Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front.Environ.Sci.Eng.    2008, Vol. 2 Issue (3) : 291-296    https://doi.org/10.1007/s11783-008-0049-1
Effects of humic acid fractions with different polarities on photodegradation of 2,4-D in aqueous environments
YU Chunyan, QUAN Xie, OU Xiaoxia, CHEN Shuo
Key Laboratory of Industrial Ecology and Environmental Engineering of Ministry of Education, School of Environmental and Biological Science and Technology, Dalian University of Technology;
 Download: PDF(126 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Four fractions (A, B, C, and D) of humic acids (HAs) were separated based on the polarity from weak to strong. UV-vis absorption and Fourier transform infrared spectroscopy (FTIR) analysis show that the fractions C and D possessed more aromatic C=C content. The influences of HAs and their fractions on the photolysis were investigated by the photodegradation of 2,4-D solutions under simulated solar light irradiation. The degradation rate of 2,4-D was found to decrease in the presence of bulk HAs or their fractions especially at high HAs concentration. The fractions of strong polarity C and D retarded the degradation rate more than the fractions of weak polarity A and B. This could be attributed to the different absorption intensity of the four HAs fractions in the order of D ≥ C > A > B, and the stronger ?-? electron donor-acceptor interactions between the strong polar fractions and 2,4-D.
Issue Date: 05 September 2008
 Cite this article:   
QUAN Xie,YU Chunyan,OU Xiaoxia, et al. Effects of humic acid fractions with different polarities on photodegradation of 2,4-D in aqueous environments[J]. Front.Environ.Sci.Eng., 2008, 2(3): 291-296.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-008-0049-1
https://academic.hep.com.cn/fese/EN/Y2008/V2/I3/291
1 Jones M N, Bryan N D . Colloidal properties of humicsubstances. Advances in Colloid and InterfaceScience, 1998, 78: 1–48.
doi:10.1016/S0001‐8686(98)00058‐X
2 Li L, Zhao Z Y, Huang W L, Peng P, Sheng G, Fu J . Characterizationof humic acids fractionated by ultrafiltration. Organic Geochemistry, 2004, 35: 1025–1037.
doi:10.1016/j.orggeochem.2004.05.002
3 Hessler D P, Frimmel F H, Oliveros E, Braun A M . Quenchingof singlet oxygen (1Δg) by humic substances. Journal of Photochemistryand Photobiology B: Biology, 1996, 36: 55–60.
doi:10.1016/S1011‐1344(96)07322‐8
4 Schmitt Ph, Freitag D, Sanlaville Y, Lintelman J . Capillaryelectrophoretic study of atrazine photolysis. Journal of Chromatography A, 1995, 709: 215–225.
doi:10.1016/0021‐9673(95)00327‐J
5 Minero C, Pramauro E, Pelizzetti E, Dolci M, Marchesini A . Photosensitized transformations of atrazineunder simulated sunlight in aqueous humic acid solution. Chemosphere, 1992, 24: 1597–1606.
doi:10.1016/0045‐6535(92)90403‐E
6 Ou X X, Quan X, Chen S, Zhao H, Zhang Y . Atrazine photodegradation in aqueoussolution induced by interaction of humic acids and iron: Photoformationof iron(II) and hydrogen peroxide. Journalof Agricultural and Food Chemistry, 2007, 55: 8650–8656.
doi:10.1021/jf0719050
7 Garbin J R, Milori D M B P, Simões M L, da Silva W T L, Neto L M . Influence of humic substanceson the photolysis of aqueous pesticide residues. Chemosphere, 2007, 66: 1692–1698.
doi:10.1016/j.chemosphere.2006.07.017
8 Selli E, Baglio D, Montanarella L, Bidoglio G . Roleof humic acids in the TiO2-photocatalyzed degradationof tetrachloroethene in water. Water Research, 1999, 33(8): 1827–1836.
doi:10.1016/S0043‐1354(98)00368‐6
9 Tchaikovskaya O N, Sokolova I V, Yudina N V . Fluorescence analysis of photoinduced degradation ofecotoxicants in the presence of humic acids. Luminescence, 2005, 20: 187–191.
doi:10.1002/bio.818
10 Bachman J, Patterson H H . Photodecomposition of thecarbamate pesticide carbofuran: Kinetics and the influence of dissolvedorganic matter. Environmental Science andTechnology, 1999, 33: 874–881.
doi:10.1021/es9802652
11 Aguer J P, Richard C, Andreux F . Comparison of the photoinductive properties of commercial,synthetic and soil-extracted humic substances. Journal of Photochemistry and Photobiology A: Chemistry, 1997, 103: 163–168.
doi:10.1016/S1010‐6030(96)04515‐7
12 Curtis M A, Witt A F, Schram S B, Rogers L B . Humic acidfractionation using a nearly linear pH gradient. Analytical Chemistry, 1981, 53: 1195–1199.
doi:10.1021/ac00231a014
13 Aguer J P, Trubetskaya O, Trubetskoj O, Richard C . Photoinductiveproperties of soil humic acids and their fractions obtained by tandemsize exclusion chromatography-polyacrylamide gel electrophoresis. Chemosphere, 2001, 44: 205–209.
doi:10.1016/S0045‐6535(00)00183‐1
14 Wu F C, Evans R D, Dillon P J, Cai Y R . Rapid quantificationof humic and fulvic acids by HPLC in natural waters. Applied Geochemistry, 2007, 22: 1598–1605.
doi:10.1016/j.apgeochem.2007.03.043
15 Trubetskoj O A, Trubetskaya O E, Afanas'eva G V, Reznikova O I, Saizjimenez C . Polyacrylamide gel electrophoresisof soil humic acid fractionated by size-exclusion chromatography andultrafiltration. Journal of ChromatographyA, 1997, 767: 285–292.
doi:10.1016/S0021‐9673(97)00019‐8
16 Wu F C, Evans R D, Dillon P J . High-performance liquid chromatographic fractionationand characterization of fulvic acid. AnalyticaChimica Acta, 2002, 464: 47–55.
doi:10.1016/S0003‐2670(02)00476‐2
17 Cavani L, Ciavatta C, Trubetskaya O E, Reznikova O I, Trubestskoj O A . Capillary zone electrophoresisof soil humic acid fractions obtained by coupling size-exclusion chromatographyand polyacrylamide gel electrophoresis. Journal of Chromatography A, 2003, 983: 263–270.
doi:10.1016/S0021‐9673(02)01737‐5
18 Richard C, Trubetskaya O, Trubetskoj O, Reznikova O I, Afanaseva G, Guyot G . Key role of the low molecular size fraction of soil humicacids for fluorescence and photoinductive activity. Environmental Science and Technology, 2004, 38: 2052–2057.
doi:10.1021/es030049f
19 Wen B, Zhang J J, Zhang S Z, Shan X Q, Khan S U, Xing B . Phenanthrenesorption to soil humic acid and different humin fractions. Environmental Science and Technology, 2007, 41: 3165–3171.
doi:10.1021/es062262s
20 Daidai M, Kobayashi F, Mtui G, et al.. Degradation of 2,4-dichlorophenoxyacetic acid(2,4-D) by ozonation and TiO2/UV treatment. Journal of Chemical Engineering of Japan, 2007, 40(4): 378–384.
doi:10.1252/jcej.40.378
21 de Amarante O P, Brito N M, dos Santos T C R, Nunes G S . Determinationof 2,4-dichlorophenoxyacetic acid and its major transformation productin soil samples by liquid chromatographic analysis. Talanta, 2003, 60: 115–121.
doi:10.1016/S0039‐9140(03)00113‐9
22 Campos S X, Vieira E M, Cordeiro P J M, Rodrigues-Fo E, Murgu M . Degradation of the herbicide2, 4-dichlorophenoxyacetic acid (2,4-D) dimethylamine salt by gammaradiation from cobalt-60 in aqueous solution containing humic acid. Radiation Physics and Chemistry, 2003, 68: 781–786.
doi:10.1016/S0969‐806X(03)00366‐9
23 Davis W M, Erickson C L, Johnston C T, Delfine J J . Quantitative Fourier transform infrared spectroscopic investigationof humic substance functional group composition. Chemosphere, 1999, 38(12): 2913–2928.
doi:10.1016/S0045‐6535(98)00486‐X
24 Korshin G V, Li C W, Benjamin M M . Monitoring the properties of natural organic matter throughUV spectroscopy: A consistent theory. WaterResearch, 1997, 31(7): 1787–1795.
doi:10.1016/S0043‐1354(97)00006‐7
25 Fuentes M, González-Gaitano G, García-Mina J M . The usefulness of UV-visibleand fluorescence spectroscopies to study the chemical nature of humicsubstances from soils and composts. OrganicGeochemistry, 2006, 37: 1949–1959.
doi:10.1016/j.orggeochem.2006.07.024
26 Chen J, Gu B H, LeBoeuf E J, Pan H, Dai S . Spectroscopic characterization of the structural andfunctional properties of natural organic matter fractions. Chemosphere, 2002, 48: 59–68.
doi:10.1016/S0045‐6535(02)00041‐3
27 Fukushima M, Tatsumi K, Nagao S . Degradation characteristics of humic acid during photo-Fentonprocesses. Environmental Science and Technology, 2001, 35: 3683–3690.
doi:10.1021/es0018825
28 Almendros G, Kgathi D, Sekhwela M, Zancada M, Tinoco P, Pardo T . Biogeochemical assessment of resilient humus formationsfrom virgin and cultivated northern Botswana soils. Journal of Agricultural and Food Chemistry, 2003, 51: 4321–4330.
doi:10.1021/jf034006u
29 Davies G, Fataftah A, Radwan A, Jansen S A . Isolationof humic acid from the terrestrial plant Brugmansiasanguinea. The Science of theTotal Environment, 1997, 201: 79–87.
doi:10.1016/S0048‐9697(97)84054‐5
30 Palladino G, Ferri D, Manfredi C, Vasca E . Potentiometricdetermination of the total acidity of humic acids by constant-currentcoulometry. Analytica Chimica Acta, 2007, 582: 164–173.
doi:10.1016/j.aca.2006.08.060
31 Enriquez R, Pichat P . Interactions of humic acid,quinoline, and TiO2 in water in relation toquinoline photocatalytic removal. Langmuir, 2001, 17: 6132–6137.
doi:10.1021/la010599w
32 Fu H B, Quan X, Liu Z Y, Chen S . Photoinducedtransformation of γ-HCH in the presence of dissolved organicmatter and enhanced photoreactive activity of humate-coated α-Fe2O3. Langmuir, 2004, 20: 4867–4873.
doi:10.1021/la0364486
33 Hesketh N, Jones M N, Tipping E . The interaction of some pesticides and herbicides withhumic substances. Analytica Chimica Acta, 1996, 327: 191–201.
doi:10.1016/0003‐2670(96)00081‐5
34 Trubetskaya O, Trubetskoj O, Richard C . Photodegrading properties of soil humic acids fractionatedby SEC-PAGE set-up. Are they connected with absorbance?Journal of Photochemistryand Photobiology A: Chemistry, 2007, 189: 247–252.
doi:10.1016/j.jphotochem.2007.02.006
35 Zhu D, Hyun S, Pignatello J J, Lee L S . Evidencefor π-π electron donor-acceptor interactions between π-donoraromatic compounds and π-acceptor sites in soil organic matterthrough pH effects on sorption. EnvironmentalScience and Technology, 2004, 38: 4361–4368.
doi:10.1021/es035379e
36 Fukushima M, Tanabe Y, Morimoto K, Tatsumi K . Roleof humic acid fraction with higher aromaticity in enhancing the activityof a biomimetic catalyst, tetra (p-sulfonatophenyl) porphineiron (III). Biomacromolecules, 2007, 8: 386–391.
doi:10.1021/bm060829r
37 Qu F C . Characterization of HA fractions fractionated from soil humic substanceand study on their photochemical effects. Dissertation for the Master'sDegree.Dalian:Dalian University of Technology, 2006 (in Chinese)
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed