Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2008, Vol. 2 Issue (4) : 396-401    https://doi.org/10.1007/s11705-008-0077-1
Phenolic rigid organic filler/isotactic polypropylene composites. II. Tensile properties
QI Dongming1, SHAO Jianzhong2, WU Minghua2, NITTA Kohhei3
1.Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University;Graduate School of Natural Science & Technology, Kanazawa University; 2.Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University; 3.Graduate School of Natural Science & Technology, Kanazawa University;
 Download: PDF(172 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A novel phenolic rigid organic filler (KT) was used to modify isotactic polypropylene (iPP). The influence of KT particles on the tensile properties of PP/KT microcomposites was studied by uniaxial tensile test and the morphological structures of the stretched specimens were observed by scanning electron microscopy (SEM) and polarized optical microscopy (POM). We found that the Young’s modulus of PP/KT specimens increased with filler content, while the yield and break of the specimens are related to the filler particles size. The yield stress, the breaking stress and the ultimate elongation of PP/KT specimens were close to those of unfilled iPP specimens when the maximal filler particles size is less than a critical value, which is 7 ?m at a crosshead speed of 10 mm/min and 3 ?m at 200 mm/min, close to that of glass bead but far more than those of other rigid inorganic filler particles. The interfacial interaction was further estimated from yield stress, indicating that KT particles have a moderate interfacial interaction with iPP matrix. Thus, the incorporation of small KT particles can reinforce iPP matrix and simultaneously cause few detrimental effects on the other excellent tensile properties of iPP matrix, due to their organic nature, higher specific area, solid true-spherical shape and the homogenous dispersion of the ROF particles in microcomposites.
Issue Date: 05 December 2008
 Cite this article:   
QI Dongming,SHAO Jianzhong,WU Minghua, et al. Phenolic rigid organic filler/isotactic polypropylene composites. II. Tensile properties [J]. Front. Chem. Sci. Eng., 2008, 2(4): 396-401.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-008-0077-1
https://academic.hep.com.cn/fcse/EN/Y2008/V2/I4/396
1 Argon A S, Cohen R E . Toughenabilityof polymers. Polymer, 2003, 44(19): 6013–6032.
doi:10.1016/S0032-3861(03)00546-9
2 Thio Y S, Argon A S, Cohen R E, Weinberg M . Tougheningof isotactic polypropylene with CaCO3 particles. Polymer, 2002, 43(13): 3661–3674.
doi:10.1016/S0032-3861(02)00193-3
3 Zuiderduin W C J, Westzaan C, Huétink J, Gaymans R J . Toughening of polypropylene with calcium carbonate particles. Polymer, 2003, 44(1): 261–275.
doi:10.1016/S0032-3861(02)00769-3
4 Chan C M, Wu J S, Li J X, Cheung Y K . Polypropylene/calcium carbonate nanocomposites. Polymer, 2002, 43(10): 2981–2992.
doi:10.1016/S0032-3861(02)00120-9
5 Wilbrink M W L, Argon A S, Cohen R E, Weinberg M . Toughenabilityof Nylon-6 with CaCO3 filler particles: newfindings and general principles. Polymer, 2001, 42(26): 10155–10180.
doi:10.1016/S0032-3861(01)00548-1
6 Yang K, Yang Q, Li G X, Sun Y J, Feng D C . Morphology and mechanicalproperties of polypropylene/calcium carbonate nanocomposites. Materials Letters, 2006, 60(6): 805–809.
doi:10.1016/j.matlet.2005.10.020
7 Wang K, Wu J S, Zeng H M . Microstructure and fracture behaviorof polypropylene/barium sulfate composites. J Appl Polym Sci, 2006, 99(3): 1207–1213.
doi:10.1002/app.22596
8 Bikiaris D N, Papageorgiou G Z, Pavlidou E, Vouroutzis N, Palatzoglou P, Karayannidis G P . Preparation by melt mixingand characterization of isotactic polypropylene/SiO2 nanocomposites containing untreated and surface-treated nanoparticles. J Appl Polym Sci, 2006, 100(4): 2684–2696.
doi:10.1002/app.22849
9 Liang J Z, Li R K Y . Brittle-ductiletransition in polypropylene filled with glass beads. Polymer, 1999, 40(11): 3191–3195.
doi:10.1016/S0032-3861(98)00532-1
10 Thio Y S, Argon A S, Cohen R E . Role of interfacial adhesion strengthon toughening polypropylene with rigid particles. Polymer, 2004, 45(10): 3139–3147.
doi:10.1016/j.polymer.2004.02.064
11 Dubnikova I L, Berezina S M, Antonov A V . Effect of rigid particlesize on the toughness of filled polypropylene. J Appl Polym Sci, 2004, 94(5): 1917–1926.
doi:10.1002/app.21017
12 Yuan Q, Jiang W, An L J, Li R K Y . The mechanical and thermal behaviors of glass bead filled polypropylene. Polym Advan Technol, 2004, 15(7): 409–413.
doi:10.1002/pat.487
13 Tai C M, Li R K Y . Mechanicalproperties of flame retardant filled polypropylene composites. J Appl Polym Sci, 2001, 80(14): 2718–2728.
doi:10.1002/app.1386
14 Yin J, Zhang Y, Zhang Y X . Deformation mechanism of polypropylenecomposites filled with magnesium hydroxide. J Appl Polym Sci, 2005, 97(5): 1922–1930.
doi:10.1002/app.21934
15 Yui H, Wu G Z, Sano H, Sumita M, Kino K . Morphology and electricalconductivity of injection-molded polypropylene/carbon black compositeswith addition of high-density polyethylene. Polymer, 2006, 47(10): 3599–3608.
doi:10.1016/j.polymer.2006.03.064
16 Vollenberg P H T, Heikens D . Themechanical properties of chalk-filled polypropylene: a preliminaryinvestigation. J Mater Sci, 1990, 25(7): 3089–3095.
doi:10.1007/BF00587655
17 Zebarjad S M, Tahani M, Sajjadi S A . Influence of filler particles on deformationand fracture mechanism of isotactic polypropylene. J Mater Process Tech, 2004, 155: 1459–1464.
doi:10.1016/j.jmatprotec.2004.04.187
18 Tjong S C, Xu S A . Mechanicalproperties of glass fiber and liquid crystalline polymer reinforcedpolypropylene hybrid composites toughened with elastomers. J Appl Polym Sci, 2004, 94(4): 1539–1546.
doi:10.1002/app.21076
19 Qi D M, Yang L, Wu M H, Lin H M, Nitta K H . Phenolic rigid organic filler/isotacticpolypropylene composites. 1. preparation. Frontiers of Chemical Engineering in China, 2008, 2(3): 236–241.
doi:10.1007/s11705-008-0034-z
20 Nicolais L, Narkis M, Stress-strainbehavior of styrene-acrylonitrile/glass bead composites in the glassyregion. Polym Eng Sci, 1971, 11(3): 194–199.
doi:10.1002/pen.760110305
21 Wu C L, Zhang M Q, Rong M Z, Friedrich K . Tensileperformance improvement of low nanoparticles filled-polypropylenecomposites. Compos Sci Technol, 2002, 62: 1327–1340.
doi:10.1016/S0266-3538(02)00079-9
22 Demjén Z, Pukánszky B, Nagy J . Evaluation of interfacialinteraction in polypropylene/surface treated CaCO3 composites. Composites: Appl S, 1998, 29(3): 323–329.
doi:10.1016/S1359-835X(97)00032-8
23 Turcsányi B, Pukánszky B, Tüdös F . Composition dependence oftensile yield stress in filled polymers. J Mater Sci Lett, 1988, 7(2): 160–162.
doi:10.1007/BF01730605
24 Zhang Q X, Yu Z Z, Xie X L, Mai Y W . Crystallization and impact energy of polypropylene/CaCO3 nanocomposites with nonionic modifier. Polymer, 2004, 45(17): 5985–5994.
doi:10.1016/j.polymer.2004.06.044
25 Muratoglu O K, Argon A S, Cohen R E, Weinberg M . Crystallinemorphology of polyamide-6 near planar surfaces. Polymer, 1995, 36(11): 2143–2152.
doi:10.1016/0032-3861(95)95289-D
26 Karger-Kocsis J . Polypropylene: composites. London: Chapman & Hall, 1995 . Chapter 1: 15
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed