Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

邮发代号 80-963

2019 Impact Factor: 1.62

Frontiers of Earth Science  2015, Vol. 9 Issue (3): 555-566   https://doi.org/10.1007/s11707-015-0490-y
  本期目录
Decomposition of Phragmites australis rhizomes in artificial land-water transitional zones (ALWTZs) and management implications
Zhen HAN,Baoshan CUI(),Yongtao ZHANG
State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
 全文: PDF(1392 KB)   HTML
Abstract

Rhizomes are essential organs for growth and expansion of Phragmites australis. They function as an important source of organic matter and as a nutrient source, especially in the artificial land-water transitional zones (ALWTZs) of shallow lakes. In this study, decomposition experiments on 1- to 6-year-old P. australis rhizomes were conducted in the ALWTZ of Lake Baiyangdian to evaluate the contribution of the rhizomes to organic matter accumulation and nutrient release. Mass loss and changes in nutrient content were measured after 3, 7, 15, 30, 60, 90, 120, and 180 days. The decomposition process was modeled with a composite exponential model. The Pearson correlation analysis was used to analyze the relationships between mass loss and litter quality factors. A multiple stepwise regression model was utilized to determine the dominant factors that affect mass loss. Results showed that the decomposition rates in water were significantly higher than those in soil for 1- to 6-year-old rhizomes. However, the sequence of decomposition rates was identical in both water and soil. Significant relationships between mass loss and litter quality factors were observed at a later stage, and P-related factors proved to have a more significant impact than N-related factors on mass loss. According to multiple stepwise models, the C/P ratio was found to be the dominant factor affecting the mass loss in water, and the C/N and C/P ratios were the main factors affecting the mass loss in soil. The combined effects of harvesting, ditch broadening, and control of water depth should be considered for lake administrators.

Key wordsPhragmites australis rhizomes    mass loss    decomposition rates    nutrient contents    Pearson correlation analysis    Artificial Land-Water Transitional Zone(ALWTZ)
收稿日期: 2014-04-25      出版日期: 2015-07-20
Corresponding Author(s): Baoshan CUI   
 引用本文:   
. [J]. Frontiers of Earth Science, 2015, 9(3): 555-566.
Zhen HAN,Baoshan CUI,Yongtao ZHANG. Decomposition of Phragmites australis rhizomes in artificial land-water transitional zones (ALWTZs) and management implications. Front. Earth Sci., 2015, 9(3): 555-566.
 链接本文:  
https://academic.hep.com.cn/fesci/CN/10.1007/s11707-015-0490-y
https://academic.hep.com.cn/fesci/CN/Y2015/V9/I3/555
Fig.1  
Fig.2  
Fig.3  
Age Environment k1 k2 W1/% r2 p
1-year-old In water 0.00313 0.14107 26.79 0.9723 <0.0001
In soil 0.00178 0.02753 35.75 0.9516 <0.0001
2-year-old In water 0.00276 0.13029 26.07 0.9318 <0.0001
In soil 0.002 0.03573 26.65 0.9786 <0.0001
3-year-old In water 0.00219 0.10957 27.29 0.9753 <0.0001
In soil 0.00151 0.03242 28.05 0.9834 <0.0001
4-year-old In water 0.00266 0.12474 24.38 0.9712 <0.0001
In soil 0.0012 0.0224 35.34 0.9438 <0.0001
5-year-old In water 0.00309 0.11932 24.34 0.9692 <0.0001
In soil 0.0012 0.0197 38.73 0.9714 <0.0001
6-year-old In water 0.0031 0.1218 24.75 0.9851 <0.0001
In soil 0.0019 0.0286 31.59 0.9233 <0.0001
Tab.1  
Age C% N% P% C:N C:P N:P
1 year 42.875 1.265 0.075 33.893 568.626 16.777
2 year 39.848 0.963 0.066 41.375 607.392 14.680
3 year 36.025 0.808 0.043 44.600 845.372 18.954
4 year 25.208 0.703 0.037 35.857 674.869 18.821
5 year 27.582 0.560 0.032 49.293 856.791 17.382
6 year 27.623 0.403 0.029 68.530 963.043 14.053
Tab.2  
Fig.4  
Fig.5  
Environment Nutrient content Percentage of mass losses at different sampling times
3 days 7 days 15 days 30 days 60 days 90 days 120 days 180 days
In water N% 0.009 0.167 c) 0.398 0.283 b) -0.879 b) 0.905 b) 0.897 b) 0.57 a)
P% 0.211 0.264 c) 0.465 0.463a) 0.936 b) 0.955a) 0.926 b) 0.716 a)
C:N 0.313 0.14 0.001 0.311 -0.426 b) -0.554 -0.466 0.022
C:P -0.101 -0.101 -0.182 -0.063 b) -0.677 b) -0.820a) -0.874a) -0.919 b)
N:P -0.792 -0.465 -0.359 -0.77 -0.275 -0.236 -0.197 b) -0.624
In soil N% 0.272 0.255 c) 0.451 0.913 c) 0.954 b) -0.008 b) 0.938 b) 0.919 a)
P% 0.424 0.294 c) 0.563 0.950 c) 0.887a) 0.129 a) 0.941a) 0.958 a)
C:N 0.165 0.035 -0.047 -0.569 -0.850 c) 0.541 -0.625 -0.512
C:P -0.226 -0.136 -0.431 -0.81 -0.851a) 0.202 b) -0.719 b) -0.742 a)
N:P 0.684 0.293 0.548 0.181 -0.276 b) 0.691a) 0.734 b) 0.875 a)
Tab.3  
Environment Equations r2 p
In water Mloss = 0.003t + 0.145 0.819 <0.0001
Mloss = 0.003t-0.0008C:P+ 0.074 0.933 <0.0001
In soil Mloss = 0.003 t + 0.075 0.884 <0.0001
Mloss = 0.002t-0.136 C:N -0.0007C:P+ 0.167 0.924 <0.0001
Tab.4  
Age categories Mesh size/mm2 Incubation days/d v/(d-1) Environment References
1- to 6- year-old 1 × 1 180 0.0040?0.0047 In water This study
1- to 6- year-old 1 × 1 180 0.0033?0.0041 In soil This study
1- to 2- year-old 1 × 1 953 0.0023 In water ágoston-Szabó et al. (2006)
1-year-old 1 × 1 434 0.0014 In soil Wrubleski et al. (1997)
1-year-old 1 × 1 434 0.0032 In water Wrubleski et al. (1997)
1- to 4- year-old 1 × 1 369 0.0014?0.005 In soil Asaeda and Nam (2002)
1- to 2- year-old 5 × 5 150 0.004 In water Eid et al. (2014)
Tab.5  
1 Adams J B, Bate G C (1999). Growth and photosynthetic performance of Phragmites australis in estuarine waters: a field and experimental evaluation. Aquat Bot, 64(3–4): 359–367
https://doi.org/10.1016/S0304-3770(99)00063-7
2 Aerts R, de Caluwe H (1997). Nutritional and plant-mediated controls on leaf litter decomposition of Carex species. Ecology, 78(1): 244–260
https://doi.org/10.1890/0012-9658(1997)078[0244:NAPMCO]2.0.CO;2
3 ágoston-Szabó E, Dinka M, Némedi L, Horváth G (2006). Decomposition of Phragmites australis rhizome in a shallow lake. Aquat Bot, 85(4): 309–316
https://doi.org/10.1016/j.aquabot.2006.06.005
4 Akbari N K, Sanatipour M, Hashemi A, Teimourzadeh K, Shiri J (2013). Modeling of dissolved oxygen in river water using artificial intelligence techniques. Journal of Environmental Informatics, 22(2): 92–101
5 Alvarez S, Guerrero M (2000). Enzymatic activities associated with decomposition of particulate organic matter in two shallow ponds. Soil Biol Biochem, 32(13): 1941–1951
https://doi.org/10.1016/S0038-0717(00)00170-X
6 Asaeda T, Nam L H (2002). Effects of rhizome age on the decomposition rate of Phragmites australis rhizomes. Hydrobiologia, 485(1–3): 205–208
https://doi.org/10.1023/A:1021314203532
7 Bai J, Deng W, Zhu Y, Wang Q (2004). Spatial variability of nitrogen in soils from land/inland water ecotones. Communications in Soil Science and Plant Analysis, 35(5–6): 735–749
8 Bart D, Hartman J M (2003). The role of large rhizome dispersal and low salinity windows in the establishment of common reed, Phragmites australis, in salt marshes: new links to human activities. Estuaries, 26(2): 436–443
https://doi.org/10.1007/BF02823720
9 Bayo M M, Casas J J, Cruz-Pizarro L (2005). Decomposition of submerged Phragmites australis leaf litter in two highly eutrophic Mediterranean coastal lagoons: relative contribution of microbial respiration and macroinvertebrate feeding. Arch Hydrobiol, 163(3): 349–367
https://doi.org/10.1127/0003-9136/2005/0163-0349
10 Bedford A P (2005). Decomposition of Phragmites australis litter in seasonally flooded and exposed areas of a managed reedbed. Wetlands, 25(3): 713–720
https://doi.org/10.1672/0277-5212(2005)025[0713:DOPALI]2.0.CO;2
11 Blanco J A, Imbert J B, Castillo F J (2011). Thinning affects Pinus sylvestris needle decomposition rates and chemistry differently depending on site conditions. Biogeochemistry, 106(3): 397–414
https://doi.org/10.1007/s10533-010-9518-2
12 Breeuwer A, Heijmans M, Robroek B J M, Limpens J, Berendse F (2008).The effect of increased temperature and nitrogen deposition on decomposition in bogs. Oikos, 117(8): 1258–1268
https://doi.org/10.1111/j.0030-1299.2008.16518.x
13 Brock T C M (1984). Aspects of the decomposition of Nymphoides pettata (Gmel.) O. Kuntze (Menyanthaceae). Aquat Bot, 19: 131–156
14 Chimney M J, Pietro K C (2006). Decomposition of macrophyte litter in a subtropical constructed wetland in south Florida (USA). Ecol Eng, 27(4): 301–321
https://doi.org/10.1016/j.ecoleng.2006.05.016
15 Cleveland C C, Neff J C, Townsend A R, Hood E (2004). Composition, dynamics, and fate of leached dissolved organic matter in terrestrial ecosystems: results from a decomposition experiment. Ecosystems (NY, Print), 7(3): 275–285
https://doi.org/10.1007/s10021-003-0236-7
16 Davidson E A, Janssens I A (2006). Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature, 440(7081): 165–173
https://doi.org/10.1038/nature04514
17 Debusk W F, Reddy K R (2005). Litter decomposition and nutrient dynamics in a phosphorus enriched everglades marsh. Biogeochemistry, 75(2): 217–240
https://doi.org/10.1007/s10533-004-7113-0
18 Dinka M, ágoston-Szabó E, Tóth I (2004). Changes in nutrient and fiber content of decomposing Phragmites australis litter. Int Rev Hydrobiol, 89(5–6): 519–535
https://doi.org/10.1002/iroh.200410772
19 Eid E M (2012). Phragmites australis (Cav.) Trin. ex Steud.: Its Population Biology and Nutrient Cycle in Lake Burullus, A Ramsar Site in Egypt. Saar-brücken: LAP LAMBERT Academic Publishing
20 Eid E M, Shaltout K H, Al‐Sodany Y M (2014). Decomposition dynamics of Phragmites australis litter in Lake Burullus, Egypt. Plant Species Biol, 29(1): 47–56
https://doi.org/10.1111/j.1442-1984.2012.00389.x
21 Eid E M, Shaltout K H, Al-Sodany Y M, Soetaert K, Jensen K (2010). Modeling growth, carbon allocation and nutrient budget of Phragmites australis in Lake Burullus Egypt. Wetlands, 30(2): 240–251
https://doi.org/10.1007/s13157-010-0023-0
22 Fiala K (1976). Underground organs of Phragmites communis, their growth, biomass and net production. Folia Geobot Phytotaxon, 11(3): 225–259
23 Gessner M O (2000). Breakdown and nutrient dynamics of submerged Phragmites shoots in the littoral zone of a temperate hardwater lake. Aquat Bot, 66(1): 9–20
https://doi.org/10.1016/S0304-3770(99)00022-4
24 Gessner M O (2001). Mass loss, fungal colonization and nutrient dynamics of Phragmites australis leaves during senescence and early aerial decay. Aquat Bot, 69(2–4): 325–339
https://doi.org/10.1016/S0304-3770(01)00146-2
25 Geurts J J, Smolders A J, Banach A M, van de Graaf J P, Roelofs J G, Lamers L P (2010). The interaction between decomposition, net N and P mineralization and their mobilization to the surface water in fens. Water Res, 44(11): 3487–3495
https://doi.org/10.1016/j.watres.2010.03.030
26 Godshalk G L, Wetzel R G (1978). Decomposition of aquatic angiosperms. I. Dissolved components. Aquat Bot, 5: 281–300
https://doi.org/10.1016/0304-3770(78)90073-6
27 Gulis V, Ferreira V, Gra?a M (2006). Stimulation of leaf litter decomposition and associated fungi and invertebrates by moderate eutrophication: implications for stream assessment. Freshw Biol, 51(9): 1655–1669
https://doi.org/10.1111/j.1365-2427.2006.01615.x
28 Gulis V, Suberkropp K (2003). Leaf litter decomposition and microbial activity in nutrient-enriched and unaltered reaches of a headwater stream. Freshw Biol, 48(1): 123–134
https://doi.org/10.1046/j.1365-2427.2003.00985.x
29 Güsewell S (2004). N:P ratios in terrestrial plants: variation and functional significance. New Phytol, 164(2): 243–266
https://doi.org/10.1111/j.1469-8137.2004.01192.x
30 Haslam S M (1970). Variation of population type in Phragmites communis Trin. Ann Bot (Lond), 34(1): 147–158
31 Hietz P (1992). Decomposition and nutrient dynamics of reed (Phragmites australis (Cav.) Trin. ex Steud.) litter in Lake Neusiedl, Austria. Aquat Bot, 43(3): 211–230
https://doi.org/10.1016/0304-3770(92)90068-T
32 Hobbie S E, Vitousek P M (2000). Nutrient limitation of decomposition in Hawaiian forests. Ecology, 81(7): 1867–1877
https://doi.org/10.1890/0012-9658(2000)081[1867:NLODIH]2.0.CO;2
33 Hoorens B, Aerts R, Stroetenga M (2003). Does initial litter chemistry explain litter mixture effects on decomposition? Oecologia, 137(4): 578–586
https://doi.org/10.1007/s00442-003-1365-6
34 Jang C S, Kamps T L, Skinner D N, Schulze S R, Vencill W K, Paterson A H (2006). Functional classification, genomic organization, putatively cis-acting regulatory elements, and relationship to quantitative trait loci, of sorghum genes with rhizome-enriched expression. Plant Physiol, 142(3): 1148–1159
https://doi.org/10.1104/pp.106.082891
35 Karunaratne S, Asaeda T, Yutani K (2004). Age-specific seasonal storage dynamics of Phragmites australis rhizomes: a preliminary study. Wetlands Ecol Manage, 12(5): 343–351
https://doi.org/10.1007/s11273-004-6245-2
36 Du Laing G, Ryckegem G V, Tack F M G Verloo M G (2006). Metal accumulation in intertidal litter through decomposing leaf blades, sheaths and stems of Phragmites australis. Chemosphere, 63(11): 1815–1823
https://doi.org/10.1016/j.chemosphere.2005.10.034
37 Lan Y, Cui B, You Z, Li X, Han Z, Zhang Y (2012). Litter decomposition of six macrophytes in a eutrophic shallow lake (Baiyangdian Lake, China). CLEAN–Soil, Air. Water, 40(10): 1159–1166
38 Lei L, Sun J S, Borthwick A G L, Fang Y, Ma J P, Ni J R (2013). Dynamic evaluation of intertidal wetland sediment quality in a bay system. Journal of Environmental Informatics, 21(1): 12–22
https://doi.org/10.3808/jei.201300228
39 Li X, Cui B, Yang Q, Lan Y, Wang T, Han Z (2013). Effects of plant species on macrophyte decomposition under three nutrient conditions in a eutrophic shallow lake, North China. Ecol Modell, 252: 121–128
https://doi.org/10.1016/j.ecolmodel.2012.08.006
40 Mauchamp A, Blanch S, Grillas P (2001). Effects of submergence on the growth of Phragmites australis seedlings. Aquat Bot, 69(2–4): 147–164
https://doi.org/10.1016/S0304-3770(01)00135-8
41 Nziguheba G, Palm C A, Buresh R J, Smithson P C (1998). Soil phosphorus fractions and adsorption as affected by organic and inorganic sources. Plant Soil, 198(2): 159–168
https://doi.org/10.1023/A:1004389704235
42 Papastergiadou E, Retalis A, Kalliris P, Georgiadis T (2007). Land use changes and associated environmental impacts on the Mediterranean shallow Lake Stymfalia, Greece. Hydrobiologia, 584(1): 361–372
https://doi.org/10.1007/s10750-007-0606-9
43 Rejmánková E, Houdková K (2006). Wetland plant decomposition under different nutrient conditions: what is more important, litter quality or site quality? Biogeochemistry, 80(3): 245–262
https://doi.org/10.1007/s10533-006-9021-y
44 Rejmánková E, Sirová D (2007). Wetland macrophyte decomposition under different nutrient conditions: relationships between decomposition rate, enzyme activities and microbial biomass. Soil Biol Biochem, 39(2): 526–538
https://doi.org/10.1016/j.soilbio.2006.08.022
45 Royer T V, Minshall G W (2001). Effects of nutrient enrichment and leaf quality on the breakdown of leaves in a hardwater stream. Freshw Biol, 46(5): 603–610
https://doi.org/10.1046/j.1365-2427.2001.00694.x
46 Schultz P, Urban N R (2008). Effects of bacterial dynamics on organic matter decomposition and nutrient release from sediments: a modeling study. Ecol Modell, 210(1–2): 1–14
https://doi.org/10.1016/j.ecolmodel.2007.06.026
47 Shilla D, Asaeda T, Fujino T, Sanderson B (2006). Decomposition of dominant submerged macrophytes:implications for nutrient release in Myall Lake, NSW, Australia. Wetlands Ecol Manage, 14(5): 427–433
https://doi.org/10.1007/s11273-006-6294-9
48 van Dokkum H P, Slijkerman D M E, Rossi L, Costantini M L (2002). Variation in the decomposition of Phragmites australis litter in a monomictic lake: the role of gammarids. Hydrobiologia, 482(1–3): 69–77
https://doi.org/10.1023/A:1021295610780
49 Villar C A, de Cabo C L, Vaithiyanathan P, Bonetto C (2001). Litter decomposition of emergent macrophytes in a floodplain marsh of the Lower Paraná River. Aquat Bot, 70(2): 105–116
https://doi.org/10.1016/S0304-3770(01)00149-8
50 Wang J, Pei Y S, Yang Z F (2010a). Effects of nutrients on the plant type eutrophication of the Baiyangdian Lake. China Environ Sci, 30(suppl): 7–13 (in Chinese)
51 Wang L, Yin C, Wang W (2010b). Sedimentary enzyme kinetics of land/water ecotones with reed domination. CLEAN – Soil, Air, Water, 38(2): 194–201
52 Wang W, Yin C (2008). The boundary filtration effect of reed-dominated ecotones under water level fluctuations. Wetlands Ecol Manage, 16(1): 65–76
https://doi.org/10.1007/s11273-007-9057-3
53 Weisner S E, Strand J A (1996). Rhizome architecture in Phragmites australis in relation to water depth: implications for within-plant oxygen transport distances. Folia Geobot, 31(1): 91–97
https://doi.org/10.1007/BF02803998
54 Wrubleski D A, Murkin H R, van der Valk A G, Nelson J W (1997). Decomposition of emergent macrophyte roots and rhizomes in a northern prairie marsh. Aquat Bot, 58(2): 121–134
https://doi.org/10.1016/S0304-3770(97)00016-8
55 Xie Y, Yu D, Ren B (2004). Effects of nitrogen and phosphorus availability on the decomposition of aquatic plants. Aquat Bot, 80(1): 29–37
https://doi.org/10.1016/j.aquabot.2004.07.002
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed