Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front.Environ.Sci.Eng.    2008, Vol. 2 Issue (4) : 480-486    https://doi.org/10.1007/s11783-008-0034-8
Effect of soil crust on evaporation and dew deposition in Mu Us sandy land, China
SUN Yongliang, LI Xiaoyan, XU Heye, YANG Zhipeng, TANG Jia, ZHANG Xiaoying
Institute of Land Resources, College of Resources Science and Technology, Beijing Normal University
 Download: PDF(243 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The development of soil crust on sandy land may affect the surface hydrological process. This paper investigates the process of evaporation and dew deposition influenced by different soil surface types which were dominated by sand, primitive biotic crust, and advanced biotic crust, respectively, in the south fringe of Mu Us sandy land in Northwest China from July to September of 2006. The experimental results indicate that the advanced biotic crust could increase evaporation and dew deposition compared to the primitive biotic crust and bare sand although the differences between them were not significant. The average evaporation from advanced biotic crust, primitive biotic crust and sand was 6.8, 6.6, and 6.5 mm/d, respectively, and water content is around 16.2 % in the condition of initially identical soil. The average dew amount on advanced biotic crust was 0.116 mm/d with extreme 0.05 and 0.24 mm/d. The average values on primitive biotic crust and sand were 0.105 and 0.101 mm/d, respectively, with extreme 0.04 and 0.21 mm/d for both treatments. Also, the dew deposition on advanced biotic crust seemed stable and might rest for a longer time than that on primitive biotic crust and sand. The results suggest that the advanced biotic crust possibly facilitates evaporation and dew deposition. Therefore, the development of biotic crust may potentially enhance the hydrological circulation in the upper sand layer in sandy land.
Issue Date: 05 December 2008
 Cite this article:   
LI Xiaoyan,SUN Yongliang,XU Heye, et al. Effect of soil crust on evaporation and dew deposition in Mu Us sandy land, China[J]. Front.Environ.Sci.Eng., 2008, 2(4): 480-486.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-008-0034-8
https://academic.hep.com.cn/fese/EN/Y2008/V2/I4/480
1 Nikolayev V S, Beysens D, Gioda A, Milimouk I, Katiushin E, Morel J P . Water recovery from dew. Journalof hydrology, 1996, 182: 19–35.
doi:10.1016/0022-1694(95)02939-7
2 Malek E, Mccury G, Giles B . Dew contribution to the annual water balances in semi-ariddesert valleys. Journal of Arid Environments, 1999, 42(2): 71–80.
doi:10.1006/jare.1999.0506
3 Evenari M, Shanan L, Tadmor N . The Negev: Challenge of A Desert. 2nd ed. Cambridge, MA, USA: Harvard UniversityPress, 1982, 150
4 Danin A, Garty J . Distribution of cyanobacteriaand lichens on hillsides of the Negev Highlands and their impact onbiogenic weathering. Zeitschriftfur Geomorphologie, 1983, 27: 423–444
5 Broza M . Dew,fog and hygroscopic food as a source of water for desert arthropods. Journal of Arid Environments, 1979, 2: 43–49
6 Munne-Bosch S, Nogues S, Alegre L . Diurnal variations of photosynthesis and dew absorptionby leaves in two evergreen shrubs growing in Mediterranean field conditions. New Phytologist, 1999, 144: 109–119.
doi:10.1046/j.1469-8137.1999.00490.x
7 Li X Y . Effects of gravel and sand mulches on dew deposition in the semiaridregion of China. Journal of Hydrology, 2002, 260: 151–160.
doi:10.1016/S0022-1694(01)00605-9
8 Diaz F, Jimenez C C, Tejedor M . Influence of the thickness and grain size of tephra mulchon soil water evaporation. AgriculturalWater Management, 2005, 74: 47–55.
doi:10.1016/j.agwat.2004.10.011
9 Xie Z K, Wang Y J, Jiang W L, Wei X H . Evaporationand evapotranspiration in a watermelon field mulched with gravel ofdifferent sizes in Northwest China. AgriculturalWater Management, 2006, 81: 173–184.
doi:10.1016/j.agwat.2005.04.004
10 West N E . Structure and function of microphytic soil crusts in wildland ecosystemsof arid to semi-arid regions. Advancesin Ecological Research, 1990, 20: 179–223.
doi:10.1016/S0065-2504(08)60055-0
11 Tisdall J M, Oades J M . Organic matter and waterstable aggregates in soils. Journal ofsoil Sciences, 1982, 33: 141–163.
doi:10.1111/j.1365-2389.1982.tb01755.x
12 Zobeck T M . Abrasion of crusted soils: Influence of abrader flux and soil properties. Soil Science Society of America Journal, 1991, 55: 1091–1097
13 Williams J D, Dobrowolski J P, West N E, Gillette D A . Microbiotic soil crusts influence on wind erosion. Transactions of the American Society of Agricultural Engineers, 1995, 38: 131–137
14 Li X R, Wang X P, Li T, Zhang J G . Microbioticsoil crust and its effect on vegetation and habitat on an artificiallystabilized desert dune in the Tengger Desert, North China. Biology and Fertility of Soils, 2002, 35: 147–154.
doi:10.1007/s00374-002-0453-9
15 Blackburn W H . Factors influencing infiltration rate and sediment production ofsemiarid ranglands in Nevada. Water ResourcesResearch, 1975, 11: 929–937.
doi:10.1029/WR011i006p00929
16 Eldridge D J, Tozer M E, Slangen S . Soil hydrology is independent of microphytic crust cover:Further evidence from the semiarid woodlands of eastern Australia. Arid Soil Research and Rehabilitation, 1997, 11: 113–126
17 Abu-Awwad A M, Shatanawi M R . Water harvesting and infiltrationin arid areas affected by surface crust: Examples from Jordan. Journal of Arid Environments, 1997, 37: 443–452.
doi:10.1006/jare.1997.0301
18 Li X Y, González A, Solé-Benet A . Laboratory methods for the estimationof infiltration rate of soil crusts in the Tabernas Desert badlands. Catena, 2005, 60: 255–266.
doi:10.1016/j.catena.2004.12.004
19 Eldridge D J, Greene R S B . Microbiotic soil crusts:A review of their roles in soil and ecological processes in the rangelandsof Australia. Australian Journal of SoilResearch, 1994, 32: 389–415.
doi:10.1071/SR9940389
20 Romkens M J M, Prasad S N, Whisle F D . Surface sealing and infiltration. In: Anderson M G, Burt I P, eds. Process Studies in Hillslope Hydrology. New York: Wiley InterScience, 1990, 127–172
21 Liu L C, Li S Z, Duan Z H, Wang T, Zhang Z S, Li X R . Effect of microbiotic crusts on dew deposition in the restored vegetationarea at Shapotou, Northwest China. Journalof Hydrology, 2006, 328: 331–337..
doi: 10.1016/j.jhydrol.2005.12.004
22 Wu B, Ci L J . Landscape change and desertificationdevelopment in the Mu Us sandland, Nothern China. Journal of Arid Environments, 2002, 50: 429–444.
doi:10.1006/jare.2001.0847
23 Wang S G, Yuan W, Shang K Z . The impacts of different kinds of dust event on PM10 pollution in Northern China. Atmospheric Environment, 2006, 40(40): 7975–7982.
doi:10.1016/j.atmosenv.2006.06.058
24 Garratt J R, Segal M . On the contribution of atmosphericmoisture on dew formation. Boundary LayerMeteorology, 1988, 45: 209–236.
doi:10.1007/BF01066671
25 Tuller S E, Chilton R . The role of dew in the seasonalmoisture balance of summer-dry climate. Agricultural Meteorology, 1973, 11: 135–142.
doi:10.1016/0002-1571(73)90057-5
26 Agam N, Berliner P R . Dew formation and water vaporadsorption in semi-arid environments–A review. Journal of Arid Environments, 2006, 65: 572–590.
doi:10.1016/j.jaridenv.2005.09.004
27 Zangvil A . Sixyears of dew observation in the Negev Desert, Israel. Journal of Arid Environments, 1996, 32: 361–372.
doi:10.1006/jare.1996.0030
28 Atzema A J, Jacobs A F G, Wartena L . Moisture distribution within a maize crop due to dew. Netherland Journal of Agricultural Science, 1990, 38: 117–129
29 Neumann J . Estimatingthe amount of dew fall. Arch. Meteorol.Geophys. Bioclimontol. Ser. A, 1956, 9: 197–203.
doi:10.1007/BF02247194
30 Monteith J I . Dew. Quarterly Journal of the Royal MeteorologicalSociety, 1956, 42: 572–580
31 Fuchs M, Tanner C B . Evaporation from drying soil. Journal of Applied Meteorology, 1967, 6: 852–857.
doi:10.1175/1520-0450(1967)006<0852:EFADS>2.0.CO;2
32 Kidron G J, Yair A, Danin A . Dew variability within a small arid drainage basin inthe Negev Highlands. Israel. QuarterlyJournal of the Royal Meteorological Society, 2000, 126: 63–80
33 Menziani M, Pugnaghi S, Pilan L, Santangelo R, Vincenzi S . Field experiment to studyevaporation from saturated bare soil. Physicsand Chemistry of the Earth (B), 1999, 24(7): 813–818
34 Wang Z, Wang L, Liu L Y, Zheng Q H . Preliminarystudy on soil moisture content in dried layer of sand dunes in theMu Us sandland. Arid Zone Research, 2006, 23(1): 89–92 (in Chinese)
35 Yamanaka T, Yonetani T . Dynamics of the evaporationzone in dry sandy soils. Journal of Hydrology, 1999, 217: 135–148.
doi:10.1016/S0022-1694(99)00021-9
36 Gill B S, Jalota S K . Evaporation from soil inrelation to residue rate, mixing depth, soil texture and evaporativity. Soil Technology, 1996, 8: 293–301.
doi:10.1016/0933-3630(95)00026-7
37 Kosmas C, Danalatos N G, Poesen J, Wesemael B V . The effect of water vapor adsorption on soil moisture content underMediterranean climatic conditions. AgriculturalWater Management, 1998, 36: 157–168.
doi:10.1016/S0378-3774(97)00050-4
38 Hu C X, Liu Y D, Zhang D L, Huang Z B, Paulsen B S . Cementing mechanism of algal crusts fromdesert area. Chinese Science Bulletin, 2002, 47(16): 1361–1368.
doi:10.1360/02tb9301
39 Liu L C, Wang G F, Ma F Y . Characteristics of physical climatology during artificialvegetation succession. Journal of LanzhouUniversity (Natural Sciences), 2002, 38 (Suppl.): 18–23 (in Chinese)
40 Hu C X, Liu Y D, Song L, Zhang D L . Effect ofdesert soil algae on the stabilization of fine sands. Journal of Applied Phycology, 2002, 14(4): 281–292.
doi:10.1023/A:1021128530086
41 Ninari N, Berliner P R . The role of dew in the waterand heat balance of bare loess soil in the Negev Desert: Quantifyingthe actual dew deposition on the soil surface. Atmospheric Research, 2002, 64: 323–334.
doi:10.1016/S0169-8095(02)00102-3
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed