Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

邮发代号 80-963

2019 Impact Factor: 1.62

Frontiers of Earth Science  2018, Vol. 12 Issue (1): 37-51   https://doi.org/10.1007/s11707-017-0646-z
  本期目录
Vegetation productivity responses to drought on tribal lands in the four corners region of the Southwest USA
Mohamed Abd Salam EL-VILALY1(), Kamel DIDAN2, Stuart E. MARSH3, Willem J.D. VAN LEEUWEN3, Michael A. CRIMMINS4, Armando Barreto MUNOZ2
1. The International Food Policy Research Institute, Washington, DC 20006-1002, USA
2. Vegetation Index and Phenology Lab, Department of Agricultural and Biosystems Engineering, The University of Arizona, Tucson, AZ 85721-0036, USA
3. Arizona Remote Sensing Center, School of Natural Resources and the Environment, The University of Arizona, Tucson, AZ 85721-0043, USA
4. Department of Soils Water and Environmental Science, The University of Arizona, Tucson, AZ 85721-0038, USA
 全文: PDF(5147 KB)   HTML
Abstract

For more than a decade, the Four Corners Region has faced extensive and persistent drought conditions that have impacted vegetation communities and local water resources while exacerbating soil erosion. These persistent droughts threaten ecosystem services, agriculture, and livestock activities, and expose the hypersensitivity of this region to inter-annual climate variability and change. Much of the intermountain Western United States has sparse climate and vegetation monitoring stations, making fine-scale drought assessments difficult. Remote sensing data offers the opportunity to assess the impacts of the recent droughts on vegetation productivity across these areas. Here, we propose a drought assessment approach that integrates climate and topographical data with remote sensing vegetation index time series. Multi-sensor Normalized Difference Vegetation Index (NDVI) time series data from 1989 to 2010 at 5.6 km were analyzed to characterize the vegetation productivity changes and responses to the ongoing drought. A multi-linear regression was applied to metrics of vegetation productivity derived from the NDVI time series to detect vegetation productivity, an ecosystem service proxy, and changes. The results show that around 60.13% of the study area is observing a general decline of greenness (p<0.05), while 3.87% show an unexpected green up, with the remaining areas showing no consistent change. Vegetation in the area show a significant positive correlation with elevation and precipitation gradients. These results, while, confirming the region’s vegetation decline due to drought, shed further light on the future directions and challenges to the region’s already stressed ecosystems. Whereas the results provide additional insights into this isolated and vulnerable region, the drought assessment approach used in this study may be adapted for application in other regions where surface-based climate and vegetation monitoring record is spatially and temporally limited.

Key wordsdrought    remote sensing    Hopi    Navajo Nation
收稿日期: 2016-06-28      出版日期: 2018-01-23
Corresponding Author(s): Mohamed Abd Salam EL-VILALY   
 引用本文:   
. [J]. Frontiers of Earth Science, 2018, 12(1): 37-51.
Mohamed Abd Salam EL-VILALY, Kamel DIDAN, Stuart E. MARSH, Willem J.D. VAN LEEUWEN, Michael A. CRIMMINS, Armando Barreto MUNOZ. Vegetation productivity responses to drought on tribal lands in the four corners region of the Southwest USA. Front. Earth Sci., 2018, 12(1): 37-51.
 链接本文:  
https://academic.hep.com.cn/fesci/CN/10.1007/s11707-017-0646-z
https://academic.hep.com.cn/fesci/CN/Y2018/V12/I1/37
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Vegetation productivity parameter Negative changes/% Positive changes/% No-significant changes/%
∑NDVI 60.13 3.87 36.00
Max-NDVI 50.04 2.4 47.56
Tab.1  
Fig.7  
1 Alcaraz D, Paruelo  J, Cabello J (2006). Identification of current ecosystem functional types in the Iberian Peninsula. Glob Ecol Biogeogr, 15(2): 200–212
https://doi.org/10.1111/j.1466-822X.2006.00215.x
2 Anyamba A, Tucker  C (2005). Analysis of sahelian vegetation dynamics using NOAA-AVHRR NDVI data from 1981–2003. J Arid Environ, 63(3): 596–614
https://doi.org/10.1016/j.jaridenv.2005.03.007
3 Bainbridge D A (2012). Restoration of arid and semi-arid lands. Restoration Ecology: The New Frontier, 115
4 Below R, Grover-Kopec  E, Dilley M (2007). Documenting drought-related disasters: a global reassessment. J Environ Dev, 16(3): 328–344
https://doi.org/10.1177/1070496507306222
5 Boschetti M, Nutini  F, Brivio P A,  Bartholomé E,  Stroppiana D,  Hoscilo A (2013). Identification of environmental anomaly hot spots in West Africa from time series of NDVI and rainfall. ISPRS Journal of Photogrammetry and Remote Sensing, 78: 26–40
https://doi.org/10.1016/j.isprsjprs.2013.01.003
6 Breshears D D,  Cobb N S,  Rich P M,  Price K P,  Allen C D,  Balice R G,  Romme W H,  Kastens J H,  Floyd M L,  Belnap J,  Anderson J J,  Myers O B,  Meyer C W (2005). Regional vegetation die-off in response to global-change-type drought. Proc Natl Acad Sci USA, 102(42): 15144–15148
https://doi.org/10.1073/pnas.0505734102
7 Byun H, Wilhite  D A (1999). Objective quantification of drought severity and duration. J Clim, 12(9): 2747–2756
https://doi.org/10.1175/1520-0442(1999)012<2747:OQODSA>2.0.CO;2
8 Cai X L, Sharma  B R (2010). Integrating remote sensing, census and weather data for an assessment of rice yield, water consumption and water productivity in the indo-gangetic river basin. Agric Water Manage, 97(2): 309–316
https://doi.org/10.1016/j.agwat.2009.09.021
9 Cook E R, Woodhouse  C A, Eakin  C M, Meko  D M, Stahle  D W (2004). Long-term aridity changes in the western United States. Science, 306(5698): 1015–1018
https://doi.org/10.1126/science.1102586
10 Crimmins M A, Selover  N, Cozzetto K,  Chief K (2013). Technical Review of the Navajo Nation Drought Contingency Plan – Drought Monitoring. Meadow A M, ed. Tucson, AZ: Climate Assessment for the Southwest
11 Delbart N, Le Toan  T, Kergoat L,  Fedotova V (2006). Remote sensing of spring phenology in boreal regions: a free of snow-effect method using NOAA-AVHRR and SPOT-VGT data (1982–2004). Remote Sens Environ, 101(1): 52–62
https://doi.org/10.1016/j.rse.2005.11.012
12 Di Luzio M, Johnson  G L, Daly  C, Eischeid J K,  Arnold J G (2008). Constructing retrospective gridded daily precipitation and temperature datasets for the conterminous United States. J Appl Meteorol Climatol, 47(2): 475–497
https://doi.org/10.1175/2007JAMC1356.1
13 Didan K (2010). Multi-satellite earth science data record for studying global vegetation trends and changes. In: Proceedings of the 2010 international geoscience and remote sensing symposium, Honolulu, HI, USA, (Vol. 2530, p. 2530).
14 Didan K, Barreto  A M, Miura  T, Tsend-Ayush J,  Zhang X,  Friedl M,  Gray J, Van Leeuwen  W, Czapla-Myers J,  Doman B S,  Jenkerson C,  Maiersperger T,  Meyer D (2016). Multi-Sensor Vegetation Index and Phenology Earth Science Data Records: Algorithm Theoretical Basis Document and User Guide Version 4.0 ()
15 Fang J, Piao  S, Tang Z,  Peng C, Ji  W (2001). Interannual variability in net primary production and precipitation. Science, 293(5536): 1723
https://doi.org/10.1126/science.293.5536.1723a
16 Fensholt R, Langanke  T, Rasmussen K,  Reenberg A,  Prince S D,  Tucker C,  Scholes R J,  Le Q B,  Bondeau A,  Eastman R,  Epstein H,  Gaughan A E,  Hellden U,  Mbow C, Olsson  L, Paruelo J,  Schweitzer C,  Seaquist J,  Wessels K (2012). Greenness in semi-arid areas across the globe 1981–2007—An earth observing satellite based analysis of trends and drivers. Remote Sens Environ, 121: 144–158
https://doi.org/10.1016/j.rse.2012.01.017
17 Ferguson D, Crimmins  M A (2009). Who’s paying attention to the drought on the Colorado Plateau. Southwest Climate Outlook, 3–6. 
18 Gamon J A, Huemmrich  K F, Stone  R S, Tweedie  C E (2013). Spatial and temporal variation in primary productivity (NDVI) of coastal alaskan tundra: decreased vegetation growth following earlier snowmelt. Remote Sens Environ, 129: 144–153
https://doi.org/10.1016/j.rse.2012.10.030
19 Garfin G, Ellis  A, Selover N,  Anderson D,  Tecle A,  Heinrich P,  Crimmins M,  Leeper J,  Tallsalt-Robertson J,  Harvey C (2007). Assessment of the Navajo Nation Hydroclimate Network: A Final Report–12/28/2007. Navajo Nation Department of Water Resources. Available on the web: 
20 Gesch D B, Oimoen  M J, Zhang  Z, Meyer D J,  Danielson J J (2012). Validation of the ASTER Global Digital Elevation Model Version 2 over the conterminous United States. In Imaging a sustainable future, 22nd Congress, 281–286
21 Grahame J D, Sisk  T D (2002). Canyons, cultures and environmental change: an introduction to the land-use history of the Colorado Plateau. The Land Use History of North America Program, United States Geological Survey
22 Gray S T, Betancourt  J L, Fastie  C L, Jackson  S T (2003). Patterns and sources of multidecadal oscillations in drought-sensitive tree-ring records from the central and southern Rocky Mountains. Geophys Res Lett, 30(6), 
https://doi.org/10.1029/2002GL016154
23 Griffin D, Woodhouse  C A, Meko  D M, Stahle  D W, Faulstich  H L, Carrillo  C, Touchan R,  Castro C L,  Leavitt S W (2013). North American monsoon precipitation reconstructed from tree-ring latewood. Geophys Res Lett, 40(5): 954–958
https://doi.org/10.1002/grl.50184
24 Herrmann S M, Didan  K, Barreto-Munoz A,  Crimmins M A (2016). Divergent responses of vegetation cover in Southwestern US ecosystems to dry and wet years at different elevations. Environ Res Lett, 11(12): 124005
https://doi.org/10.1088/1748-9326/11/12/124005
25 Horion S, Cornet  Y, Erpicum M,  Tychon B (2012). Studying interactions between climate variability and vegetation dynamic using a phenology based approach. Int J Appl Earth Obs Geoinf, 20(1): 20–32
26 Huete A R, Restrepo-Coupe  N, Ratana P,  Didan K,  Saleska S R,  Ichii K,  Panuthai S,  Gamo M (2008). Multiple site tower flux and remote sensing comparisons of tropical forest dynamics in Monsoon Asia. Agricultural and Forest Meteorology, 148(5), pp.748–760.
27 Jolly W M, Dobbertin  M, Zimmermann N E,  Reichstein M (2005). Divergent vegetation growth responses to the 2003 heat wave in the Swiss Alps. Geophys Res Lett, 32(18), 
https://doi.org/10.1029/2005GL023252
28 Kaplan S (2012a). Response of urban and non-urban land cover in a semi-arid ecosystem to summer precipitation variability. J Ariz Nev Acad Sci, 43(2): 77–85
https://doi.org/10.2181/036.043.0203
29 Karnieli A (2003). Natural vegetation phenology assessment by ground spectral measurements in two semi-arid environments. Int J Biometeorol, 47(4): 179–187
https://doi.org/10.1007/s00484-003-0169-z
30 Keshavarz M, Karami  E, Vanclay F (2013). The social experience of drought in rural iran. Land Use Policy, 30(1): 120–129
https://doi.org/10.1016/j.landusepol.2012.03.003
31 Liang T, Feng  Q, Yu H,  Huang X,  Lin H, An  S, Ren J (2012). Dynamics of natural vegetation on the Tibetan Plateau from past to future using a comprehensive and sequential classification system and remote sensing data. Grassland science, 58(4): 208–220
32 Liu S, Gong  P (2012). Change of surface cover greenness in China between 2000 and 2010. Chin Sci Bull, 57(22): 2835–2845
https://doi.org/10.1007/s11434-012-5267-z
33 Ma M, Frank  V (2006). Interannual variability of vegetation cover in the chinese heihe river basin and its relation to meteorological parameters. Int J Remote Sens, 27(16): 3473–3486
https://doi.org/10.1080/01431160600593031
34 Mu Q, Zhao  M, Kimball J S,  McDowell N G,  Running S W (2013). A remotely sensed global terrestrial drought severity index. Bulletin of the American Meteorological Society, 94(1): 83–98
35 NALCMS (2005). North American Land Cover at 250 m spatial resolution. Produced by Natural Resources Canada/Canadian Center for Remote Sensing (NRCan/CCRS), United States Geological Survey (USGS); Insituto Nacional de Estadística y Geografía (INEGI), Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (CONABIO) and Comisión Nacional Forestal CONAFOR). 
36 NCAR (2005). The US National Center for Atmospheric Research (NCAR) and the University Corporation for Atmospheric Research (UCAR);"drought's growing reach: national center for atmospheric research study points to global warming as key factor".
37 Nemani R R, Keeling  C D, Hashimoto  H, Jolly W M,  Piper S C,  Tucker C J,  Myneni R B,  Running S W (2003). Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science, 300(5625): 1560–1563
https://doi.org/10.1126/science.1082750
38 Nicholson S E,  Farrar T J (1994). The influence of soil type on the relationships between NDVI, precipitation, and soil moisture in semiarid Botswana. I. NDVI response to precipitation. Remote Sens Environ, 50(2): 107–120
https://doi.org/10.1016/0034-4257(94)90038-8
39 Nieto S, Flombaum  P, Garbulsky M F (2015). Can temporal and spatial NDVI predict regional bird-species richness? Global Ecology and Conservation, 3: 729–735
https://doi.org/10.1016/j.gecco.2015.03.005
40 Obasi G O P (1994). WMO’s role in the international decade for natural disaster reduction. Bull Am Meteorol Soc, 75(9): 1655–1661
https://doi.org/10.1175/1520-0477(1994)075<1655:WRITID>2.0.CO;2
41 Ouyang W, Hao  F, Skidmore A K,  Groen T A,  Toxopeus A G,  Wang T (2012). Integration of multi-sensor data to assess grassland dynamics in a Yellow River sub-watershed. Ecol Indic, 18: 163–170
https://doi.org/10.1016/j.ecolind.2011.11.013
42 Palmer W C (1968). Keeping track of crop moisture conditions, nationwide: the new crop moisture index. Weatherwise, 21(4): 156–161
https://doi.org/10.1080/00431672.1968.9932814
43 Pape Mş, Peterson  A T, Powell  G V N (2012). Vegetation dynamics and avian seasonal migration: clues from remotely sensed vegetation indices and ecological niche modelling. J Biogeogr, 39(4): 652–664
https://doi.org/10.1111/j.1365-2699.2011.02632.x
44 Peng Y, Gitelson  A A, Sakamoto  T (2013). Remote estimation of gross primary productivity in crops using MODIS 250 m data. Remote Sens Environ, 128: 186–196
https://doi.org/10.1016/j.rse.2012.10.005
45 Pôças I,  Cunha M,  Pereira L S,  Allen R G (2013). Using remote sensing energy balance and evapotranspiration to characterize montane landscape vegetation with focus on grass and pasture lands. Int J Appl Earth Obs Geoinf, 21: 159–172
https://doi.org/10.1016/j.jag.2012.08.017
46 Reynolds J F, Stafford  S D M, Olsson  L (2003). Geographical reviews-global desertification: Do humans cause deserts? Geogr Rev, 93(3): 413
47 Ryu Y, Baldocchi  D D, Verfaillie  J, Ma S,  Falk M, Ruiz-Mercado  I, Hehn T,  Sonnentag O (2010). Testing the performance of a novel spectral reflectance sensor, built with light emitting diodes (LEDs), to monitor ecosystem metabolism, structure and function. Agric Meteorol, 150(12): 1597–1606
https://doi.org/10.1016/j.agrformet.2010.08.009
48 Shafer B A, Dezman  L E (1982). Development of a Surface Water Supply Index (SWSI) to assess the severity of drought conditions in snowpack runoff areas. In: Proceedings of the western snow conference. Vol. 50. Fort Collins, CO: Colorado State University
49 Shi J, Jackson  T, Tao J,  Du J, Bindlish  R, Lu L,  Chen K S (2008). Microwave vegetation indices for short vegetation covers from satellite passive microwave sensor AMSR-E. Remote Sens Environ, 112(12): 4285–4300
https://doi.org/10.1016/j.rse.2008.07.015
50 Sivakumar M, Motha  R, Wilhite D,  Wood D (2010). Agricultural Drought Indices Proceedings of An Expert Meeting 2–4 June 2010, Murcia, Spain. Geneva: World Meteorological Organization, 219
51 UNDP/UNSO (1997). Aridity zones and dryland populations: an assessment of population levels in the world’s drylands. New York: Office to Combat Desertification and Drought
52 UNESCO (2012). World water development report managing water under uncertainty and risk. The United Nations world water development report 4. World water assessment programme. 
53 Wang J, Rich  P M, Price  K P (2003). Temporal responses of NDVI to precipitation and temperature in the central Great Plains, USA. Int J Remote Sens, 24(11): 2345–2364
https://doi.org/10.1080/01431160210154812
54 Wang Y (2012). Detecting vegetation recovery patterns after hurricanes in south florida using NDVI time series. Open Access Theses. Paper 355
55 Weiss J, Gutzler  D S, Coonrod  J E A, Dahm  C N (2004). Long-term vegetation monitoring with NDVI in a diverse semi-arid setting, central New Mexico, USA. J Arid Environ, 58(2): 249–272
https://doi.org/10.1016/j.jaridenv.2003.07.001
56 Wessels K J, Prince  S D, Malherbe  J, Small J,  Frost P,  VanZyl D (2007). Can human-induced land degradation be distinguished from the effects of rainfall variability? A case study in South Africa. J Arid Environ, 68(2): 271–297
https://doi.org/10.1016/j.jaridenv.2006.05.015
57 White M A, Nemani  R R (2006). Real-time monitoring and short-term forecasting of land surface phenology. Remote Sens Environ, 104(1): 43–49
https://doi.org/10.1016/j.rse.2006.04.014
58 Wright C K, de Beurs  K M, Henebry  G M (2012). Combined analysis of land cover change and NDVI trends in the Northern Eurasian grain belt. Front Earth Sci, 6(2): 177–187
59 Yin H, Udelhoven  T, Fensholt R,  Pflugmacher D,  Hostert P (2012). How normalized difference vegetation index (NDVI) trendsfrom advanced very high resolution radiometer (AVHRR) and système probatoire d’observation de la terre vegetation (SPOT VGT) time series differ in agricultural areas: An inner Mongolian case study. Remote Sens, 4(11): 3364–3389
https://doi.org/10.3390/rs4113364
60 Yuan F, Roy  S S (2007). Analysis of the relationship between NDVI and climate variables in minnesota using geographically weighted regression and spatial interpolation. In American Society for Photogrammetry and Remote Sensing- ASPRS Annual Conference 2007: Identifying Geospatial Solutions, 2: 784–789
61 Zhang X, Friedl  M A, Schaaf  C B, Strahler  A H (2004). Climate controls on vegetation phenological patterns in northern mid- and high latitudes inferred from MODIS data. Glob Change Biol, 10(7): 1133–1145
https://doi.org/10.1111/j.1529-8817.2003.00784.x
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed