Please wait a minute...
Frontiers of Engineering Management

ISSN 2095-7513

ISSN 2096-0255(Online)

CN 10-1205/N

Postal Subscription Code 80-905

Front. Eng    2019, Vol. 6 Issue (1) : 62-69    https://doi.org/10.1007/s42524-019-0001-z
RESEARCH ARTICLE
Solvability and thermal response of cellulose with different crystal configurations
Qian CHEN1, Kai ZHENG1, Qingtao FAN2, Kun WANG1(), Haiyan YANG3, Jianxin JIANG1, Shijie LIU4
1. Beijing Key Laboratory of Lignocellulosic Chemistry, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, China
2. Beijing Institute of Science and Technology Information, Beijing 100044, China
3. College of Chemical Engineering, Southwest Forestry University, Kunming 650224, China
4. Department of Paper and Bioprocess Engineering, SUNY College of Environmental Science and Forestry, 1 Forestry Drive, Syracuse, NY 13210, USA
 Download: PDF(1184 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Cellulose is a biodegradable and renewable natural material that it is naturally resistant to breaking and modification. Moreover, the crystalline structure of cellulose is a major factor restricting its industrial utilization. In this study, cellulose polymorphs were prepared from natural cellulose, and their solvability and thermal response were investigated. Using liquid- and solid-state NMR signals, the distinct types and dissolving states of cellulose polymorphs were identified. The thermal behavior of the polymorphic forms of cellulose-d was also evaluated, and cellulose II exhibited the poorest thermal stability and a unique exothermic reaction.

Keywords cellulose      crystal structure      thermal response      XRD      CP/MAS 13C NMR     
Corresponding Author(s): Kun WANG   
Online First Date: 30 November 2018    Issue Date: 12 March 2019
 Cite this article:   
Qian CHEN,Kai ZHENG,Qingtao FAN, et al. Solvability and thermal response of cellulose with different crystal configurations[J]. Front. Eng, 2019, 6(1): 62-69.
 URL:  
https://academic.hep.com.cn/fem/EN/10.1007/s42524-019-0001-z
https://academic.hep.com.cn/fem/EN/Y2019/V6/I1/62
Fig.1  XRD patterns (left), FTIR (right top), and thermal stability (right bottom) of cellulosic samples
Fig.2  CP/MAS 13C NMR spectra of cellulose samples
Fig.3  1H (left) and HSQC (right) NMR of cellulose samples
1 M TAshraf, M H Thomsen, J E Schmidt (2017). Hydrothermal pretreatment and enzymatic hydrolysis of mixed green and woody lignocellulosics from arid regions. Bioresource Technology, 238: 369–378
https://doi.org/10.1016/j.biortech.2017.04.065 pmid: 28456045
2 MBalat (2008). Mechanisms of thermochemical biomass conversion processes. Part 1: Reactions of pyrolysis. Energy Sources. Part A, Recovery, Utilization, and Environmental Effects, 30(7): 620–635
https://doi.org/10.1080/15567030600817258
3 M SBertran, B E Dale (1986). Determination of cellulose accessibility by differential scanning calorimetry. Journal of Applied Polymer Science, 32(3): 4241–4253
https://doi.org/10.1002/app.1986.070320335
4 JCai, Y Liu, LZhang (2006). Dilute solution properties of cellulose in LiOH/urea aqueous system. Journal of Polymer Science. Part B, Polymer Physics, 44(21): 3093–3101
https://doi.org/10.1002/polb.20938
5 JCai, L N Zhang, S L Liu, Y T Liu, X J Xu, X M Chen, B Chu, X LGuo, JXu, H Cheng, C CHan, SKuga (2008). Dynamic self-assembly induced rapid dissolution of cellulose at low temperatures. Macromolecules, 41(23): 9345–9351
https://doi.org/10.1021/ma801110g
6 JCai, L N Zhang, J P Zhou, H Li, HChen, H MJin (2004). Novel fibers prepared from cellulose in NaOH/urea aqueous solution. Macromolecular Rapid Communications, 25(17): 1558–1562
https://doi.org/10.1002/marc.200400172
7 J HChen, K Wang, FXu, R CSun (2014). Progress of preparing regenerated cellulose fibers using novel dissolution process. CIESC Journal, 65: 4213–4221
8 XChen, J Chen, TYou, KWang, F Xu (2015). Effects of polymorphs on dissolution of cellulose in NaOH/urea aqueous solution. Carbohydrate Polymers, 125: 85–91
https://doi.org/10.1016/j.carbpol.2015.02.054 pmid: 25857963
9 X MChen, C Burger, D FFang, DRuan, L N Zhang, B S Hsiao, B Chu (2006). X-ray studies of regenerated cellulose fibers wet spun from cotton linter pulp in NaOH/thiourea aqueous solutions. Polymer, 47(8): 2839–2848
https://doi.org/10.1016/j.polymer.2006.02.044
10 GCheng, P Varanasi, CLi, HLiu, Y B Melnichenko, B A Simmons, M S Kent, S Singh (2011). Transition of cellulose crystalline structure and surface morphology of biomass as a function of ionic liquid pretreatment and its relation to enzymatic hydrolysis. Biomacromolecules, 12(4): 933–941
https://doi.org/10.1021/bm101240z pmid: 21361369
11 MEgal, T Budtova, PNavard (2008). The dissolution of microcrystalline cellulose in sodium hydroxide-urea aqueous solutions. Cellulose (London, England), 15(3): 361–370
https://doi.org/10.1007/s10570-007-9185-1
12 M EHimmel, S Y Ding, D K Johnson, W S Adney, M R Nimlos, J W Brady, T D Foust (2007). Biomass recalcitrance: Engineering plants and enzymes for biofuels production. Science, 315(5813): 804–807
https://doi.org/10.1126/science.1137016 pmid: 17289988
13 HHuang, Y Liu, M AChao, G UJiyou (2016). Research progress in the application of cellulose and its derivatives. Materials Review, 21: 75–82
https://doi.org/10.3390/ma9020075
14 AIdström, S Schantz, JSundberg, B FChmelka, PGatenholm, LNordstierna (2016). (13)C NMR assignments of regenerated cellulose from solid-state 2D NMR spectroscopy. Carbohydrate Polymers, 151: 480–487
https://doi.org/10.1016/j.carbpol.2016.05.107 pmid: 27474592
15 AIshikawa, T Okano, JSugiyama (1997). Fine structure and tensile properties of ramie fibres in the crystalline form of cellulose I, II, IIII and IVI. Polymer, 38(2): 463–468
https://doi.org/10.1016/S0032-3861(96)00516-2
16 AIsogai (1997). NMR analysis of cellulose dissolved in aqueous NaOH solutions. Cellulose (London, England), 4(2): 99–107
https://doi.org/10.1023/A:1018471419692
17 AIsogai, M Usuda, TKato, TUryu, R H Atalla (1989). Solid-state CP/MAS carbon-13 NMR study of cellulose polymorphs. Macromolecules, 22(7): 3168–3172
https://doi.org/10.1021/ma00197a045
18 TJeoh, C I Ishizawa, M F Davis, M E Himmel, W S Adney, D K Johnson (2007). Cellulase digestibility of pretreated biomass is limited by cellulose accessibility. Biotechnology and Bioengineering, 98(1): 112–122
https://doi.org/10.1002/bit.21408 pmid: 17335064
19 FJin, J Zhang, WChen, QFan, Z Bai (2012). Preparation and chiral recognition of new chiral stationary phases derived from cellulose microspheres. Wuhan University Journal of Natural Sciences, 17(3): 205–210
https://doi.org/10.1007/s11859-012-0829-0
20 HJin, C Zha, LGu (2007). Direct dissolution of cellulose in NaOH/thiourea/urea aqueous solution. Carbohydrate Research, 342(6): 851–858
https://doi.org/10.1016/j.carres.2006.12.023 pmid: 17280653
21 J L PJunior (2000). Effect of cellulose crystallinity on the progress of thermal oxidative degradation of paper. Journal of Applied Polymer Science, 78: 61–66
https://doi.org/10.1002/1097-4628(20001003)78:1<61::AID-APP90>3.0.CO;2-K
22 HKono, T Erata, MTakai (2003). Complete assignment of the CP/MAS 13C NMR spectrum of cellulose IIII. Macromolecules, 36(10): 3589–3592
https://doi.org/10.1021/ma021015f
23 PKumar, D M Barrett, M J Delwiche, P Stroeve (2009). Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Industrial & Engineering Chemistry Research, 48(8): 3713–3729
https://doi.org/10.1021/ie801542g
24 PLangan, Y Nishiyama, HChanzy (1999). A revised structure and hydrogen-bonding system in cellulose II from a neutron fiber diffraction analysis. Journal of the American Chemical Society, 121(43): 9940–9946
https://doi.org/10.1021/ja9916254
25 HLennholm, T Larsson, TIversen (1994). Determination of cellulose I[alpha] and I[beta] in lignocellulosic materials. Carbohydrate Research, 261(1): 119–131
https://doi.org/10.1016/0008-6215(94)80011-1
26 TLiebert, T Heinze, K JEdgar (2010). Cellulose solvents: For analysis, shaping and chemical modification. Journal of the American Chemical Society, 132: 17976–17976
27 TLiitiä, S L Maunu, B Hortling, TTamminen, OPekkala, AVarhimo (2003). Cellulose crystallinity and ordering of hemicelluloses in pine and birch pulps as revealed by solid-state NMR spectroscopic methods. Cellulose (London, England), 10(4): 307–316
https://doi.org/10.1023/A:1027302526861
28 Y RLou, L Kanninen, TKuisma, JNiklander, L ANoon, DBurks, AUrtti, MYliperttula (2014). The use of nanofibrillar cellulose hydrogel as a flexible three-dimensional model to culture human pluripotent stem cells. Stem Cells and Development, 23(4): 380–392
https://doi.org/10.1089/scd.2013.0314 pmid: 24188453
29 XLuo, L Zhang (2010). Immobilization of penicillin G acylase in epoxy-activated magnetic cellulose microspheres for improvement of biocatalytic stability and activities. Biomacromolecules, 11(11): 2896–2903
https://doi.org/10.1021/bm100642y pmid: 20919701
30 S SMadaeni, F Heidary (2011). Improving separation capability of regenerated cellulose ultrafiltration membrane by surface modification. Applied Surface Science, 257(11): 4870–4876
https://doi.org/10.1016/j.apsusc.2010.12.128
31 N LMoigne, P Navard (2010). Dissolution mechanisms of wood cellulose fibres in NaOH–water. Cellulose (London, England), 17(1): 31–45
https://doi.org/10.1007/s10570-009-9370-5
32 TMori, E Chikayama, YTsuboi, NIshida, NShisa, YNoritake, SMoriya, JKikuchi (2012). Exploring the conformational space of amorphous cellulose using NMR chemical shifts. Carbohydrate Polymers, 90(3): 1197–1203
https://doi.org/10.1016/j.carbpol.2012.06.027 pmid: 22939331
33 NMosier, C Wyman, BDale, RElander, Y YLee, MHoltzapple, MLadisch (2005). Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technology, 96(6): 673–686
https://doi.org/10.1016/j.biortech.2004.06.025 pmid: 15588770
34 TNishino, I Matsuda, KHirao (2004). All-cellulose composite. Macromolecules, 37(20): 7683–7687
https://doi.org/10.1021/ma049300h
35 R DPerlack, L L Wright, A F Turhollow, R L Graham, B J Stokes, D C Erbach (2005). Biomass as feedstock for a bioenergy and bioproducts industry: The technical feasibility of a billion-ton annual supply. Oak Ridge National Lab TN, doi: 10.2172/885984
36 XQin, A Lu, JCai, LZhang (2013a). Stability of inclusion complex formed by cellulose in NaOH/urea aqueous solution at low temperature. Carbohydrate Polymers, 92(2): 1315–1320
https://doi.org/10.1016/j.carbpol.2012.10.004 pmid: 23399160
37 XQin, A Lu, LZhang (2013b). Gelation behavior of cellulose in NaOH/urea aqueous system via cross-linking. Cellulose (London, England), 20(4): 1669–1677
https://doi.org/10.1007/s10570-013-9961-z
38 ASarko (1978). What is the crystalline structure of cellulose? Technical Association of the Pulp and Paper Industry, Tappi
39 LSegal, J J Creely, A E Martin Jr, C M Conrad (1959). An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Textile Research Journal, 29(10): 786–794
https://doi.org/10.1177/004051755902901003
40 NTeng, J Ni, H ZChen, Q HRen, H NNa, X QLiu, R YZhang, JZhu (2016). Initiating highly effective hydrolysis of regenerated cellulose by controlling transition of crystal form with sulfolane under microwave radiation. ACS Sustainable Chemistry & Engineering, 4(3): 1507–1511
https://doi.org/10.1021/acssuschemeng.5b01464
41 N VTsarevsky, KBernaerts, BDufour, F DPrez, KMatyjaszewski (2004). Well-defined (Co) polymers with 5-vinyltetrazole units via combination of atom transfer radical (Co) polymerization of acrylonitrile and “click chemistry”-type postpolymerization modification. Macromolecules, 37(25): 9308–9313
https://doi.org/10.1021/ma048207q
42 JWang, X Lin, XLuo, WYao (2015). Preparation and characterization of the linked lanthanum carboxymethylcellulose microsphere adsorbent for removal of fluoride from aqueous solutions. RSC Advances, 5(73): 59273–59285
https://doi.org/10.1039/C5RA07024D
43 L HWang, Y L Wang, X S Zhao, Z Han (2013). Comparative study on the method of extracting straw cellulose. Zhongguo Nongxue Tongbao, 29: 130–134 (in Chinese)
44 TWang, P Phyo, MHong (2016). Multidimensional solid-state NMR spectroscopy of plant cell walls. Solid State Nuclear Magnetic Resonance, 78: 56–63
https://doi.org/10.1016/j.ssnmr.2016.08.001 pmid: 27552739
45 YWang, Y Deng (2009). The kinetics of cellulose dissolution in sodium hydroxide solution at low temperatures. Biotechnology and Bioengineering, 102(5): 1398–1405
https://doi.org/10.1002/bit.22160 pmid: 18979541
46 BYang, C E Wyman (2008). Pretreatment: The key to unlocking low-cost cellulosic ethanol. Biofuels, Bioproducts & Biorefining, 2(1): 26–40
https://doi.org/10.1002/bbb.49
47 TYui, N Okayama, SHayashi (2010). Structure conversions of cellulose IIII crystal models in solution state: A molecular dynamics study. Cellulose (London, England), 17(4): 679–691
https://doi.org/10.1007/s10570-010-9422-x
48 J QZhang, L Lin, YSun, GMitchell, S JLiu (2008). Advance of studies on structure and decrystallization of cellulose. Linchan Huaxue Yu Gongye, 28: 109–114 (in Chinese)
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed