Please wait a minute...
Frontiers of Electrical and Electronic Engineering

ISSN 2095-2732

ISSN 2095-2740(Online)

CN 10-1028/TM

Frontiers of Electrical and Electronic Engineering in China  2009, Vol. 4 Issue (1): 104-113   https://doi.org/10.1007/s11460-009-0010-5
  RESEARCH ARTICLE 本期目录
Development and test in grid of 630 kVA three-phase high temperature superconducting transformer
Development and test in grid of 630 kVA three-phase high temperature superconducting transformer
Yinshun WANG1(), Xiang ZHAO2, Junjie HAN2, Huidong LI1, Yin GUAN1, Qing BAO1, Xi XU1, Shaotao DAI1, Naihao SONG1, Fengyuan ZHANG1, Liangzhen LIN1, Liye XIAO1
1. Institute of Electrical Engineering, Chinese Academy of Sciences, Haidian District, Beijing 100080, China; 2. Technical Center of Tebian Electric Apparatus Stock Co., Ltd, Changji 831100, China
 全文: PDF(251 KB)   HTML
Abstract

A 630-kVA 10.5 kV/0.4 kV three-phase high temperature superconducting (HTS) power transformer was successfully developed and tested in a live grid. The windings were wound by hermetic stainless steel-reinforced multi-filamentary Bi2223/Ag tapes. The structures of primary windings are solenoid with insulation and cooling path among layers, and those of secondary windings consist of double-pancakes connected in parallel. Toroidal cryostat is made from electrical insulating glass fiber reinforced plastics (GFRP) materials with room temperature bore for commercial amorphous alloy core with five limbs. Windings are laid in the toroidal cryostat so that the amorphous core operates at room temperature. An insulation technology of double-half wrapping up the Bi2223/Ag tape with Kapton film is used by a winding machine developed by the authors. Fundamental characteristics of the transformer are obtained by standard short-circuit and no-load tests, and it is shown that the transformer meets operating requirements in a live grid.

Key wordshigh temperature superconducting (HTS) transformer    Bi2223/Ag tape    amorphous-alloy    windings    liquid nitrogen
出版日期: 2009-03-05
Corresponding Author(s): WANG Yinshun,Email:yswang@ncepu.edu.cn   
 引用本文:   
. Development and test in grid of 630 kVA three-phase high temperature superconducting transformer[J]. Frontiers of Electrical and Electronic Engineering in China, 2009, 4(1): 104-113.
Yinshun WANG, Xiang ZHAO, Junjie HAN, Huidong LI, Yin GUAN, Qing BAO, Xi XU, Shaotao DAI, Naihao SONG, Fengyuan ZHANG, Liangzhen LIN, Liye XIAO. Development and test in grid of 630 kVA three-phase high temperature superconducting transformer. Front Elect Electr Eng Chin, 2009, 4(1): 104-113.
 链接本文:  
https://academic.hep.com.cn/fee/CN/10.1007/s11460-009-0010-5
https://academic.hep.com.cn/fee/CN/Y2009/V4/I1/104
parametersvalue
types/materialsconvoluted core of 5 limbs with 3 phases/ amorphous alloy core
diameter/mm396
net cross-section/cm2815.03
height (Hw)/mm870
width (Mo)/mm780
flux density/T1.275
turn voltage/(V·turn-1)23.09
weight/kg3736
no-load loss/W1031.1
Tab.1  
parametervalue
tape thickness/mm0.32(+/-0.02)
tape width/mm4.8(+/-0.2)
filament number55
critical current*/A>115
maximum rated tensile stress**/MPa265
maximum rated tensile strain**/%0.4
minimum bend diameter**/mm70
hermetic performancewithstand 16 hours on 30 standard atmosphere in liquid nitrogen (LN2)
Tab.2  
Fig.1  
Fig.2  
Fig.3  
winding nameparametertype and value
HVwinding typesolenoid
layer No.r8
turn No.262
diameter (inner/outer)/mm488/504
height/mm342.5
LVwinding typedouble-pancake
double-pancake No.23
turn No.10
diameter(inner/outer)/mm581/608
height/mm355
balanced windingwinding typesolenoid
diameter(inner/outer)/mm400/440
layer No.2
turn No.10
height/mm122.4
Tab.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
parametersdesign value
winding voltage(HV/LV)/kV10.5/0.4
winding current(HV/LV)/A34.64/909.33
balanced winding voltage /V230
balanced winding current/A228
iron core diameter/mm396
height(HW)/mm870
width(M0)/mm780
flux density/T1.275
cryo-statdiameter(inner/outer)/mm410/760
height/mm680
operating temperature/K77
operating frequency/Hz50
% impedance2.45%
vector groupYyn0+d7
max. leak flux/mT65.6
Tab.4  
Fig.8  
temperatureHV winding/WLV wing/W
room temperature12.491.25×10-2
77 K2.65×10-3*1.32×10-4*
Tab.5  
parametersdesign valuetest value
capacity/kVA630630
no-load test
excited current1.15%1.36%
transformation ratio26.2526.25
core loss*/W1031.11090
load test
% impedance2.45%2.74%
winding loss**/W121.8110.67
inductive withstand voltage100 Hz, 30 spass
insulation levelHV 28 kV 60 sLV 5 kV 60 sbalanced 5 kV 60 spass
rush current10 times rush current 0.2 sno-quench
Tab.6  
Fig.9  
1 Tsukamoto O. Roads for HTS power applications to go into the real world: Cost issues and technical issues. Cryogenics , 2005, 45(1): 3–10
doi: 10.1016/S0011-2275(04)00178-X
2 Furuse M, Fuchino S, Higuchi N. Investigation of structure of superconducting power transmission cables with LN2 counter-flow cooling.Physica C , 2003, 386: 474–479
doi: 10.1016/S0921-4534(02)02245-1
3 Lin Y B, Lin L Z, Gao Z Y, Wen H M, Xu L, Shu L, Li J, Xiao L Y, Zhou L,Yuan G S. Development of HTS transmission power cable. IEEE Transactions on Applied Superconductivity , 2001, 11(1): 2371–2374
doi: 10.1109/77.920338
4 Funaki K, Iwakuma M, Kajikawa K, Takeo M, Suehiro J, Hara M, Yamafuji K, Konno M, Kasagawa Y, Okubo K, Yasukawa Y, Nose S, Ueyama M, Hayashi K, Sato K. Development of a 500 kVA-calss oxide-superconducting power transformer operated at liquid-nitrogen temperature. Cryogenics , 1998, 38(2): 211–220
doi: 10.1016/S0011-2275(97)00134-3
5 Schwenterly S W, McConnell B W, Demko J A, Fadnek A, Hsu J, List F A, Walker M S, Hazelton D W, Murray F S, Rice J A, Trautwein C M, Shi X, Farrell R A, Bascuhan J, Hintz R E, Mehta S P, Aversa N, Ebert J A, Bednar B A, Neder D J, McIlheran A A, Michel P C, Nemce J J, Pleva E F, Swenton A C, Swets W, Longsworth R C, Johsnon R C, Jones R H, Nelson J K, Degeneff R C, Salon S J. Performance of a 1-MVA HTS demonstration transformer. IEEE Transactions on Applied Superconductivity , 1999, 9(2): 680–684
doi: 10.1109/77.783387
6 Zueger H. 630 kVA high temperature superconducting transformer. Cryogenics , 1998, 38(11): 1169–1172
doi: 10.1016/S0011-2275(98)00104-0
7 Hatta H, Nitta T, Oide T, Chiba M, Shirai Y, Mochida A. Experimental study on characteristics of superconducting fault current limiters connected in series. Superconductor Science & Technology , 2004, 17(5): 276–280
doi: 10.1088/0953-2048/17/5/036
8 Elschner S, Breuer F, Noe M, Rettelbach T, Walter H, Bock J. Manufacturing and testing of MCP 2212 bifilar coils for a 10 MVA fault current limiter. IEEE Transactions on Applied Superconductivity , 2003, 13(2): 1980–1983
doi: 10.1109/TASC.2003.812954
9 Barnes P N, Sumption M D, Rhoads G L. Review of high power density superconducting generators: Present state and prospects for incorporating YBCO windings. Cryogenics , 2005, 45(10-11): 670–686
doi: 10.1016/j.cryogenics.2005.09.001
10 Luongo C A, Baldwin T, Ribeiro P, Weber C M. A 100 MJ SMES demonstration at FSU-CAPS. IEEE Transactions on Applied Superconductivity , 2003, 13(2): 1800–1805
doi: 10.1109/TASC.2003.812894
11 Meinert M, Leghissa M, Schlosser R, Schmidt H. System test of a 1-MVA-HTS-transformer connected to a converter-fed drive for rail vehicles. IEEE Transactions on Applied Superconductivity , 2003, 13(2): 2348–2351
doi: 10.1109/TASC.2003.813066
12 Schlosser R, Schmidt H, Leghissa M, Meinert M. Development of high-temperature superconducting transformers for railway applications. IEEE Transactions on Applied Superconductivity , 2003, 13(2): 2325–2330
doi: 10.1109/TASC.2003.813118
13 Tixador P, Donnier-Valentin G, Maher E. Design and construction of a 41 kVA Bi/Y transformer. IEEE Transactions on Applied Superconductivity , 2003, 13(2): 2331–2336
doi: 10.1109/TASC.2003.813120
14 Wang Y S, Zhao X, Li H D, Lu G H, Xiao L Y, Lin L Z, Guan Y, Bao Q, Xu X, Zhu Z Q, Wang Z K, Dai S T, Hui D. Development of solenoid and double pancake windings for a three-phase 26 kVA HTS transformer. IEEE Transactions on Applied Superconductivity , 2004, 14(2): 924–927
doi: 10.1109/TASC.2004.830319
15 Wang Y S, Zhao X, Li H D, Lu G H, Xiao L Y, Lin L Z, Hui D Dai S D, . A three-phase 26 kVA HTS power transformer. In: Proceedings of the Twentieth International Cryogenic Engineering Conference (ICEC20) . Elsevier, 2005, 693–696
16 Wang Y S, Han J J, Zhao X, Li H, Guan Y, Bao Q, Xiao L, Lin L, Zhu Z, Dai S, Hui D. Development of a 45 kVA single-phase model HTS transformer. IEEE Transactions on Applied Superconductivity , 2006, 16(2): 1477–1480
doi: 10.1109/TASC.2005.869712
17 Iwakuma M, Nishimura K, Kajikawa K, Funaki K, Hayashi H, Tsutsumi K, Tomioka A, Konno M, Nose S. Current distribution in superconducting parallel conductors wound into pancake coils. IEEE Transactions on Applied Superconductivity , 2000, 10(1): 861–864
doi: 10.1109/77.828367
18 Magnusson N, Wolfbrandt A. AC losses in high-temperature superconducting tapes exposed to longitudinal magnetic fields. Cryogenics , 2001, 41(10): 721–724
doi: 10.1016/S0011-2275(01)00137-0
19 Magnusson N. Semi-empirical model of the losses in HTS tapes carrying ac currents in ac magnetic fields applied parallel to the tape face,Physica C , 2001, 349(3-4): 225–234
doi: 10.1016/S0921-4534(00)01538-0
20 Rabbers J J, van der Laan D C, ten Haken B, ten Kate H H J. Magnetisation and transport current loss of a BSCCO/Ag tape in an external AC magnetic field carrying an AC transport current. IEEE Transasctions on Applied Superconductivity , 1999, 9(2): 1185–1188
doi: 10.1109/77.783511
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed