S0142-9612(99)00242-2
340 Jones J R, Lee P D, Hench L L. Hierarchical porous materials for tissue engineering. Philosophical Transactions of the Royal Society of London A: Mathematical. Physical and Engineering Sciences, 1838, 2006(364): 263–281
341 Hench L L. Bioceramics: From concept to clinic. Journal of the American Ceramic Society, 1991, 74(7): 1487–1510
https://doi.org/10.1111/j.1151-2916.1991.tb07132.x
342 Brinker C J, Scherer G W. Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing. United States: Academic press, 2013, 130–178
343 Sepulveda P, Jones J R, Hench L L. In vitro dissolution of melt-derived 45S5 and sol-gel derived 58S bioactive glasses. Journal of Biomedical Materials Research, 2002, 61(2): 301–311
https://doi.org/10.1002/jbm.10207
344 Yuan H, de Bruijn J D, Zhang X, Blitterswijk C A, de Groot K. Bone induction by porous glass ceramic made from Bioglassw (45S5). Journal of Biomedical Materials Research, 2001, 58(3): 270–276
https://doi.org/10.1002/1097-4636(2001)58:3<270::AID-JBM1016>3.0.CO;2-2
345 Sepulveda P, Jones J R, Hench L L. Bioactive sol-gel foams for tissue repair. Journal of Biomedical Materials Research, 2002, 59(2): 340–348
https://doi.org/10.1002/jbm.1250
346 Tian G, Gu Z, Liu X, Zhou L, Yin W, Yan L, Jin S, Ren W, Xing G, Li S, ZhaoY. Facile fabrication of rare-earth-doped Gd2O3 hollow spheres with upconversion luminescence, magnetic resonance, and drug delivery properties. Journal of Physical Chemistry C, 2011, 115(48): 23790–23796
https://doi.org/10.1021/jp209055t
347 Xu Z H, Ma P A, Li C X, Hou Z Y, Zhai X F, Huang S S, Lin J. Monodisperse core-shell structured up-conversion Yb (OH) CO3@ YbPO4: Er3+ hollow spheres as drug carriers. Biomaterials, 2011, 32(17): 4161–4173
https://doi.org/10.1016/j.biomaterials.2011.02.026
348 Allen T M, Cullis P R. Drug delivery systems: Entering the mainstream. Science, 2004, 303(5665): 1818–1822
https://doi.org/10.1126/science.1095833
349 Ye F, Guo H, Zhang H, He X. Polymeric micelle-templated synthesis of hydroxyapatite hollow nanoparticles for a drug delivery system. Acta Biomaterialia, 2010, 6(6): 2212–2218
https://doi.org/10.1016/j.actbio.2009.12.014
350 Zhang H, Sun J, Ma D, Bao X, Klein-Hoffmann A, Weinberg G, Su D, Schlögl R. Unusual mesoporous SBA-15 with parallel channels running along the short axis. Journal of the American Chemical Society, 2004, 126(24): 7440–7441
https://doi.org/10.1021/ja048630e
351 Liu J, Hartono S B, Jin Y G, Li Z, Lu G Q M, Qiao S Z. A facile vesicle template route to multi-shelled mesoporous silica hollow nanospheres. Journal of Materials Chemistry, 2010, 20(22): 4595–4601
https://doi.org/10.1039/b925201k
352 Piao Y, Kim J, Na H B, Kim D, Baek J S, Ko M K, Lee J H, Shokouhimehr M, Hyeon T. Wrap-bake-peel process for nanostructural transformation from β-FeOOH nanorods to biocompatible iron oxide nanocapsules. Nature Materials, 2008, 7(3): 242–247
https://doi.org/10.1038/nmat2118
353 Son J S, Appleford M, Ong J L, Wenke J C, Kim J M, Choi S H, Oh D S. Porous hydroxyapatite scaffold with three-dimensional localized drug delivery system using biodegradable microspheres. Journal of Controlled Release, 2011, 153(2): 133–140
https://doi.org/10.1016/j.jconrel.2011.03.010
354 Giger E V, Puigmarti L J, Schlatter R, Castagner B, Dittrich P S, Leroux J C. Gene delivery with bisphosphonate-stabilized calcium phosphate nanoparticles. Journal of Controlled Release, 2011, 150(1): 87–93
https://doi.org/10.1016/j.jconrel.2010.11.012
355 Yang H, Hao L, Zhao N, Du C, Wang Y. Hierarchical porous hydroxyapatite microsphere as drug delivery carrier. CrystEngComm, 2013, 15(29): 5760–5763
https://doi.org/10.1039/c3ce40710a
356 Zhao W, Chen H, Li Y, Li L, Lang M, Shi J. Uniform rattle-type hollow magnetic mesoporous apheres as drug delivery carriers and their sustained-release property. Advanced Functional Materials, 2008, 18(18): 2780–2788
https://doi.org/10.1002/adfm.200701317
357 Wang T, Chai F, Fu Q, Zhang L, Liu H, Li L, Liao Y, Su Z, Wang C, Duan B, Ren D. Uniform hollow mesoporous silica nanocages for drug delivery in vitro and in vivo for liver cancer therapy. Journal of Materials Chemistry, 2011, 21(14): 5299–5306
https://doi.org/10.1039/c0jm04115g
358 Gai S L, Yang P, Li P, Wang C X, Dai W X, Niu Y L, Lin N. Synthesis of magnetic, up-conversion luminescent, and mesoporous core-shell-structured nanocomposites as drug carriers. Advanced Functional Materials, 2010, 20(7): 1166–1172
https://doi.org/10.1002/adfm.200902274
359 Liu J, Qiao S Z, Chen J S, Lou X W, Xing X, Lu G Q. Yolk/shell nanoparticles: New platforms for nanoreactors, drug delivery and lithium-ion batteries. Chemical Communications, 2011, 47(47): 12578–12591
https://doi.org/10.1039/c1cc13658e
360 Chen D, Li L, Tang F, Qi S. Facile and scalable synthesis of tailored silica ‘nanorattle’ structures. Advanced Materials, 2009, 21(37): 3804–3807
https://doi.org/10.1002/adma.200900599
361 Hu S H, Chen Y Y, Liu T C, Tung T H, Liu M D, Chen S Y. Remotely nano-rupturable yolk/shell capsules for magnetically-triggered drug release. Chemical Communications, 2011, 47(6): 1776–1778
https://doi.org/10.1039/C0CC03998E
362 Chen Y, Chen H R, Zhang S J, Chen F, Zhang L X, Zhang J M, Zhu M, Wu H X, Guo L M, Feng J W, Shi J L. Multifunctional mesoporous nanoellipsoids for biological bimodal imaging and magnetically targeted delivery of anticancer drugs. Advanced Functional Materials, 2011, 21(2): 270–278
https://doi.org/10.1002/adfm.201001495
363 Wu H X, Zhang S J, Zhang J M, Liu G, Shi J L, Zhang L X, Cui X Z, Ruan M L, He Q J, Bu W B A. Hollow-core, magnetic, and mesoporous double-shell nanostructure: In situ decomposition/reduction synthesis, bioimaging, and drug-delivery properties. Advanced Functional Materials, 2011, 21(10): 1850–1862
https://doi.org/10.1002/adfm.201002337
364 Zhang X F, Clime L, Roberge H, Normandin F, Yahia L H, Sacher E, Veres T. pH-triggered doxorubicin delivery based on hollow nanoporous silica nanoparticles with free-standing superparamagnetic Fe3O4 cores. Journal of Physical Chemistry C, 2011, 115(5): 1436–1443
https://doi.org/10.1021/jp1075498
365 Lu Y, Zhao Y, Yu L, Dong L, Shi C, Hu M J, Xu Y J, Wen L P, Yu S H. Hydrophilic Co@ Au yolk/shell nanospheres: Synthesis, assembly, and application to gene delivery. Advanced Materials, 2010, 22(12): 1407–1411
https://doi.org/10.1002/adma.200903298
366 Suh W H, Jang A R, Suh Y H, Suslick K S. Porous hollow, ball-in-ball metal oxide microspheres: Preparation, endocytosis, and cytotoxicity. Advanced Materials, 2006, 18(14): 1832–1837
https://doi.org/10.1002/adma.200600222
367 Li L L, Tang F Q, Li Y H, Liu T L, Hao N J, Chen D, Teng X, He J Q. In vivo delivery of silica nanorattle encapsulated docetaxel for liver cancer therapy with low toxicity and high efficacy. ACS Nano, 2010, 4(11): 6874–6882
https://doi.org/10.1021/nn100918a
368 Chen Y, Chen H R, Guo L M, He Q J, Chen F, Zhou J, Feng J W, Shi J L. Hollow/rattle-type mesoporous nanostructures by a structural difference-based selective etching strategy. ACS Nano, 2010, 4(1): 529–539
https://doi.org/10.1021/nn901398j
[1] Faraz Montazersadgh, Hao Zhang, Anas Alkayal, Benjamin Buckley, Ben W. Kolosz, Bing Xu, Jin Xuan. Electrolytic cell engineering and device optimization for electrosynthesis of e-biofuels via co-valorisation of bio-feedstocks and captured CO2[J]. Front. Chem. Sci. Eng., 2021, 15(1): 208-219.
[2] Yifei Wang, Shouying Huang, Xinsheng Teng, Hongyu Wang, Jian Wang, Qiao Zhao, Yue Wang, Xinbin Ma. Controllable Fe/HCS catalysts in the Fischer-Tropsch synthesis: Effects of crystallization time[J]. Front. Chem. Sci. Eng., 2020, 14(5): 802-812.
[3] You Han, Yulian Wang, Tengzhou Ma, Wei Li, Jinli Zhang, Minhua Zhang. Mechanistic understanding of Cu-based bimetallic catalysts[J]. Front. Chem. Sci. Eng., 2020, 14(5): 689-748.
[4] Feichao Wu, Yanling Wang, Xiongfu Zhang. Flow synthesis of a novel zirconium-based UiO-66 nanofiltration membrane and its performance in the removal of p-nitrophenol from water[J]. Front. Chem. Sci. Eng., 2020, 14(4): 651-660.
[5] Yang Su, Liping Lü, Weifeng Shen, Shun’an Wei. An efficient technique for improving methanol yield using dual CO2 feeds and dry methane reforming[J]. Front. Chem. Sci. Eng., 2020, 14(4): 614-628.
[6] Rongxin Zhang, Peinan Zhong, Hamidreza Arandiyan, Yanan Guan, Jinmin Liu, Na Wang, Yilai Jiao, Xiaolei Fan. Using ultrasound to improve the sequential post-synthesis modification method for making mesoporous Y zeolites[J]. Front. Chem. Sci. Eng., 2020, 14(2): 275-287.
[7] Zhaoqi Ye, Hongbin Zhang, Yahong Zhang, Yi Tang. Seed-induced synthesis of functional MFI zeolite materials: Method development, crystallization mechanisms, and catalytic properties[J]. Front. Chem. Sci. Eng., 2020, 14(2): 143-158.
[8] Kasra Pirzadeh, Ali Asghar Ghoreyshi, Mostafa Rahimnejad, Maedeh Mohammadi. Optimization of electrochemically synthesized Cu3(BTC)2 by Taguchi method for CO2/N2 separation and data validation through artificial neural network modeling[J]. Front. Chem. Sci. Eng., 2020, 14(2): 233-247.
[9] Bin Xu, Toshiro Kaneko, Toshiaki Kato. Improvement in growth yield of single-walled carbon nanotubes with narrow chirality distribution by pulse plasma CVD[J]. Front. Chem. Sci. Eng., 2019, 13(3): 485-492.
[10] Kadriye Özlem Hamaloğlu, Ebru Sağ, Çiğdem Kip, Erhan Şenlik, Berna Saraçoğlu Kaya, Ali Tuncel. Magnetic-porous microspheres with synergistic catalytic activity of small-sized gold nanoparticles and titania matrix[J]. Front. Chem. Sci. Eng., 2019, 13(3): 574-585.
[11] Long Cheng, Ruirui Zhang, Hongke Wu, Xinghai Liu, Tianming Xu. The synthesis of 6-(tert-butyl)-8-fluoro-2,3-dimethylquinoline carbonate derivatives and their antifungal activity against Pyricularia oryzae[J]. Front. Chem. Sci. Eng., 2019, 13(2): 369-376.
[12] Marcela Achimovičová, Erika Dutková, Erika Tóthová, Zdenka Bujňáková, Jaroslav Briančin, Satoshi Kitazono. Structural and optical properties of nanostructured copper sulfide semiconductor synthesized in an industrial mill[J]. Front. Chem. Sci. Eng., 2019, 13(1): 164-170.
[13] Mostafa R. Shirdar, Nasim Farajpour, Reza Shahbazian-Yassar, Tolou Shokuhfar. Nanocomposite materials in orthopedic applications[J]. Front. Chem. Sci. Eng., 2019, 13(1): 1-13.
[14] Wen Zhao, Jiahua Xing, Tianming Xu, Weili Peng, Xinghai Liu. Synthesis and in vivo nematocidal evaluation of novel 3-(trifluoromethyl)-1H-pyrazole-4-carboxamide derivatives[J]. Front. Chem. Sci. Eng., 2017, 11(3): 363-368.
[15] Kaojin Wang, Satu Strandman, X. X. Zhu. A mini review: Shape memory polymers for biomedical applications[J]. Front. Chem. Sci. Eng., 2017, 11(2): 143-153.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed