Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2016, Vol. 10 Issue (4) : 552-561     DOI: 10.1007/s11705-016-1589-8
Synthesis and properties of novel organogelators functionalized with 5-iodo-1,2,3-triazole and azobenzene groups
Ziyan Li,Yaodong Huang(),Dongli Fan,Huimin Li,Shuxue Liu,Luyuan Wang
Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
Download: PDF(434 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks

Two series of 5-iodo-1,2,3-triazole derivatives containing azobenzene group(s) were synthesized and their gelling properties were tested. Those containing two azobenzene groups (B series) have better gelation performance than those containing one azobenzene group (A series). The microstructure of organogels and the driving force of gelation were investigated by scanning electron microscopy and 1H NMR, respectively. It was found that π-π stacking, van der Waals interaction, and dipole-dipole interaction were the main forces of gelation. All the tested organogels are photoresponsive and those from B series are smarter than that from A series. Henry δp-δh diagrams of compounds A1, A2, and B2 were constructed on the basis of their gelation performance and the Hansen solubility parameters of related solvents. The constructed Henry δp-δh diagrams can be used to estimate the behavior of three compounds in any untested solvent.

Keywords iodo triazole      azobenzene      photoresponsive organogel      gelator-solvent effect     
Corresponding Authors: Yaodong Huang   
Just Accepted Date: 19 August 2016   Online First Date: 14 November 2016    Issue Date: 29 November 2016
URL:     OR
Fig.1  Scheme 1Synthetic route for organogelators A1, A2, A3, B1, and B2

(a) DIPEA, CuI, NBS, THF, r. t., 20 h, ~60%; (b) DIPEA, CuI, NBS, THF, r. t., 28 h, ~50%

Solvent A1 A2 A3 B1 B2
Petroleum ether P 35 20 P P
Cyclohexane 30 25 15 PG 25
Hexane P 33 19 P P
Carbon tetrachloride 50 28 14 P 48
Methylene chloride S 60 16 25 4
Tetrahydrofuran PG PG 20 42 13
Ethyl acetate 20 17 8 PG 12
Chloroform S S 14 44 15
Acetone P P 47 PG Ins
Acetonitrile Ins Ins Ins Ins Ins
Dioxane P P 45 P 50
Pyridine PG PG 52 PG PG
Butyl alcohol PG PG PG 50 14
Isopropyl alcohol P P P Ins Ins
Methanol Ins Ins Ins Ins Ins
Ethanol Ins Ins Ins Ins Ins
Triethy lamine P P P P P
Benzene S S 8 50 30
Toluene PG PG 46 45 25
N,N-dimethylformamide P P P P P
Ethyl ether Ins Ins Ins 20 10
Carbon disulfide 42 36 12 11 3
1,2-dichloroethane 35 20 10 33 20
Chlorobenzene 28 15 8 40 13
Tab.1  Gelation properties of the five synthesized compounds a)
Fig.2  Scheme 2The structures of two control compounds C1 and C2
Fig.3  SEM images of xerogels of (a) A1/ethyl acetate, (b) A2/ethyl acetate, (c) A3/ethyl acetate, (d) A3/cyclohexane, (e) A3/chlorobenzene, (f) B2/methylene chloride, (g) B2/ethyl acetate, and (h) B2/n-butyl alcohol. The concentration of all the gels is 20 mg/mL
Fig.4  XRD patterns of xerogels from (a) A3/1,2-dicholoethane gel (20 mg/mL) and (b) B2/1,2-dicholoethane gel (20 mg/mL)
Fig.5  Temperature-dependent 1H NMR spectra of A3 in CDCl3 (10 mg/mL)
Fig.6  The phase transitions of A3/1,2-dichloroethane and B2/1,2-dichloroethane systems
Fig.7  UV spectra of the gel-sol and sol-gel transitions of A3/1,2-dichloroethane and B2/1,2-dichloroethane systems. The concentrations are 15 and 20 mg/mL for A3 gel and B2 gel, respectively. (a) A3/1,2-dichloroethane gel irradiated by ultraviolet light; (b) The subsequent sol of (a) irradiated by visible light; (c) B2/1,2-dichloroethane gel irradiated by ultraviolet light; (d) The subsequent sol of (c) irradiated by visible light
Solvent δd δp δh
Cyclohexane 16.7 0 0
Tetrachloromethane 16.9 0 0
1,2-Dichloroethane 18.1 5.3 4.1
?Ethyl acetate 15.2 5.3 9.2
Carbon disulfide 18.3 0 0
Chlorobenzene 18.9 4.3 2.1
Tetrahydrofuran 17.85 5.7 8.0
?Toluene 17.7 1.4 2
Dichlormethane 17.8 6.4 6.1
?Pyridine 19.5 8.8 5.9
Chloroform 17.9 3.1 5.7
Benzene 18.05 1 2
Dioxane 18.25 1.8 7.4
Butanol 16 5.7 15.8
Hexane 14.8 0 0
Acetonitrile 15.8 18.0 6.1
Methanol 15.2 12.3 22.3
Ethanol 15.8 8.8 19.5
Diethyl?ether 14.4 2.9 5.1
Dimethyl formamide 17.4 13.7 11.3
Acetone 15.5 10.4 7
Isopropanol 15.8 6.1 16.4
Tab.2  The Hansen solubility parameters of the solventsa)
Fig.8  The δp-δh diagrams for (a) A1, (b) A3, and (c) B2
1 Gawlitza K, Wu C, Georgieva R, Wang D, Ansorge-Schumacher M B, von Klitzing R. Immobilization of lipase B within micron-sized poly-N-isopropylacrylamide hydrogel particles by solvent. Physical Chemistry Chemical Physics, 2012, 14(27): 9594–9600
doi: 10.1039/c2cp40624a
2 Jiang H L, Zhu Y H, Chen C, Shen J H, Bao H, Peng L M, Yang X L, Li C Z, New J. Photonic crystal pH and metalcation. New Journal of Chemistry, 2012, 36(4): 1051–1056
doi: 10.1039/c2nj20989f
3 Sugiyasu K, Fujita N, Shinkai S. Photochemical processes visible-light-harvesting organogel composed of cholesterol-based perylene derivatives. Angewandte Chemie International Edition, 2004, 43(10): 1229–1233
doi: 10.1002/anie.200352458
4 Vintiloiu A, Leroux J C. Organogels and their use in drug delivery—A review. Journal of Controlled Release, 2008, 125(3): 179–192
doi: 10.1016/j.jconrel.2007.09.014
5 Sagiri S S, Singh V K, Banerjee I, Pramanik K, Basak P, Pal K. Core-shell-type organogel-alginate hybrid microparticles: A controlled delivery vehicle. Chemical Engineering Journal, 2015, 264: 134–145
doi: 10.1016/j.cej.2014.11.032
6 Kubo W, Murakoshi K, Kitamura T, Yoshida S, Haruki M, Hanabusa K, Shirai H, Wada Y, Yanagida S. Quasi-solid-state dye-sensitized TiO2 solar cells: Effective charge transport in mesoporous space filled with gel electrolytes containing iodide and iodine. Journal of Physical Chemistry B, 2001, 105(51): 12809–12815
doi: 10.1021/jp012026y
7 Hirst A R, Smith D K. Solvent effects on supramolecular gel-phase materials: Two-component dendritic gel. Langmuir, 2004, 20(25): 10851–10857
doi: 10.1021/la048178c
8 Bielejewski M, Lapiński A, Luboradzki R, Tritt-Goc J. Solvent effect on 1,2-O-(1-ethylpropylidene) -alpha-D-glucofuranose organogel properties. Langmuir, 2009, 25(14): 8274–8279
doi: 10.1021/la900467d
9 Zhu G Y, Jonathan S D. Solvent effect on organogel formation by low molecular weight molecules. Chemistry of Materials, 2006, 18(25): 5988–5995
doi: 10.1021/cm0619297
10 Lindvig T, Michelsen M L, Kontogeorgis G M. A Flory-Huggins model based on the Hansen solubility parameters. Fluid Phase Equilibria, 2002, 203(1-2): 247–260
doi: 10.1016/S0378-3812(02)00184-X
11 Lan Y, Corradini M G, Liu X, May T E, Borondics F, Weiss R G, Rogers M A. Comparing and correlating solubility parameters governing the self-assembly of molecular gels using 1,3:2,4- dibenzylidene sorbitol as the gelator. Langmuir, 2014, 30(47): 14128–14142
doi: 10.1021/la5008389
12 Huang Y D, Yuan Y Q, Tu W, Zhang Y, Zhang M J, Qu H M. Preparation of efficient organogelators based on pyrazine-2,5-dicarboxylic acid showing room temperature mesophase. Tetrahedron, 2015, 71(21): 3221–3230
doi: 10.1016/j.tet.2015.04.010
13 Bhalla V, Gupta A, Kumar M, Rao D S S, Prasad S K. Self-assembled pentacenequinone derivative for trace detection of picric acid. ACS Applied Materials & Interfaces, 2013, 5 (3): 672–679
13b Dong S, Zheng B, Wang F, Huang F. Supramolecular polymers constructed from macrocycle-based host-guest molecular recognition motifs. Accounts of Chemical Research, 2014, 47: 1982–1994
13c Doran S, Yilmaz G, Yagci Y. Tandem photoinduced cationic polymerization and CuAAC for macromolecular synthesis. Macromolecules, 2015, 48: 7446–7452
14 Huang Y D, Zhang Y, Yuan Y Y, Cao W W. Organogelators based on iodo 1,2,3-triazole functionalized with coumarin: Properties and gelator-solvent interaction. Tetrahedron, 2015, 71(14): 2124–2133
doi: 10.1016/j.tet.2015.02.044
15 Beharry A A, Woolley G A. Azobenzene <?Pub Caret?>photoswitches for biomolecules. Chemical Society Reviews, 2011, 40(8): 4422–4437
doi: 10.1039/c1cs15023e
16 Pei X W, Fernandes A, Mathy B, Laloyaux X, Nysten B, Riant O, Jonas A M. Correlation between the structure and wettability of photoswitchable hydrophilic azobenzene monolayers on silicon. Langmuir, 2011, 27(15): 9403–9412
doi: 10.1021/la201526u
17 Petr M, Hammond P T. Room temperature rapid photoresponsive azobenzene side chain liquid crystal polymer. Macromolecules, 2011, 44(22): 8880–8885
doi: 10.1021/ma2013173
18 Yuan T, Dong J, Han G, Wang G. Polymer nanoparticles self-assembled from photo-, pH- and thermo-responsive azobenzene functionalized PDMAEMA. RSC Advances, 2016, 6(13): 10904–10911
doi: 10.1039/C5RA26894J
19 Matthieu R, Laurent B. Organogel formation rationalized by Hansen solubility parameters. Chemical Communications, 2011, 47(29): 8271–8273
doi: 10.1039/c1cc13244j
20 Hansen C M. Hansen Solubility Parameters: A User’s Handbook, 2nd ed. Boca Raton: CRC Press, 2007
21 Fan D L, Zhai Y, Zhang Y, Tu W, Huang Y D. Synthesis and properties of photoresponsive organogels based on azobenzene derivatives. Chemical Journal of Chinese Universities, 2014, 35(11): 2447–2454
22 Liu Z X, Feng, Yan Z C, He Y M, Lui C Y, Fan Q H. Multistimuli responsive dendritic organogels based on azobenzene-containing poly(aryl ether) dendron. Chemistry of Materials, 2012, 24(19): 3751–3757
[1] Luhai LI, Ming WANG, Yi FANG, Shunan QIAO. Investigation of electrochemical degradation and application of e-paper dyes in organic solvents[J]. Front Chem Eng Chin, 2009, 3(2): 182-185.
Full text