Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front Envir Sci Eng Chin    2009, Vol. 3 Issue (1) : 91-97    https://doi.org/10.1007/S11783-009-0013-8
RESEARCH ARTICLE
Factors influencing the photodegradation of N-nitrosodimethylamine in drinking water
Bingbing XU1,2, Zhonglin CHEN1(), Fei QI3, Jimin SHEN1, Fengchang WU2
1. State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; 2. State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; 3. College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
 Download: PDF(167 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In order to provide basic data for practical application,photodegradation experiment of N-nitrosodimethylamine (NDMA) in aqueous solution was carried out with a low-pressure Hg lamp. Effects of the initial concentration of NDMA, solution pH, dissolved oxygen, and the presence of humic acid on NDMA photodegradation were investigated. NDMA at various initial concentrations selected in this study was almost completely photodegraded by UV irradiation within 20 min, except that at 1.07 mmol/L, NDMA could be photodegraded almost completely in the acidic and neutral solutions, while the removal efficiency decreased remarkably in the alkaline solution. Dissolved oxygen enhanced the NDMA photodegradation, and the presence of humic acid inhibited the degradation of NDMA. Depending on the initial concentration of NDMA, NDMA photodegradation by UV obeyed the pseudo-first-order kinetics. Dimethylamine, nitrite, and nitrate were detected as the photodegradation products of NDMA. 1O2 was found to be the reactive oxygen species present in the NDMA photodegradation process by UV, based on the inhibiting experiments using tert-butanol and sodium azide.

Keywords N-nitrosodimethylamine (NDMA)      ultraviolet irradiation      degradation kinetic      dimethylamine      photodegradation product     
Corresponding Author(s): CHEN Zhonglin,Email:zhonglinchen@hit.edu.cn   
Issue Date: 05 March 2009
 Cite this article:   
Bingbing XU,Zhonglin CHEN,Fei QI, et al. Factors influencing the photodegradation of N-nitrosodimethylamine in drinking water[J]. Front Envir Sci Eng Chin, 2009, 3(1): 91-97.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/S11783-009-0013-8
https://academic.hep.com.cn/fese/EN/Y2009/V3/I1/91
Fig.1  Schematic diagram of UV direct photolysis of NDMA
Fig.2  Effect of initial concentration of NDMA () on its photodegradation. reaction conditions: solution pH= 6.0; irradiation intensity= 1000 μW·cm
Fig.3  Effect of solution pH on NDMA photodegradation. reaction conditions: [NDMA]= 0.54 mmol·L; irradiation intensity= 1000 μW·cm
Fig.4  UV absorption of NDMA at various solution pH
Fig.5  Effect of dissolved oxygen on NDMA photodegradation. reaction conditions: [NDMA] = 0.54 mmol·L; solution pH= 6.0; irradiation intensity= 1000 μW·cm
Fig.6  Effect of humic acid on NDMA photodegradation. reaction conditions: [NDMA] = 0.33 mmol·L; solution pH= 6.0; irradiation intensity= 1000 μW·cm
Fig.7  Kinetics of NDMA photodegradation by UV. reaction conditions: solution pH= 6.0; irradiation intensity= 1000 μW·cm
initial concentrationof NDMA/(mmol·L-1)kinetic equationreaction rate constant/min-1correlation coefficient
0.13lnC = 2.2293-0.4231t0.4231R2 = 0.9766
0.33lnC = 3.7474-0.4272t0.4272R2 = 0.9830
0.54lnC = 3.9967-0.1612t0.1612R2 = 0.9424
1.07lnC = 4.3942-0.0213t0.0213R2 = 0.9929
Tab.1  Kinetic parameters of NDMA photodegradation by UV
Fig.8  Products of NDMA photodegradation by UV. reaction conditions: [NDMA] = 0.54 mmol·L; solution pH= 6.0 ; irradiation intensity= 1000 μW·cm
Fig.9  Conversion efficiency of NDMA photodegradation products under various pH values. reaction conditions: [NDMA] = 0.54 mmol·L; solution pH= 6.0; irradiation intensity= 1000 μW·cm
Fig.10  Effects of tert-butanol and NaN on NDMA photodegradation. reaction conditions: [NDMA] = 0.54 mmol·L; solution pH= 6.0; irradiation intensity= 1000 μW·cm
1 Stefan M I, Bolton J R. UV direct photolysis of N-nitrosodimethylamine (NDMA): Kinetic and product study. HeIvetica Chimica Acta , 2002, 85(5): 1416-1426
doi: 10.1002/1522-2675(200205)85:5<1416::AID-HLCA1416>3.0.CO;2-I
2 Choi J, Duirk S E, Valentine R L. Mechanistic studies of N-nitrosodimethylamine (NDMA) formation in chlorinated drinking water. Journal of Environmental Monitoring , 2002, 4(2): 249-252
doi: 10.1039/b200622g
3 Choi J, Valentine R L. Formation of N-nitrosodimethylamine (NDMA) from reaction of monochloramine: a new disinfection by-product. Water Research , 2002, 36(4): 817-824
doi: 10.1016/S0043-1354(01)00303-7
4 Mitch W A, Sedlak D L. Formation of N-nitrosodimethylamine (NDMA) from dimethylamine duing chlorination. Environmental Science and Technology , 2002, 36(4): 588-595
doi: 10.1021/es010684q
5 Gerecke A C, Sedlak D. Precursors of N-nitrosodimethylamine in natrual water. Environmental Science and Technology , 2003, 37(7): 1331-1336 .
doi: 10.1021/es026070i
6 Choi J, Valentine R L. N-nitrosodimethylamine formation by free-chlorine-enhanced nitrosation of dimethylamine. Environmental Science and Technology , 2003, 37(21): 4871-4876
doi: 10.1021/es034020n
7 Schreiber I M, Mitch W A. Influence of the order of reagent addition on NDMA formation during chloramination. Environmental Science Technology , 2005, 39(10): 3811-3818
doi: 10.1021/es0483286
8 Schreiber I M, Mitch W A. Nitrosamine formation pathway revisited: The importance of dichloramine and dissolved oxygen. Environmental Science and Technology , 2006, 40(19): 6007-6014
doi: 10.1021/es060978h
9 Mitch W A, Sharp J O, Trussell R R, Valentine R L, Cohen L A, Sedlak D. L. N-nitrosodimethylamine (NDMA) as a dringking water contaminant: A review. Environmental Engineering Science , 2003, 20 (5): 389-404
doi: 10.1089/109287503768335896
10 Przemyslaw A, Barbara K H, Jacek N. The hazard of N-nitrosodimethylamine (NDMA) formation during water disinfection with strong oxidants. Desalination , 2005, 176(1–3): 37-45
11 Richardson S D. Dininfection by-products and other emerging contaminants in drinking water. TRAC Trends in Analytical Chemistry , 2003, 22(10): 666-684
doi: 10.1016/S0165-9936(03)01003-3
12 Mitch W A, Oelker G L, Hawley E L, Deeb R A, Sedlak D L. Minimization of NDMA formation during chlorine disinfection of municipal wastewater by application of pre-formed chloramines. Environmental Engineering Science , 2005, 22(6): 882-890
doi: 10.1089/ees.2005.22.882
13 Andrzejewski P, Kasprzyk-Hordern B, Nawrocki J. Formation of nitrosodimethylamine (NDMA) during chlorine disinfection of wastewater effluents prior to use in irrigation systems. Water Research , 2006, 40(2): 341-347
doi: 10.1016/j.watres.2005.11.012
14 Choi J, Valentine R L. A kinetic model of N-nitrosodimethylamine (NDMA) formation during water chlorination/chloramination. Water Science and Technology , 2002, 46(3): 65-71
15 Hu R, Ma L. Analysis Method of N-Nitro Compounds. Beijing: Science Press, 1980, 50-52 (in chinese)
16 Tomkins B A, Griest W H, Higgins C E. Determination of N-nitrosodimethylamine at part-per-trillion levels in drinking waters and contaminated groundwaters. Analytical Chemistry , 1995, 67(23): 4387-4395
doi: 10.1021/ac00119a030
17 Tomkins B A, Griest W H. Determinations of N-nitrosodimethylamine at part-per-trillion concentrations in contaminated groundwaters and drinking waters featuring carbon-based membrane extraction disks. Analytical Chemistry , 1996, 68(15): 2533-2540
doi: 10.1021/ac9601573
18 Abalos M, Bayona J M, Ventura F. Development of a solid-phase microextraction GC-NPD procedure for the determination of free volatile amines in wastewater and sewage-polluted waters. Analytical Chemistry , 1999, 71(16): 3531-3537
doi: 10.1021/ac990197h
19 Charrois J W, Arend M W, Froese K L, Hrudey S E. Detecting N-nitrosamines in drinking water at nanogram-per-liter levels using ammonia positive chemical ionization. Environmental Science and Technology , 2004, 38(18): 4835-4841
20 Liang S, Min J H, Davis M K, Green J F, Remer D S. Use of pulsed-UV processes to destroy NDMA. Journal American Water Works Association , 2003, 95(9): 121-131
21 Gui L, Gillham R W, Odziemkowski M S. Reduction of N-nitrosodimethylamine with granular iron and nickel-enhanced iron. 1. Pathways and kinetics. Environmental Science and Technology , 2000, 34(16): 3489-3494
doi: 10.1021/es9909778
22 Odziemkowski M S, Gui L, Gillham R W. Reduction of N-nitrosodimethylamine with granular iron and nickel-enhanced iron. 2. Mechanistic studies. Environmental Science and Technology , 2000, 34(16): 3495-3500
doi:10.1021/es9909780
23 Sharp J O, Wood T K, Alvarez-Cohen L. Aerobic biodegradation of N-nitrosodimethylamine (NDMA) by axenic bacterial strains. Biotechnology and Bioengineering , 2005, 89(5): 608-618
doi: 10.1002/bit.20405
24 Sharp J O, Wood T K, Alvarez-Cohen L. Attenuation mechanisms of N-nitrosodimethylamine at an operating intercept and treat groundwater remediation system. Journal of Hazardous materials , 2000, B73(2): 179-197
25 Yifru D D, Valentine A N. Uptake of N-nitrosodimethylamine (NDMA) from water by phreatophytes in the absence and presence of perchlorate as a co-contaminant. Environmental Science and Technology , 2006, 40(23): 7374-7380
26 Davie M G, Reinhard M, Shapley J R. Metal-catalyzed reduction of N-nitrosodimethylamine with hydrogen in water. Environmental Science and Technology , 2006, 40 (23): 7329-7335
doi: 10.1021/es061097d
27 Changha L, Wonyong C, Jeyong Y. UV photolytic mechanism of N-nitrosodimethylamine in water: roles of dissolved oxygen and solution pH. Environmental Science and Technology , 2005, 39(24): 9702-9709
doi: 10.1021/es051235j
28 Sharpless C M, Linden K G. Experimental and model comparisons of low-and medium-pressure Hg lamps for the direct and H2O2 assisted UV photodegradation of N-nitrosodimethlyamine in simulated drinking water. Environmental Science and Technology , 2003, 37(9): 1933-1940
doi: 10.1021/es025814p
29 Lee C, Choi W, Kim Y G, Yoon J. UV photolytic mechanism of N-nitrosodimethylamine in water: Dual pathways to methylamine versus dimethylamine. Environmental Science and Technology , 2005, 39(7): 2102-2106
doi: 10.1021/es0488941
30 Chen J, Gu B, Leboeuf E J, Pan H, Dai S. Spectroscopic characterization of structural and functional properties of natural organic matter fractions. Chemosphere , 2002, 48(1): 59-68
doi: 10.1016/S0045-6535(02)00041-3
31 Zepp R G, Schlotzhauer P F, Sink R M. Photosensitized transformations involving electronic energy transfer in natural waters: Role of humic substances. Environmental Science and Technology , 1985, 19(1): 74-81
32 Lam M W, Tantuco K, Mabury S A. Photofate: A new approach in accounting for the contribution of indirect photolysis of pesticides and pharmaceuticals in surface waters. Environmental Science and Technology , 2003, 37(5): 899-907
33 Gerecke A C, Canonica S, Muller S R, Scharer M, Schwarzenbach R. P. Quantification of dissolved natural organic matter (DOM) mediated phototransformation of phenylurea herbicides in lakes. Environmental Science and Technology , 2001, 35(19): 3915-3923
doi: 10.1021/es010103x
34 Brezonik P L, Fulkerson-Brekken J. Nitrate-induced photolysis in natural waters: Controls on concentrations of hydroxyl radical photo-intermediates by natural scavenging agents. Environmental Science and Technology , 1998, 32(19): 3004-3010
doi: 10.1021/es9802908
35 Polo J, Chow Y L. Efficient photolytic degradation of nitrosamine. Journal of the National Cancer Institute , 1976, 56(5): 997-1976
36 Chow Y L. Nitrosamine photochemistry: Reaction and aminium radicals. Accounts of Chemical Research , 1973, 6(10): 354-360
doi: 10.1021/ar50070a005
37 Pi Y, Mathisa E, Jean-Christophe S. Effect of phosphate buffer upon CuO/Al2O3 and Cu(II) catalyzed ozonation of oxalic acid solution. Ozone Science and Engineering , 2003, 25(5): 393-397
doi: 10.1080/01919510390481711
38 Buxton G V, Greenstock C L, Helman W P, Ross A. B. Critical review of rate constants of hydrate electrons, hydrogen atoms and hydroxyl radicals (·OH/·O-) in aqueous solution. Journal of Physical and Chemical Reference Data , 1988, 17(2): 513-523
[1] David R. HOKANSON,Ke LI,R. Rhodes TRUSSELL. A photolysis coefficient for characterizing the response of aqueous constituents to photolysis[J]. Front. Environ. Sci. Eng., 2016, 10(3): 428-437.
[2] Yuchen PANG,Jingjing HUANG,Jinying XI,Hongying HU,Yun ZHU. Effect of ultraviolet irradiation and chlorination on ampicillin-resistant Escherichia coli and its ampicillin resistance gene[J]. Front. Environ. Sci. Eng., 2016, 10(3): 522-530.
[3] Lin WANG,Yongmei LI,Xiaoling SHANG,Jing SHEN. Occurrence and removal of N-nitrosodimethylamine and its precursors in wastewater treatment plants in and around Shanghai[J]. Front.Environ.Sci.Eng., 2014, 8(4): 519-530.
[4] Chengkun WANG, Xiaojian ZHANG, Chao CHEN, Jun WANG. Factors controlling N-nitrosodimethylamine (NDMA) formation from dissolved organic matter[J]. Front Envir Sci Eng, 2013, 7(2): 151-157.
[5] HE Yiliang, ZHAO Bin, HUGHES Joseph B., HAN Sung Soo. Fenton oxidation of 2,4- and 2,6-dinitrotoluene and acetone inhibition[J]. Front.Environ.Sci.Eng., 2008, 2(3): 326-332.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed