Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front.Environ.Sci.Eng.    2008, Vol. 2 Issue (1) : 51-56    https://doi.org/10.1007/s11783-008-0010-3
Kinetics of hexavalent chromium reduction by iron metal
QIAN Huijing, WU Yanjun, LIU Yong, XU Xinhua
Department of Environmental Engineering, Zhejiang University
 Download: PDF(446 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The kinetics of Cr(VI) reduction to Cr(III) by metallic iron (Fe0) was studied in batch reactors for a range of reactant concentrations, pH and temperatures. Nearly 86.8% removal efficiency for Cr(VI) was achieved when Fe0 concentration was 6 g/L (using commercial iron powder (< 200 mesh) in 120 min). The reduction of hexavalent chromium took place on the surface of the iron particles following pseudo-first order kinetics. The rate of Cr(VI) reduction increased with increasing Fe0 addition and temperature but inversely with initial pH. The pseudo-first-order rate coefficients (kobs) were determined as 0.0024, 0.010, 0.0268 and 0.062 8 min-1 when iron powder dosages were 2, 6, 10 and 14 g/L at 25°C and pH 5.5, respectively. According to the Arrehenius equation, the apparent activation energy of 26.5 kJ/mol and pre-exponential factor of 3 330 min-1 were obtained at the temperature range of 288–308 K. Different Fe0 types were compared in this study. The reactivity was in the order starch-stabilized Fe0 nanoparticles > Fe0 nano-particles > Fe0 powder > Fe0 filings. Electrochemical analysis of the reaction process showed that Cr(III) and Fe(III) hydroxides should be the dominant final products.
Issue Date: 05 March 2008
 Cite this article:   
WU Yanjun,QIAN Huijing,LIU Yong, et al. Kinetics of hexavalent chromium reduction by iron metal[J]. Front.Environ.Sci.Eng., 2008, 2(1): 51-56.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-008-0010-3
https://academic.hep.com.cn/fese/EN/Y2008/V2/I1/51
1 Xu X R Li H B Li X Y Gu J D Reduction ofhexavalent chromium by ascorbic acid in aqueous solutionsChemosphere 2005 57(7)609613.
doi:10.1016/j.chemosphere.2004.07.031
2 Wei C German S Basak S Rajeshwar K Reductionof hexavalent chromium in aqueous solutions by polypyrroleJ Electrochem Soc 1993 140(4)6062.
doi:10.1149/1.2056247
3 Bowman R S Applicationsof surfactant-modified zeolites to environmental remediationMicroporous and Mesoporous Materials 2003 614356.
doi:10.1016/S1387‐1811(03)00354‐8
4 Hideaki Y Toshiiyuki Y Takashi T Adsorption of chromate and Arsenate by amino-functionalizedMCM-41 and SBA-1Chem Mater 2002 14(11)4,6034,610
5 Chen J M Hao O J Microbial chromium (VI) reductionCritical Rev Environ Sci Technol 1998 28219251.
doi:10.1080/10643389891254214
6 Hua B Deng B Influences of water vapor onCr(VI) reduction by gaseous hydrogen sulfideEnviron Sci Technol 2003 37(20)4,7714,777.
doi:10.1021/es0342446
7 Buerge I J Hug S J Influence of mineral surfaceson chromium(VI) reduction by iron(II)EnvironSci Technol 1999 33(23)4,2854,291.
doi:10.1021/es981297s
8 Ponder S M Darab J G Mallouk T E Remediation of Cr(VI) and Pb(II) aqueous solutions usingsupported, nanoscale zero-valent ironEnvironSci Technol 2000 34(12)2,5642,569.
doi:10.1021/es9911420
9 Powell R M Puls R W Hightower S K Sabantini D A Couplediron corrosion and chromate reduction: Mechanisms for subsurface remediationEnviron Sci Technol 1995 29(8)1,9131,922.
doi:10.1021/es00008a008
10 Powell R M Puls R W Proton generation by dissolutionof intrinsic or augmented aluminosilicate minerals for in situ contaminantremediation by zero-valence-state ironEnvironSci Technol 1997 31(8)2,2442,251.
doi:10.1021/es9607345
11 Alowitz M J Scherer M M Kinetics of nitrate, nitrite,and Cr(VI) reduction by iron metalEnvironSci Technol 2002 36(3)299306.
doi:10.1021/es011000h
12 Wilkin R T Su C Ford R G Paul C J Chromium-removalprocesses during groundwater remediation by a zerovalent iron permeablereactive barrierEnviron Sci Technol 2005 39(12)4,5994,605.
doi:10.1021/es050157x
13 Xu Y H Zhao D Y Reductive immobilization ofchromate in water and soil using stabilized iron nanoparticlesWater Res 2007 41(10)2,1012,108.
doi:10.1016/j.watres.2007.02.037
14 Pratt A R Blowes D W Ptacek C J Products of chromate reduction on proposed subsurface remediationmaterialEnviron Sci Technol 1997 31(9)2,4922,498.
doi:10.1021/es9607897
15 Lee T Lim H Lee Y Park J Use of wasteiron metal for removal of Cr(VI) from waterChemosphere 2003 53(5)479485.
doi:10.1016/S0045‐6535(03)00548‐4
16 Wei J J Xu X H Liu Y Wang D H Catalytic hydrodechlorinationof 2,4-dichlorophenol over nanoscale Pd/Fe: Reaction pathway and someexperimental parametersWater Res 2006 40(2)348354.
doi:10.1016/j.watres.2005.10.017
17 He F Zhao D Preparation and characterizationof a new class of starch-stabilized bimetallic nanoparticles for degradationof chlorinated hydrocarbons in waterEnvironSci Technol 2005 39(9)3,3143,320.
doi:10.1021/es048743y
18 Puls R W Paul C J Powell R M The application of in situ permeable reactive (zero-valentiron) barrier technology for the remediation of chromate-contaminatedgroundwater: A field testAppl Geochem 1999 14(8)9891,000.
doi:10.1016/S0883‐2927(99)00010‐4
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed