Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2018, Vol. 12 Issue (2) : 226-238    https://doi.org/10.1007/s11705-018-1709-8
RESEARCH ARTICLE
Effect of temperature in the conversion of methanol to olefins (MTO) using an extruded SAPO-34 catalyst
Ignacio Jorge Castellanos-Beltran, Gnouyaro Palla Assima, Jean-Michel Lavoie()
Université de Sherbrooke, Chaire de Recherche Industrielle sur l'Éthanol Cellulosique et les Biocommodities (CRIEC-B), Sherbrooke, QC, Canada, J1L 2Y4
 Download: PDF(363 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The methanol-to-olefin (MTO) reaction was investigated in a bench-scale, fixed-bed reactor using an extruded catalyst composed of a commercial SAPO-34 (65 weight percentage, wt-%) embedded in an amorphous SiO2 matrix (35 wt-%). The texture properties, acidity and crystal structure of the pure SAPO-34 and its extruded form (E-SAPO-34) were analyzed and results indicated that the extrusion step did not affect the properties of the catalyst. Subsequently, E-SAPO-34 was tested in a temperature range between 300 and 500 °C, using an aqueous methanol mixture (80 wt-% water content) fed at a weight hour space velocity (WHSV) of 1.21 h−1. At 300 °C, a low conversion was observed combined with catalyst deactivation, which was ascribed to oligomerization and condensation reactions. The coke analysis showed the presence of diamandoid hydrocarbons, which are known to be inactive molecules in the MTO process. At higher temperatures, a quasi-steady state was reached during a 6 h reaction where the optimal temperature was identified at 450 °C, which incidentally led to the lowest coke deposition combined with the highest H/C ratio. Above 450 °C, surges of ethylene and methane were associated to a combination of H-transfer and protolytic cracking reactions. Finally, the present work underscored the convenience of the extrusion technique for testing catalysts at simulated scale-up conditions.

Keywords MTO      SAPO-34      temperature      extrusion      coke      light alkanes     
Corresponding Author(s): Jean-Michel Lavoie   
Just Accepted Date: 30 January 2018   Online First Date: 26 April 2018    Issue Date: 09 May 2018
 Cite this article:   
Ignacio Jorge Castellanos-Beltran,Gnouyaro Palla Assima,Jean-Michel Lavoie. Effect of temperature in the conversion of methanol to olefins (MTO) using an extruded SAPO-34 catalyst[J]. Front. Chem. Sci. Eng., 2018, 12(2): 226-238.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-018-1709-8
https://academic.hep.com.cn/fcse/EN/Y2018/V12/I2/226
Fig.1  Scanning electron microscope images of (a) P-SAPO-34 (×5 000), (b) E-SAPO-34 (×5 000), and (b-inset) magnified E-SAPO-34 surface (×30 000)
Fig.2  XRD patterns of (a) P-SAPO-34, (b) E-SAPO-34 and (c) SAPO-34 extracted from the IZA database
Samples SAPO-34 content /% Relative crystallinity /% Crystallite size /nm
SAPO-34
(P) 100.0 100 41.3
(E) 65.0 68.5 42.0
Tab.1  Crystal properties of the SAPO-34 in powder (P) and extruded (E) form
Samples Pore volume NH3-TPD
/(cm3?gSAPO-34?1) /(µmol?gSAPO-34?1)
Total VMicro* VMeso* Total Weak Strong
SAPO-34
(P) 0.252 0.252 0.000 1 348 528 820
(E) 0.483 0.237 0.246 1 370 531 839
Tab.2  Physico-chemical properties of SAPO-34 in powder (P) and extruded (E) form
time-on-stream
Final (6 h)
Temperature /°C 300 350 380 450 480 500 300 350 380 450 480 500
MCH /% 61.8 74.4 85.6 83.5 83.3 84.9 15.8 72.2 80.2 86.1 89.1 91.5
Product molar distribution /%
Olefins
Ethylene 31.0 37.3 48.3 59.9 66.6 64.4 10.1 38.1 49.2 62.4 67.8 66.4
Propylene 32.8 31.7 29.7 25.1 20.5 16.1 10.7 34.7 31.1 24.7 19.9 17.9
C4-6 15.6 15.1 10.7 6.3 3.5 2.8 3.2 12.5 9.2 4.8 2.9 2.8
Paraffins
Methane 2.0 1.2 1.5 3.3 7.0 14.7 3.1 1.3 1.7 3.6 8.0 10.7
Propane 16.1 14.0 9.0 4.3 1.6 1.1 5.2 12.1 7.8 3.4 1.2 1.2
Oxygenated
MeOH 1.1 0.0 0.1 0.2 0.1 0.2 32.2 0.1 0.1 0.2 0.2 0.2
DME 1.1 0.0 0.0 0.0 0.0 0.0 35.1 0.4 0.0 0.0 0.0 0.0
EPR /mol 0.95 1.18 1.63 2.38 3.25 4.01 0.94 1.10 1.57 2.53 3.55 3.70
Hydrogen transfer index 0.329 0.310 0.233 0.146 0.072 0.063 0.327 0.259 0.201 0.121 0.057 0.063
Δ350-380 Δ380-450 Δ450-480 Δ480-500
ΔR 1.49 1.22 3.14 2.93
Tab.3  Effect of temperature on the conversion of MCH, products molar distribution and performance parameters computed at 2 and 6 h of time-on-stream
Temperature/°C
300 350 380 450 480 500
Pore volume /(cm3• g SAPO-34-1)
VMicro 0.067 0.135 0.167 0.175 0.144 0.131
Total 0.270 0.343 0.391 0.408 0.380 0.381
Coke content /wt.-% 10.6 6.06 4.17 3.81 5.12 5.55
Coke H/C ratio (atomic) 1.22 1.38 1.71 1.89 1.08 0.95
Coke composition
Adamantanes
PMBs
PCAs
Tab.4  Effect of MTO testing (300-500 °C) on the catalyst texture properties, coke content and H/C ratio, and coke molecule composition
Fig.16  Evolution of the MTO reaction over time at 300 °C: (a) molar distribution of light olefins and large molecules (C4-6), (b) molar distribution of oxygenated molecules (methanol and DME), (c) MCH and EPR factors, and (d) molar distribution of light alkanes (methane and propane)
Fig.17  Mechanisms reported in the literature for the formation of methane in the MTO reaction. Scheme 1 was adapted from reference [37], while scheme 2 was extracted from reference [38]. Scheme 3 is a more recent mechanisms developed by Wei and co-workers, in which methane was identified as a by-product of the formation of the early molecules containing the first C?C bond [39]
Fig.18  Effect of temperature (350?500 °C) on the molar concentration of (a) methane and (b) propane over time
Fig.19  Scheme of (a) the original mechanism proposed by Haag and Dessau in the protolytic cracking of alkanes [42], and (b) the suggested mechanism including the reaction in scheme 2 and protolytic cracking of alkenes explaining the formation of methane at high temperatures
1 Bellussi G, Pollesel P. Industrial applications of zeolite catalysis: Production and uses of light olefins. Studies in Surface Science and Catalysis, 2005, 158(2): 1201–1212
https://doi.org/10.1016/S0167-2991(05)80466-5
2 Amghizar I, Vandewalle L A, Van Geem K M, Marin G B. New trends in olefin production. Engineering, 2017, 3(2): 171–178
https://doi.org/10.1016/J.ENG.2017.02.006
3 Mokrani T, Scurrell M. Gas conversion to liquid fuels and chemicals: The methanol route—catalysis and processes development. Catalysis Reviews, 2009, 51(1): 1–145
https://doi.org/10.1080/01614940802477524
4 Plotkin J S. The changing dynamics of olefin supply/demand. Catalysis Today, 2005, 106(1): 10–14
5 Chen X, Yan Y. Study on the technology of thermal cracking of paraffin to alpha olefins. Journal of Analytical and Applied Pyrolysis, 2008, 81(1): 106–112
https://doi.org/10.1016/j.jaap.2007.09.009
6 Stöcker M. Methanol-to-hydrocarbons: Catalytic materials and their behavior. Microporous and Mesoporous Materials, 1999, 29(1-2): 3–48
https://doi.org/10.1016/S1387-1811(98)00319-9
7 Weissermel K, Arpe H J. Industrial Organic Chemistry.New York: VCH Publishers Inc., 1997, 13–55
8 Keil F J. Methanol-to-hydrocarbons: Process technology. Microporous and Mesoporous Materials, 1999, 29(1-2): 49–66
https://doi.org/10.1016/S1387-1811(98)00320-5
9 Chen J Q, Bozzano A, Glover B, Fuglerud T, Kvisle S. Recent advancements in ethylene and propylene production using the UOP/Hydro MTO process. Catalysis Today, 2005, 106(1-4): 103–107
https://doi.org/10.1016/j.cattod.2005.07.178
10 Tian P, Wei Y, Ye M, Liu Z. Methanol to olefins (MTO): From fundamentals to commercialization. ACS Catalysis, 2015, 5(3): 1922–1938
https://doi.org/10.1021/acscatal.5b00007
11 Inui T, Phatanasri S, Matsuda H. Highly selective synthesis of ethene from methanol on a novel nickel-silicoaluminophosphate catalyst. Journal of the Chemical Society. Chemical Communications, 1990, 20(1): 205–206
https://doi.org/10.1039/C39900000205
12 Inui T. European Patent, 0418142B1, 1990-09-11
13 Wilson S, Barger P. The characteristics of SAPO-34 which influence the conversion of methanol to light olefins. Microporous and Mesoporous Materials, 1999, 26(1-2): 117–126
https://doi.org/10.1016/S1387-1811(98)00325-4
14 Chen D, Moljord K, Holmen A. A methanol to olefins review: Diffusion, coke formation and deactivation on SAPO type catalysts. Microporous and Mesoporous Materials, 2012, 164(1): 239–250
https://doi.org/10.1016/j.micromeso.2012.06.046
15 Wu X, Anthony R G G. Effect of feed composition on methanol conversion to light olefins over SAPO-34. Applied Catalysis A, General, 2001, 218(1-2): 241–250
https://doi.org/10.1016/S0926-860X(01)00651-2
16 Wolthuizen J P, Van den Berg J P, Van Hooff J H C. Low temperature reactions of olefins on partially hydrated zeolite H-ZSM-5. Studies in Surface Science and Catalysis, 1980, 5(1): 85–92
https://doi.org/10.1016/S0167-2991(08)64868-5
17 Müller S, Liu Y, Kirchberger F M, Tonigold M, Sanchez-Sanchez M, Lercher J A. Hydrogen transfer pathways during zeolite catalyzed methanol conversion to hydrocarbons. Journal of the American Chemical Society, 2016, 138(49): 15994–16003
https://doi.org/10.1021/jacs.6b09605
18 Chen D, Rebo H P, Grønvold A, Moljord K, Holmen A. Methanol conversion to light olefins over SAPO-34: Kinetic modeling of coke formation. Microporous and Mesoporous Materials, 2000, 35-36: 121–135
https://doi.org/10.1016/S1387-1811(99)00213-9
19 Dahl I M, Kolboe S. On the reaction mechanism for hydrocarbon formation from methanol over SAPO-34. Journal of Catalysis, 1996, 161(1): 304–309
https://doi.org/10.1006/jcat.1996.0188
20 Olsbye U, Bjørgen M, Svelle S, Lillerud K P, Kolboe S. Mechanistic insight into the methanol-to-hydrocarbons reaction. Catalysis Today, 2005, 106(1-4): 108–111
https://doi.org/10.1016/j.cattod.2005.07.135
21 Haw J F, Song W, Marcus D M, Nicholas J B. The mechanism of methanol to hydrocarbon catalysis. Accounts of Chemical Research, 2003, 36(5): 317–326
https://doi.org/10.1021/ar020006o
22 Michels N L, Mitchell S, Pérez-Ramírez J. Effects of binders on the performance of shaped hierarchical MFI zeolites in methanol-to-hydrocarbons. ACS Catalysis, 2014, 4(8): 2409–2417
https://doi.org/10.1021/cs500353b
23 Freiding J, Patcas F C, Kraushaar-Czarnetzki B. Extrusion of zeolites: Properties of catalysts with a novel aluminium phosphate sintermatrix. Applied Catalysis A, General, 2007, 328(2): 210–218
https://doi.org/10.1016/j.apcata.2007.06.017
24 Cui Y, Zhang Q, He J, Wang Y, Wei F. Pore-structure-mediated hierarchical SAPO-34: Facile synthesis, tunable nanostructure, and catalysis applications for the conversion of dimethyl ether into olefins. Particuology, 2013, 11(4): 468–474
https://doi.org/10.1016/j.partic.2012.12.009
25 Schmidt F, Paasch S, Brunner E, Kaskel S. Carbon-templated SAPO-34 with improved adsorption kinetics and catalytic performance in the MTO reaction. Microporous and Mesoporous Materials, 2012, 164(1): 214–221
https://doi.org/10.1016/j.micromeso.2012.04.045
26 Yang S T, Kim J Y, Chae H J, Kim M, Jeong S Y, Ahn W S. Microwave synthesis of mesoporous SAPO-34 with a hierarchical pore structure. Materials Research Bulletin, 2012, 47(11): 3888–3892
https://doi.org/10.1016/j.materresbull.2012.08.041
27 Sun Q, Ma Y, Wang N, Li X, Xi D, Xu J, Deng F, Yoon K B, Oleynikov P, Terasaki O, Yu J. High performance nanosheet-like silicoaluminophosphate molecular sieves: Synthesis, 3D EDT structural analysis and MTO catalytic studies. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2014, 2(42): 17828–17839
https://doi.org/10.1039/C4TA03419H
28 Wang C, Yang M, Tian P, Xu S, Yang Y, Wang D, Yuan Y, Liu Z. Dual template-directed synthesis of SAPO-34 nanosheet assemblies with improved stability in the methanol to olefins reaction. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3(10): 5608–5616
https://doi.org/10.1039/C4TA06124A
29 Leofanti G, Padovan M, Tozzola G, Venturelli B. Surface area and pore texture of catalysts. Catalysis Today, 1998, 41(1-3): 207–219
https://doi.org/10.1016/S0920-5861(98)00050-9
30 Al-Dughaither A S, De Lasa H. Neat dimethyl ether conversion to olefins (DTO) over HZSM-5: Effect of SiO2/Al2O3 on porosity, surface chemistry, and reactivity. Fuel, 2014, 138(1): 52–64
https://doi.org/10.1016/j.fuel.2014.07.026
31 Magnoux P, Roger P, Canaff C, Fouche V, Gnep N S, Guisnet M. New technique for the characterization of carbonaceous compounds responsible for zeolite deactivation. In: Proceedings of the 4th International Symposium. Amsterdam: Elsevier, 1987, 317–330
32 Gayubo A G, Aguayo A T, Sánchez del Campo A E, Tarrío A M, Bilbao J. Kinetic modeling of methanol transformation into olefins on a SAPO-34 catalyst. Industrial & Engineering Chemistry Research, 2000, 39(2): 292–300
https://doi.org/10.1021/ie990188z
33 Prakash A M, Unnikrishnan S. Synthesis of SAPO-34: High silicon incorporation in the presence of morpholine as template. Journal of the Chemical Society, Faraday Transactions, 1994, 90(15): 2291–2296
https://doi.org/10.1039/ft9949002291
34 Mores D, Stavitski E, Kox M H F F, Kornatowski J, Olsbye U, Weckhuysen B M. Space-and time-resolved in-situ spectroscopy on the coke formation in molecular sieves: Methanol-to-olefin conversion over H-ZSM-5 and H-SAPO-34. Chemistry (Weinheim an der Bergstrasse, Germany), 2008, 14(36): 11320–11327
https://doi.org/10.1002/chem.200801293
35 Hereijgers B P C, Bleken F, Nilsen M H, Svelle S, Lillerud K P, Bjørgen M, Weckhuysen B M, Olsbye U. Product shape selectivity dominates the methanol-to-olefins (MTO) reaction over H-SAPO-34 catalysts. Journal of Catalysis, 2009, 264(1): 77–87
https://doi.org/10.1016/j.jcat.2009.03.009
36 Ilias S, Bhan A. Mechanism of the catalytic conversion of methanol to hydrocarbons. ACS Catalysis, 2012, 3(1): 18–31
https://doi.org/10.1021/cs3006583
37 Hutchings G J, Hunter R. Hydrocarbon formation from methanol and dimethyl ether: A review of the experimental observations concerning the mechanism of formation of the primary products. Catalysis Today, 1990, 6(3): 279–306
https://doi.org/10.1016/0920-5861(90)85006-A
38 Salehirad F, Anderson M W. Solid-state 13C MAS NMR study of methanol-to-hydrocarbon chemistry over H-SAPO-34. Journal of Catalysis, 1996, 314(2): 301–314
https://doi.org/10.1006/jcat.1996.0386
39 Wei Z, Chen Y, Li J, Wang P, Jing B, He Y, Dong M, Jiao H, Qin Z, Wang J, Fan W. Methane formation mechanism in the initial methanol-to-olefins process catalyzed by SAPO-34. Catalysis Science & Technology, 2016, 6(14): 5526–5533
https://doi.org/10.1039/C6CY00506C
40 Guisnet M, Magnoux P. Organic chemistry of coke formation. Applied Catalysis A, General, 2001, 212(1-2): 83–96
https://doi.org/10.1016/S0926-860X(00)00845-0
41 Sanati M, Hörnell C, Järäs S G. The oligomerization of alkenes by heterogeneous catalysts. Catalysis, 1999, 14(7): 236–287
42 Kotrel S, Knözinger H, Gates B C. The Haag-Dessau mechanism of protolytic cracking of alkanes. Microporous and Mesoporous Materials, 2000, 35-36: 11–20
https://doi.org/10.1016/S1387-1811(99)00204-8
43 Elliott D C. Relation of reaction, time and temperature to chemical composition of pyrolysis oils. In: Soltes E J, Milne T A, eds. Pyrolysis Oils from Biomass, 1988, Chapter 6: 55–65
44 Wei Y, Li J, Yuan C, Xu S, Zhou Y, Chen J, Wang Q, Zhang Q, Liu Z. Generation of diamondoid hydrocarbons as confined compounds in SAPO-34 catalyst in the conversion of methanol. Chemical Communications, 2012, 48(1): 3082–3084
https://doi.org/10.1039/c2cc17676a
45 Magnoux P, Rabeharitsara A, Cerqueira H S. Influence of reaction temperature and crystallite size on HBEA zeolite deactivation by coke. Applied Catalysis A, General, 2006, 304(1): 142–151
https://doi.org/10.1016/j.apcata.2006.02.040
46 Vedrine J C, Dejaifve P, Garbowski E D, Derouane E G. Aromatics formation from methanol and light olefins conversions on H-ZSM-5 zeolite: Mechanism and intermediate species. Studies in Surface Science and Catalysis, 1980, 5(1): 29–37
https://doi.org/10.1016/S0167-2991(08)64862-4
47 Luo M, Zang H, Hu B, Wang B, Mao G. Evolution of confined species and their effects on catalyst deactivation and olefin selectivity in SAPO-34 catalyzed MTO process. RSC Advances, 2016, 6(1): 17651–17658
https://doi.org/10.1039/C5RA22424A
[1] Wenjie Sun, Jiale Mao, Shuang Wang, Lei Zhang, Yonghong Cheng. Review of recent advances of polymer based dielectrics for high-energy storage in electronic power devices from the perspective of target applications[J]. Front. Chem. Sci. Eng., 2021, 15(1): 18-34.
[2] Xiangchun Liu, Ping Cui, Qiang Ling, Zhigang Zhao, Ruilun Xie. A review on co-pyrolysis of coal and oil shale to produce coke[J]. Front. Chem. Sci. Eng., 2020, 14(4): 504-512.
[3] Simon Roussanaly, Monika Vitvarova, Rahul Anantharaman, David Berstad, Brede Hagen, Jana Jakobsen, Vaclav Novotny, Geir Skaugen. Techno-economic comparison of three technologies for pre-combustion CO2 capture from a lignite-fired IGCC[J]. Front. Chem. Sci. Eng., 2020, 14(3): 436-452.
[4] Simona Colantonio, Lorenzo Cafiero, Doina De Angelis, Nicolò M. Ippolito, Riccardo Tuffi, Stefano Vecchio Ciprioti. Thermal and catalytic pyrolysis of a synthetic mixture representative of packaging plastics residue[J]. Front. Chem. Sci. Eng., 2020, 14(2): 288-303.
[5] Hao Xu, Chi Lei, Qinming Wu, Qiuyan Zhu, Xiangju Meng, Daniel Dai, Stefan Maurer, Andrei-Nicolae Parvulescu, Ulrich Müller, Fengshou Xiao. Organosilane surfactant-assisted synthesis of mesoporous SSZ-39 zeolite with enhanced catalytic performance in the methanol-to-olefins reaction[J]. Front. Chem. Sci. Eng., 2020, 14(2): 267-274.
[6] Sidra Rama, Yan Zhang, Fideline Tchuenbou-Magaia, Yulong Ding, Yongliang Li. Encapsulation of 2-amino-2-methyl-1-propanol with tetraethyl orthosilicate for CO2 capture[J]. Front. Chem. Sci. Eng., 2019, 13(4): 672-683.
[7] Muhammad I. Asghar, Sakari Lepikko, Janne Patakangas, Janne Halme, Peter D. Lund. Comparative analysis of ceramic-carbonate nanocomposite fuel cells using composite GDC/NLC electrolyte with different perovskite structured cathode materials[J]. Front. Chem. Sci. Eng., 2018, 12(1): 162-173.
[8] Mehdi SEDIGHI,Kamyar KEYVANLOO. Kinetic study of the methanol to olefin process on a SAPO-34 catalyst[J]. Front. Chem. Sci. Eng., 2014, 8(3): 306-311.
[9] N. Rambabu,Sandeep Badoga,Kapil K. Soni,A.K. Dalai,J. Adjaye. Hydrotreating of light gas oil using a NiMo catalyst supported on activated carbon produced from fluid petroleum coke[J]. Front. Chem. Sci. Eng., 2014, 8(2): 161-170.
[10] Jorge MEDINA-VALTIERRA, Jorge RAMIREZ-ORTIZ. Biodiesel production from waste frying oil in sub- and supercritical methanol on a zeolite Y solid acid catalyst[J]. Front Chem Sci Eng, 2013, 7(4): 401-407.
[11] Haiding XIANG, Tiefeng WANG. Kinetic study of hydrodesulfurization of coker gas oil in a slurry reactor[J]. Front Chem Sci Eng, 2013, 7(2): 139-144.
[12] Yongli WANG, Shuyuan MA, Xiaodong Lü, Chuang XIE. Control of the agglomeration of crystals in the reactive crystallization of 5-(difluoromethoxy)-2-mercapto-1H-benzimidazole[J]. Front Chem Sci Eng, 2012, 6(4): 423-431.
[13] Sandy, Velycia MARAMIS, Alfin KURNIAWAN, Aning AYUCITRA, Jaka SUNARSO, Suryadi ISMADJI. Removal of copper ions from aqueous solution by adsorption using LABORATORIES-modified bentonite (organo-bentonite)[J]. Front Chem Sci Eng, 2012, 6(1): 58-66.
[14] Ganesh TILEKAR, Kiran SHINDE, Kishor KALE, Reshma RASKAR, Abaji GAIKWAD. The capture of carbon dioxide by transition metal aluminates, calcium aluminate, calcium zirconate, calcium silicate and lithium zirconate[J]. Front Chem Sci Eng, 2011, 5(4): 477-491.
[15] Vishal MATHUR, Manasvi DIXIT, K.S. RATHORE, N. S. SAXENA, K.B. SHARMA. Morphological and mechanical characterization of a PMMA/CdS nanocomposite[J]. Front Chem Sci Eng, 2011, 5(2): 258-263.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed