Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front. Earth Sci.    2019, Vol. 13 Issue (3) : 614-627    https://doi.org/10.1007/s11707-018-0747-3
RESEARCH ARTICLE
Spatiotemporal influences of land use/cover changes on the heat island effect in rapid urbanization area
Ying XIONG1,2, Fen PENG1,2, Bin ZOU3()
1. Research Center of Resource Environment and Urban Planning, Changsha 410114, China
2. School of Architecture, Changsha University of Science & Technology, Changsha 410114, China
3. School of Geosciences and Info-physics, Central South University, Changsha 410083, China
 Download: PDF(2887 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Rapid urban sprawl and growth led to substantial urban thermal environment changes and influenced the local climate, environment, and quality of life of residents. Taking the Chang-Zhu-Tan urban agglomeration in China as a case, this study firstly identified the spatiotemporal patterns of surface urban heat island intensity (SUHII) and the land use/cover changes (LUCC) based on multi-temporal Landsat TM satellite data over 21 years, and then investigated the relationship between LUCC and SUHII by methods of logistic regression model and centroid shift analysis. The results showed that green spaces (e.g., cropland, forestland) of 899.13 km2 had been converted to built-up land during the 1994–2015 period, which caused significant urban expansion. The SUHII was the highest for built-up land, high for unused land, low for cropland and grassland, and the lowest for forestland and open water. Many areas experienced extensive rapid urbanization because of the emergence of the urban agglomeration, which resulted in the loss of green spaces and increased SUHI effects over the 21-year study period. In addition, the results of centroid shift analysis found that the growth of SUHII and the expansion of high SUHII areas are closely related to the expansion of an existing urban area in Xiangtan, while the increases of building density and height in Changsha resulted in the decrease of SUHII and spatiotemporal change of high SUHII areas. The analysis of the effects of land use/cover types on the SUHII in this study will contribute to future urban land use allocation for the mitigation of SUHI formation.

Keywords land use/cover change      urbanization      remote sensing      surface urban heat island intensity      centroid shift analysis     
Corresponding Author(s): Bin ZOU   
Just Accepted Date: 28 December 2018   Online First Date: 29 March 2019    Issue Date: 15 October 2019
 Cite this article:   
Ying XIONG,Fen PENG,Bin ZOU. Spatiotemporal influences of land use/cover changes on the heat island effect in rapid urbanization area[J]. Front. Earth Sci., 2019, 13(3): 614-627.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-018-0747-3
https://academic.hep.com.cn/fesci/EN/Y2019/V13/I3/614
Fig.1  Study area: the main urban area of Chang-Zhu-Tan, China.
Fig.2  The changes of GDP and population in Changsha, Zhuzhou, and Xiangtan during the 1987–2015.
Year Weather station In situ LST Retrieved LST Difference
2006 Changsha 37.8 36.6 1.2
2015 East bus station 49.7 51.5 ?0.8
North bus station 48.0 49.9 ?1.9
South bus station 49.4 49.3 0.1
Tab.1  Accuracy assessment of retrieved LST (unit: °C)
Fig.3  Land use/cover: (a) 1994, (b) 2000, (c) 2006, (d) 2010, and (e) 2015.
Fig.4  Urban sprawl: (a) 1994, (b) 2000, (c) 2006, (d) 2010, and (e) 2015.
Land use/cover type 1994–2000 2000–2006 2006–2010 2010–2015 1994–2015
Cropland ?26.92 ?58.39 ?170.51 ?567.73 ?823.55
Forestland ?14.79 ?46.70 ?108.96 +90.41 ?80.04
Grassland ?0.10 ?0.38 ?0.63 +2.81 +1.7
Open water +18.30 ?0.57 ?1.82 ?16.49 ?0.58
Built-up land +23.46 +105.73 +279.47 +490.47 +899.13
Unused area +0.05 +0.31 +2.44 ?0.33 +2.47
Tab.2  The change of land use and cover between 1994 and 2015 (unit: km2)
Fig.5  Monthly average air temperature for 1994–2015.
Fig.6  Spatial distributions of LSTs retrieved from Landsat images. (a) 1994, (b) 2000, (c) 2006, (d) 2010, and (e) 2015.
Fig.7  Spatial patterns of SUHIIs. (a) 1994, (b) 2000, (c) 2006, (d) 2010, and (e) 2015.
Year Mean LST Mean LST in urban areas Mean LST in rural areas SUHII
1994 26.6 29.8 26.5 3.3
2000 24.9 29.5 24.8 4.7
2006 30.6 36.2 30.4 5.8
2010 33.5 39.7 33.2 5.9
2015 39.9 46.7 39.5 7.2
Tab.3  Variation of SUHII between 1994 and 2015 (unit: °C)
Year SUHII level Forestland Grassland Open water Built-up land Unused land
1994 SUHII (0°C–4°C) 2.28 (2.27, 2.28) 0.88 (0.86, 0.90) 0.01 (0.01, 0.02) 3156.24 (2488.46, 4003.21) 0.38 (0.35, 0.41)
SUHII (4–8°C) 0.32 (0.26, 0.40) 4.22 (2.67, 6.67) 1.64 (1.37, 1.95) 2301503.56 (1786053.15, 2965711.66) 8.29 (3.70, 18.56)
SUHII (8–12°C)
SUHII (12–16°C)
SUHII (>16°C)
2000 SUHII (0–4°C) 1.73 (1.73, 1.74) 2.79 (2.72, 2.87) 0.30 (0.30, 0.31) 6.91 (6.82, 6.99) 1.10 (1.02, 1.18)
SUHII (4–8°C) 0.70 (0.69, 0.72) 5.19 (4.79, 5.62) 0.48 (0.46, 0.51) 356.38 (350.38, 362.49)
SUHII (8–12°C) 0.56 (0.45, 0.72) 3632.36 (3160.61, 4174.52)
SUHII (12–16°C) 2661.43 (1185.35, 5975.6)
SUHII (>16°C)
2006 SUHII (0–4°C) 1.16 (1.16, 1.16) 1.52 (1.48, 1.56) 0.17 (0.17, 0.17) 4.81 (4.75, 4.88) 0.23 (0.21, 0.25)
SUHII (4–8°C) 0.61 (0.60, 0.62) 0.27 (0.23, 0.32) 0.39 (0.38, 0.40) 119.02 (117.32, 120.74) 0.16 (0.11, 0.24)
SUHII (8–12°C) 0.28 (0.27, 0.29) 0.50 (0.48, 0.53) 314.01 (307.65, 320.51) 0.16 (0.07, 0.39)
SUHII (12–16°C) 0.05 (0.04, 0.06) 0.19 (0.15, 0.23) 242.77 (232.08, 253.94)
SUHII (>16°C) 0.20 (0.15, 0.26) 0.08 (0.03, 0.22) 142.64 (124.36, 163.61)
2010 SUHII (0–4°C) 0.94 (0.93, 0.94) 0.53 (0.52, 0.54) 0.31 (0.30, 0.31) 4.88 (4.82, 4.93) 5.15 (4.72, 5.61)
SUHII (4–8°C) 0.75 (0.74, 0.75) 0.34 (0.32, 0.36) 0.48 (0.47, 0.49) 65.58 (64.81, 66.37) 13.33 (12.10, 14.68)
SUHII (8–12°C) 0.56 (0.55, 0.58) 0.01 (0.00, 0.04) 0.76 (0.73, 0.80) 333.90 (327.82, 340.08) 54.53 (48.37, 61.47)
SUHII (12–16°C) 0.33 (0.30, 0.36) 1.57 (1.40, 1.75) 912.36 (867.16, 959.90) 40.21 (27.94, 57.88)
SUHII (>16°C) 0.06 (0.01, 0.24) 6.59 (3.85, 11.30) 5741.50 (3903.96, 8443.94)
2015 SUHII (0–4°C) 0.76 (0.75, 0.76) 1.64 (1.59, 1.68) 0.15 (0.15, 0.15) 3.20 (3.18, 3.22) 0.56 (0.53, 0.59)
SUHII (4–8°C) 0.38 (0.37, 0.38) 1.78 (1.69, 1.87) 0.09 (0.08, 0.09) 45.38 (44.97, 45.80) 2.21 (2.03, 2.41)
SUHII (8–12°C) 0.40 (0.38, 0.42) 7.21 (6.19, 8.39) 0.03 (0.02, 0.05) 778.32 (750.05, 807.67) 12.39 (10.05, 15.28)
SUHII (12–16°C) 0.18 (0.14, 0.25) 5.88 (2.89, 11.97) 0.19 (0.10, 0.36) 2916.02 (2496.44, 3406.13) 48.40 (30.36, 77.18)
SUHII (>16°C) 0.19 (0.09, 0.37) 11.98 (7.91, 18.13) 2879.05 (1986.49, 4172.65)
Tab.4  ORs and 95% confidence intervals of SUHII levels in land use/cover patterns
Fig.8  Centroid locations and shifts of the urban and high SUHII areas between 1994 and 2015.
City Centroid distance (km) SUHII (°C)
1994 2000 2006 2010 2015 1994 2000 2006 2010 2015
Changsha 1.27 1.45 1.27 1.43 2.15 3.1 3.8 6.2 5.9 4.5
Zhuzhou 1.47 0.81 1.04 1.83 0.35 3.3 5.4 4.6 5.1 6.9
Xiangtan 1.09 0.61 0.33 0.68 0.80 3.6 5.5 5.1 6.2 7.8
Tab.5  The SUHIIs and centroid distance between urban areas and high SUHII areas
1 A J Arnfield (2003). Two decades of urban climate research: a review of turbulence, exchanges of energy and water, and the urban heat island. Int J Climatol, 23(1): 1–26
https://doi.org/10.1002/joc.859
2 I Azevedo, V M S Leal (2017). Methodologies for the evaluation of local climate change mitigation actions: a review. Renew Sustain Energy Rev, 79: 681–690
https://doi.org/10.1016/j.rser.2017.05.100
3 Y Cai, H Zhang, P Zheng, W Pan (2016). Quantifying the impact of land use/land cover changes on the urban heat island: a case study of the natural wetlands distribution area of Fuzhou City, China. Wetlands, 36(2): 285–298
https://doi.org/10.1007/s13157-016-0738-7
4 J P Connors, C S Galletti, W T L Chow (2013). Landscape configuration and urban heat island effects: assessing the relationship between landscape characteristics and land surface temperature in Phoenix, Arizona. Landsc Ecol, 28(2): 271–283
https://doi.org/10.1007/s10980-012-9833-1
5 H Du, D Wang, Y Wang, X Zhao, F Qin, H Jiang, Y Cai (2016). Influences of land cover types, meteorological conditions, anthropogenic heat and urban area on surface urban heat island in the Yangtze River Delta Urban Agglomeration. Sci Total Environ, 571: 461–470
https://doi.org/10.1016/j.scitotenv.2016.07.012
6 R Emmanuel, H J S Fernando (2007). Urban heat islands in humid and arid climates: role of urban form and thermal properties in Colombo, Sri Lanka and Phoenix, USA. Clim Res, 34(3): 241–251
https://doi.org/10.3354/cr00694
7 X Fang, B Zou, X Liu, T Sternberg, L Zhai (2016). Satellite-based ground PM2.5 estimation using timely structure adaptive modeling. Remote Sens Environ, 186: 152–163
https://doi.org/10.1016/j.rse.2016.08.027
8 R Gluch, D A Quattrochi, J C Luvall (2006). A multi-scale approach to urban thermal analysis. Remote Sens Environ, 104(2): 123–132
https://doi.org/10.1016/j.rse.2006.01.025
9 G Guo, Z Wu, R Xiao, Y Chen, X Liu, X Zhang (2015). Impacts of urban biophysical composition on land surface temperature in urban heat island clusters. Landsc Urban Plan, 135: 1–10
https://doi.org/10.1016/j.landurbplan.2014.11.007
10 J M Hilbe (2009). Logistic Regression Models. Chapman and Hall/CRC Press, 220–225
11 T Ichinose, L Lei, Y Lin (2017). Impacts of shading effect from nearby buildings on heating and cooling energy consumption in hot summer and cold winter zone of China. Energy Build, 136(1): 199–210
https://doi.org/10.1016/j.enbuild.2016.11.064
12 L L F Janssen, F J M Vanderwel (1994). Accuracy assessment of satellite derived land-cover data: a review. Photogramm Eng Remote Sensing, 60(4): 419–426
13 X Jiang, B Zou, H Feng, J Tang, Y Tu, X Zhao (2019). Spatial distribution mapping of Hg contamination in subclass agricultural soils using GIS enhanced multiple linear regression. J Geochem Explor, 196: 1–7
https://doi.org/10.1016/j.gexplo.2018.10.002
14 E Kalnay, M Cai (2003). Impact of urbanization and land-use change on climate. Nature, 423(6939): 528–531
https://doi.org/10.1038/nature01675
15 H Kang, B Zhu, T Zhu, J Sun, J Ou (2014). Impact of megacity Shanghai on the urban heat-island effects over the downstream city Kunshan. Boundary-Layer Meteorol, 152(3): 411–426
https://doi.org/10.1007/s10546-014-9927-1
16 N Kayet, K Pathak, A Chakrabarty, S Sahoo (2016). Spatial impact of land use/land cover change on surface temperature distribution in Saranda Forest, Jharkhand. Model Earth Syst Environ, 2(3): 127
https://doi.org/10.1007/s40808-016-0159-x
17 Y H Kim, J J Baik (2005). Spatial and temporal structure of the urban heat island in Seoul. J Appl Meteorol, 44(5): 591–605
https://doi.org/10.1175/JAM2226.1
18 F X Kneizys, L W Abreu, G P Anderson, J H Chetwynd, E P Shettle, A Berk, L S Bernstein, D C Robertson, P K Acharya, L A Rothman, J E A Selby, W O Gallery, S A Clough (1996). The MODTRAN 2/3 report & LOWTRAN 7 model, F19628-91-C-0132. Phillips Laboratory Hanscom AFB, Bedford
19 C Lamarca, J Qüense, C Henríquez (2018). Thermal comfort and urban canyons morphology in coastal temperate climate, Concepción, Chile. Urban Climate, 23: 159–172
https://doi.org/10.1016/j.uclim.2016.10.004
20 C Lan, L I Ming (2018). Spatial-temporal feature of urban heat island in Changzhutan main urban area and the relationship with land use change. Geomatics & Spatial Information Technology, 41(4): 84–89 (in Chinese)
21 H Li, D Sun, Y Yu, H Wang, Y Liu, Q Liu, Y Du, H Wang, B Cao (2014). Evaluation of the VIIRS and MODIS LST products in an arid area of Northwest China. Remote Sens Environ, 142(1): 111–121
https://doi.org/10.1016/j.rse.2013.11.014
22 L Liu, Y Zhang (2011). Urban heat island analysis using the Landsat TM data and ASTER data: a case study in Hong Kong. Remote Sens, 3(7): 1535–1552
https://doi.org/10.3390/rs3071535
23 X Liu, G Hu, Y Chen, X Li, X Xu, S Li, F Pei, S Wang (2018). High-resolution multi-temporal mapping of global urban land using Landsat images based on the Google Earth Engine Platform. Remote Sens Environ, 209: 227–239
https://doi.org/10.1016/j.rse.2018.02.055
24 X Liu, X Li, X Shi, X Zhang, Y Chen (2010). Simulating land-use dynamics under planning policies by integrating artificial immune systems with cellular automata. Int J Geogr Inf Sci, 24(5): 783–802
https://doi.org/10.1080/13658810903270551
25 X Liu, X Liang, X Li, X Xu, J Ou, Y Chen, S Li, S Wang, F Pei (2017). A future land use simulation model (FLUS) for simulating multiple land use scenarios by coupling human and natural effects. Landsc Urban Plan, 168: 94–116
https://doi.org/10.1016/j.landurbplan.2017.09.019
26 N Magee, J Curtis, G Wendler (1999). The urban heat island effect at Fairbanks, Alaska. Theor Appl Climatol, 64(1–2): 39–47
https://doi.org/10.1007/s007040050109
27 M Mohan, A Kandya (2015). Impact of urbanization and land-use/land-cover change on diurnal temperature range: a case study of tropical urban airshed of India using remote sensing data. Sci Total Environ, 506– 507: 453–465
https://doi.org/10.1016/j.scitotenv.2014.11.006
28 T R Oke (1973). City size and the urban heat island. Atmos Environ, 7(8): 769–779
https://doi.org/10.1016/0004-6981(73)90140-6
29 F Peng, M S Wong, H C Ho, J Nichol, P W Chan (2017). Reconstruction of historical datasets for analyzing spatiotemporal influence of built environment on urban microclimates across a compact city. Build Environ, 123: 649–660
https://doi.org/10.1016/j.buildenv.2017.07.038
30 Z Qin, A Karnieli, P Berliner (2001). A mono-window algorithm for retrieving land surface temperature from Landsat TM data and its application to the Israel-Egypt border region. Int J Remote Sens, 22(18): 3719–3746
https://doi.org/10.1080/01431160010006971
31 O Rozenstein, Z Qin, Y Derimian, A Karnieli (2014). Derivation of land surface temperature for Landsat-8 TIRS using a split window algorithm. Sensors (Basel), 14(4): 5768–5780
https://doi.org/10.3390/s140405768
32 M Santamouris (2013). Using cool pavements as a mitigation strategy to fight urban heat island—a review of the actual developments. Renew Sustain Energy Rev, 26(10): 224–240
https://doi.org/10.1016/j.rser.2013.05.047
33 S Savić, J Unger, T Gál, D Milošević, Z Popov (2013). Urban heat island research of Novi Sad (Serbia): a review. Geogr Pannon, 17(1): 32–36
https://doi.org/10.5937/GeoPan1301032S
34 N Schwarz, S Lautenbach, R Seppelt (2011). Exploring indicators for quantifying surface urban heat islands of European cities with MODIS land surface temperatures. Remote Sens Environ, 115(12): 3175–3186
https://doi.org/10.1016/j.rse.2011.07.003
35 L M Scott, M V Janikas (2010). Spatial Statistics in ArcGIS. Handbook of Applied Spatial Analysis, 27–41
36 C Small (2001). Estimation of urban vegetation abundance by spectral mixture analysis. Int J Remote Sens, 22(7): 1305–1334
https://doi.org/10.1080/01431160151144369
37 B Stone, J J Hess, H Frumkin (2010). Urban form and extreme heat events: are sprawling cities more vulnerable to climate change than compact cities? Environ Health Perspect, 118(10): 1425–1428
https://doi.org/10.1289/ehp.0901879
38 X Wang, X Sun, J Tang, X Yang (2015). Urbanization-induced regional warming in Yangtze River Delta: potential role of anthropogenic heat release. Int J Climatol, 35(15): 4417–4430
https://doi.org/10.1002/joc.4296
39 M S Wong, F Peng, B Zou, W Z Shi, G J Wilson (2016). Spatially analyzing the inequity of the Hong Kong urban heat island by socio-demographic characteristics. Int J Env Res Pub He, 13(3): 317
https://doi.org/10.3390/ijerph13030317
40 World Health Organization (2017). Global Health Observatory (GHO) data. World Health Organization, Geneva
41 H Wu, L P Ye, W Z Shi, K C Clarke (2014). Assessing the effects of land use spatial structure on urban heat islands using HJ-1B remote sensing imagery in Wuhan, China. International Journal of Applied Earth Observation and Geoinformation, 32(1): 67–78
https://doi.org/10.1016/j.jag.2014.03.019
42 J Wu (2014). Urban ecology and sustainability: the state-of-the-science and future directions. Landsc Urban Plan, 125: 209–221
https://doi.org/10.1016/j.landurbplan.2014.01.018
43 S Xu, B Zou, S Shafi, T Sternberg (2018). A hybrid Grey-Markov/ LUR model for PM10 concentration prediction under future urban scenarios. Atmos Environ, 187: 401–409
https://doi.org/10.1016/j.atmosenv.2018.06.014
44 C Yang, X He, F Yan, L Yu, K Bu, J Yang, L Chang, S Zhang (2017). Mapping the influence of land use/land cover changes on the urban heat island effect—a case study of Changchun, China. Sustainability, 9(2): 312
https://doi.org/10.3390/su9020312
45 F Yuan, M E Bauer (2007). Comparison of impervious surface area and normalized difference vegetation index as indicators of surface urban heat island effects in Landsat imagery. Remote Sens Environ, 106(3): 375–386
https://doi.org/10.1016/j.rse.2006.09.003
46 Y Zeng, W Huang, F B Zhan, H Zhang, H Liu (2010). Study on the urban heat island effects and its relationship with surface biophysical characteristics using MODIS imageries. Geo Spat Inf Sci, 13(1): 1–7
https://doi.org/10.1007/s11806-010-0204-2
47 L Zhai, S Li, B Zou, H Sang, X Fang, S Xu (2018). An improved geographically weighted regression model for PM2.5 concentration estimation in large areas. Atmos Environ, 181: 145–154
https://doi.org/10.1016/j.atmosenv.2018.03.017
48 L Zhai, B Zou, X Fang, Y Luo, N Wan, S Li (2016). Land use regression modeling of PM2.5 concentrations at optimized spatial scales. Atmos, 8(1): 1
https://doi.org/10.3390/atmos8010001
49 B Zou, F Peng, N Wan, J G Wilson, Y Xiong (2014). Sulfur dioxide exposure and environmental justice: a multi-scale and source-specific perspective. Atmos Pollut Res, 5(3): 491–499
https://doi.org/10.5094/APR.2014.058
50 B Zou, Q Pu, M Bilal, Q Weng, L Zhai, J E Nichol (2016a). High-resolution satellite mapping of fine particulates based on geographically weighted regression. IEEE Geosci Remote Sens Lett, 13(4): 495–499
https://doi.org/10.1109/LGRS.2016.2520480
51 B Zou, S Xu, T Sternberg, X Fang (2016b). Effect of land use and cover change on air quality in urban sprawl. Sustainability, 8(7): 677
https://doi.org/10.3390/su8070677
52 B Zou, J You, Y Lin, X Duan, X Zhao, F Xin, M J Campen, S Li (2019). Air pollution intervention and life-saving effect in China. Environ Int, doi: 10.1016/j.envint.2018.10.045
[1] Conghui LI, Lili LIN, Zhenbang HAO, Christopher J. POST, Zhanghao CHEN, Jian LIU, Kunyong YU. Developing a USLE cover and management factor (C) for forested regions of southern China[J]. Front. Earth Sci., 2020, 14(3): 660-672.
[2] Emre ÇOLAK, Filiz SUNAR. Spatial pattern analysis of post-fire damages in the Menderes District of Turkey[J]. Front. Earth Sci., 2020, 14(2): 446-461.
[3] Jianhong LIU, Clement ATZBERGER, Xin HUANG, Kejian SHEN, Yongmei LIU, Lei WANG. Modeling grass yields in Qinghai Province, China, based on MODIS NDVI data—an empirical comparison[J]. Front. Earth Sci., 2020, 14(2): 413-429.
[4] Xia LEI, Jiayi PAN, Adam DEVLIN. An ultraviolet to visible scheme to estimate chromophoric dissolved organic matter absorption in a Case-2 water from remote sensing reflectance[J]. Front. Earth Sci., 2020, 14(2): 384-400.
[5] Tong LI, Huadong GUO, Li ZHANG, Chenwei NIE, Jingjuan LIAO, Guang LIU. Simulation of Moon-based Earth observation optical image processing methods for global change study[J]. Front. Earth Sci., 2020, 14(1): 236-250.
[6] Kaiguo FAN, Huaguo ZHANG, Jianjun LIANG, Peng CHEN, Bojian XU, Ming ZHANG. Analysis of ship wake features and extraction of ship motion parameters from SAR images in the Yellow Sea[J]. Front. Earth Sci., 2019, 13(3): 588-595.
[7] Shichao CUI, Kefa ZHOU, Rufu DING, Guo JIANG. Estimation of copper concentration of rocks using hyperspectral technology[J]. Front. Earth Sci., 2019, 13(3): 563-574.
[8] Yaoping CUI, Xiangming XIAO, Russell B DOUGHTY, Yaochen QIN, Sujie LIU, Nan LI, Guosong ZHAO, Jinwei DONG. The relationships between urban-rural temperature difference and vegetation in eight cities of the Great Plains[J]. Front. Earth Sci., 2019, 13(2): 290-302.
[9] Erfu DAI, Zhuo WU, Xiaodian DU. A gradient analysis on urban sprawl and urban landscape pattern between 1985 and 2000 in the Pearl River Delta, China[J]. Front. Earth Sci., 2018, 12(4): 791-807.
[10] Igor Appel. Uncertainty in satellite remote sensing of snow fraction for water resources management[J]. Front. Earth Sci., 2018, 12(4): 711-727.
[11] Donal O’Leary III, Dorothy Hall, Michael Medler, Aquila Flower. Quantifying the early snowmelt event of 2015 in the Cascade Mountains, USA by developing and validating MODIS-based snowmelt timing maps[J]. Front. Earth Sci., 2018, 12(4): 693-710.
[12] Zhen LI, Jinghu PAN. Spatiotemporal changes in vegetation net primary productivity in the arid region of Northwest China, 2001 to 2012[J]. Front. Earth Sci., 2018, 12(1): 108-124.
[13] Mohamed Abd Salam EL-VILALY, Kamel DIDAN, Stuart E. MARSH, Willem J.D. VAN LEEUWEN, Michael A. CRIMMINS, Armando Barreto MUNOZ. Vegetation productivity responses to drought on tribal lands in the four corners region of the Southwest USA[J]. Front. Earth Sci., 2018, 12(1): 37-51.
[14] Duanyang XU, Alin SONG, Xiao SONG. Assessing the effect of desertification controlling projects and policies in northern Shaanxi Province, China by integrating remote sensing and farmer investigation data[J]. Front. Earth Sci., 2017, 11(4): 689-701.
[15] Junyong AI,Lan FENG,Xiaowei DONG,Xiaodong ZHU,Yangfan LI. Exploring coupling coordination between urbanization and ecosystem quality (1985–2010): a case study from Lianyungang City, China[J]. Front. Earth Sci., 2016, 10(3): 527-545.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed