Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front. Earth Sci.    2019, Vol. 13 Issue (4) : 791-807    https://doi.org/10.1007/s11707-019-0799-z
RESEARCH ARTICLE
On the rapid intensification for Typhoon Meranti (2016): convection, warm core, and heating budget
Xiba TANG1,2, Fan PING1(), Shuai YANG1(), Mengxia LI3, Jing PENG4
1. Laboratory of Cloud-Precipitation Physics and Severe Storms, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
2. Plateau Atmosphere and Environment Key Laboratory of Sichuan Province, Chengdu 610225, China
3. China Meteorological Administration Henan Key Laboratory of Agrometeorological Support and Applied Technique, Zhengzhou 450000, China
4. Key Laboratory of Regional Climate-Environment for Temperate East Asia, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
 Download: PDF(5435 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Through a cloud-resolving simulation of the rapid intensification (RI) of Typhoon Meranti (2016), the convections, warm core, and heating budget are investigated during the process of RI. By investigating the spatial distributions and temporal evolutions of both convective-stratiform precipitation and shallow-deep convections, we find that the inner-core convections take mode turns, from stratiform-precipitation (SP) dominance to convective-precipitation (CP) prevalence during the transition stages between pre-RI and RI. For the CP, it experiences fewer convections before RI, and the conversion from moderate/moderate-deep convections to moderate-deep/deep convections during RI. There is a clear upper-level warm-core structure during the process of RI. However, the mid-low-level warming begins first, before the RI of Meranti. By calculating the local potential temperature (q) budget of various convections, the link between convections and the warm core (and further to RI via the pressure drop due to the warming core) is established. Also, the transport pathways of heating toward the center of Meranti driven by pressure are illuminated. The total hydrostatic pressure decline is determined by the mid-low-level warm anomaly before RI, mostly caused by SP. The azimuthal-mean diabatic heating is the largest heating source, the mean vertical heat advection controls the vertical downwards transport by adiabatic warming of compensating downdrafts above eye region, and then the radial q advection term radially transports heat toward the center of Meranti in a slantwise direction. Accompanying the onset of RI, the heating efficiency of the upper-level warming core rises swiftly and overruns that of the mid-low-level warm anomaly, dominating the total pressure decrease and being mainly led by moderate-deep and deep convections. Aside from the characteristics in common with SP, for CP, the eddy component of radial advection also plays a positive role in warming the core, which enhances the centripetal transport effect and accelerates the RI of Meranti.

Keywords convection      upper-level warm core      heating budget      Typhoon Meranti      tropical cyclone     
Corresponding Author(s): Fan PING,Shuai YANG   
Just Accepted Date: 24 October 2019   Online First Date: 29 November 2019    Issue Date: 30 December 2019
 Cite this article:   
Xiba TANG,Fan PING,Shuai YANG, et al. On the rapid intensification for Typhoon Meranti (2016): convection, warm core, and heating budget[J]. Front. Earth Sci., 2019, 13(4): 791-807.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-019-0799-z
https://academic.hep.com.cn/fesci/EN/Y2019/V13/I4/791
1 H Chen, D L Zhang (2013). On the rapid intensification of Hurricane Wilma (2005). Part II: convective bursts and the upper-level warm core. J Atmos Sci, 70(1): 146–162
https://doi.org/10.1175/JAS-D-12-062.1
2 X M Chen, M Xue, J Fang (2018). Rapid intensification of Typhoon Mujigae (2015) under different sea surface temperatures: structural changes leading to rapid intensification.  J Atmos Sci,  75(12): 4313–4335
https://doi.org/10.1175/JAS-D-18-0017.1
3 CMA (2016). Member Report: China. ESCAP/WMO Typhoon Committee: 9–14
4 M DeMaria, C R Sampson, J A Knaff, K D Musgrave (2014). Is tropical cyclone intensity guidance improving? Bull Am Meteorol Soc, 95(3): 387–398
https://doi.org/10.1175/BAMS-D-12-00240.1
5 S R Guimond, G M Heymsfield, F J Turk (2010). Multiscale observations of hurricane Dennis (2005): the effects of hot towers on rapid intensification. J Atmos Sci, 67(3): 633–654
https://doi.org/10.1175/2009JAS3119.1
6 B Han, J Fan, A Varble, H Morrison, C R Williams, B Chen, X Dong, S E Giangrande, A Khain, E Mansell, J A Milbrandt, J Shpund, G Thompson (2019). Cloud-resolving model intercomparison of an MC3E squall line case. Part II: stratiform precipitation properties. J Geophys Res D Atmospheres, 124(2): 1090–1117
https://doi.org/10.1029/2018JD029596
7 D A Hendricks, M S Peng, B Fu, T Li (2010). Quantifying environmental control on tropical cyclone intensity change. Mon Weather Rev, 138(8): 3243–3271
https://doi.org/10.1175/2010MWR3185.1
8 G M Heymsfield, J B Halverson, J Simpson, L Tian, T P Bui (2001). ER-2 Doppler radar investigations of the eyewall of Hurricane Bonnie during the convection and moisture Experiment-3. J Appl Meteorol, 40(8): 1310–1330
https://doi.org/10.1175/1520-0450(2001)040<1310:EDRIOT>2.0.CO;2
9 P A Hirschberg, J M Fritsch (1993). On understanding height tendency. Mon Weather Rev, 121(9): 2646–2661
https://doi.org/10.1175/1520-0493(1993)121<2646:OUHT>2.0.CO;2
10 Y Huang, Y Wang, X Cui (2019). Differences between convective and dtratiform precipitation budgets in a torrential rainfall event. Adv Atmos Sci, 36(5): 495–509
https://doi.org/10.1007/s00376-019-8159-1
11 J Kaplan, M DeMaria (2003). Large-scale characteristics of rapidly intensifying tropical cyclones in the North Atlantic basin. Weather Forecast, 18(6): 1093–1108
https://doi.org/10.1175/1520-0434(2003)018<1093:LCORIT>2.0.CO;2
12 M X Li, F Ping, X B Tang, S Yang (2019). Effects of microphysical processes on the rapid intensification of Super-Typhoon Meranti. Atmos Res, 219: 77–94
https://doi.org/10.1016/j.atmosres.2018.12.031
13 Q Q Li, Y Q Wang (2012). A comparison of inner and outer spiral rainbands in a numerically simulated tropical cyclone. Mon Weather Rev, 140(9): 2782–2805
https://doi.org/10.1175/MWR-D-11-00237.1
14 I I Lin, C C Wu, I F Pun, D S Ko (2008). Upper-ocean thermal structure and the western North Pacific category 5 typhoons. Part I: ocean features and the category 5 typhoons’ intensification. Mon Weather Rev, 136(9): 3288–3306
https://doi.org/10.1175/2008MWR2277.1
15 F D Marks, L K Shay (1998). Landfalling tropical cyclones: forecast problems and associated research opportunities. Bull Am Meteorol Soc,79(2): 305–323
16 J Molinari, D Vollaro (2010). Rapid intensification of a sheared tropical storm. Mon Weather Rev, 138(10): 3869–3885
https://doi.org/10.1175/2010MWR3378.1
17 L T Nguyen, J Molinari (2012). Rapid intensification of a sheared, fast-moving hurricane over the Gulf Stream. Mon Weather Rev, 140(10): 3361–3378
https://doi.org/10.1175/MWR-D-11-00293.1
18 P D Reasor, M D Eastin, J F Gamache (2009). Rapidly intensifying Hurricane Guillermo (1997). Part I: low-wavenumber structure and evolution. Mon Weather Rev, 137(2): 603–631
https://doi.org/10.1175/2008MWR2487.1
19 R Rogers (2010). Convective-scale structure and evolution during a high-resolution simulation of tropical cyclone rapid intensification. J Atmos Sci, 67(1): 44–70
https://doi.org/10.1175/2009JAS3122.1
20 R F Rogers, P D Reasor, J A Zhang (2015). Multiscale structure and evolution of Hurricane Earl (2010) during rapid intensification. Mon Weather Rev, 143(2): 536–562
https://doi.org/10.1175/MWR-D-14-00175.1
21 M Steiner, R A Houze Jr, S E Yuter (1995). Climatological characterization of three-dimensional storm structure from operational radar and rain gauge data. J Appl Meteorol, 34(9): 1978–2007
https://doi.org/10.1175/1520-0450(1995)034<1978:CCOTDS>2.0.CO;2
22 D P Stern, F Q Zhang (2013). How does the eye warm? Part I: a potential temperature budget analysis of an idealized tropical cyclone. J Atmos Sci, 70(1): 73–90
https://doi.org/10.1175/JAS-D-11-0329.1
23 Y Q Sun, Y X Jiang, B Tan, F Q Zhang (2013). The governing dynamics of the secondary eyewall formation of Typhoon Sinlaku (2008). J Atmos Sci, 70(12): 3818–3837
https://doi.org/10.1175/JAS-D-13-044.1
24 C Tao, H Jiang (2015). Distributions of shallow to very deep precipitation-convection in rapidly intensifying tropical cyclones. J Clim, 28(22): 8791–8824
https://doi.org/10.1175/JCLI-D-14-00448.1
25 H Wang, Y Q Wang (2014). Full access a numerical study of Typhoon Megi (2010). Part I: rapid intensification. Mon Weather Rev, 142(1): 29–48
https://doi.org/10.1175/MWR-D-13-00070.1
26 Y Q Wang (2009). How do outer spiral rainbands affect tropical cyclone structure and intensity? J Atmos Sci, 66(5): 1250–1273
https://doi.org/10.1175/2008JAS2737.1
27 Y Wang, C C Wu (2004). Current understanding of tropical cyclone structure and intensity changes—a review. Meteor Atmos Phys, 87(4): 257–278
https://doi.org/doi.org/10.1007/s00703-003-0055-6
28 D L Zhang, H Chen (2012). Importance of the upper-level warm core in the rapid intensification of a tropical cyclone. Geophys Res Lett, 39(2): L02806
https://doi.org/10.1029/2011GL050578
29 Y Zheng, Y Gong, J Chen, F Tian (2019). Warm-season diurnal variations of total, stratiform, convective, and extreme hourly precipitation over central and eastern China. Adv Atmos Sci, 36(2): 143–159
https://doi.org/10.1007/s00376-018-7307-3
[1] Sui HUANG, Shengming TANG, Hui YU, Wenbo XUE, Pingzhi FANG, Peiyan CHEN. Impact of physical representations in CALMET on the simulated wind field over land during Super Typhoon Meranti (2016)[J]. Front. Earth Sci., 2019, 13(4): 744-757.
[2] Hong LI, Jingyao LUO, Mengting XU. Ensemble data assimilation and prediction of typhoon and associated hazards using TEDAPS: evaluation for 2015–2018 seasons[J]. Front. Earth Sci., 2019, 13(4): 733-743.
[3] Xiaoqin LU, Hui YU, Xiaoming YANG, Xiaofeng LI, Jie TANG. A new technique for automatically locating the center of tropical cyclones with multi-band cloud imagery[J]. Front. Earth Sci., 2019, 13(4): 836-847.
[4] Peiyan CHEN, Hui YU, Ming XU, Xiaotu LEI, Feng ZENG. A simplified index to assess the combined impact of tropical cyclone precipitation and wind on China[J]. Front. Earth Sci., 2019, 13(4): 672-681.
[5] Qianqian JI, Feng XU, Jianjun XU, Mei LIANG, Shifei, TU, Siqi, CHEN. Large-scale characteristics of landfalling tropical cyclones with abrupt intensity change[J]. Front. Earth Sci., 2019, 13(4): 808-816.
[6] Penggao FANG, Weiwei DING, Yinxia FANG, Zhongxian ZHAO, Zhibing FENG. Cenozoic tectonic subsidence in the Southern Continental Margin, South China Sea[J]. Front. Earth Sci., 2017, 11(2): 427-441.
[7] Rui XING,Zhiying DING,Sangjie YOU,Haiming XU. Relationship of tropical-cyclone-induced remote precipitation with tropical cyclones and the subtropical high[J]. Front. Earth Sci., 2016, 10(3): 595-606.
[8] Wei ZHANG. Effect of modeling factors on the dissolution-diffusion-convection process during CO2 geological storage in deep saline formations[J]. Front Earth Sci, 2013, 7(2): 238-256.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed