Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front.Environ.Sci.Eng.    2008, Vol. 2 Issue (3) : 297-305    https://doi.org/10.1007/s11783-008-0055-3
Allelopathic inhibition on red tide microalgae by five macroalgal extracts
AN Zhen1, WANG Zhenyu1, LI Fengmin1, TIAN Zhijia1, HU Hongying2
1.Key Laboratory of Marine Environmental Science and Ecology of Ministry of Education, College of Environmental Science and Engineering, Ocean University of China; 2.State Key Joint Laboratory of Environmental Simulation and Pollution Control, Department of Environmental Science and Engineering, Tsinghua University;
 Download: PDF(236 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract This study aims to identify effective antialgal allelochemicals from marine macroalgae that inhibit the growth of red tide microalgae. Practically, new algicidal agents were developed to control red tide. The growth inhibitory effects of 5 marine macroalgae Porphyra tenera, Laminaria japonica, Ulva pertusa, Enteromorpha clathrata, and Undaria pinnatifida on Skeletonema costatum were evaluated by adding crude seawater extracts of macroalgal dry tissue into the culture medium containing S. costatum. The half-effective concentrations at 120 h (EC50, 120 h) of the seawater extracts were 0.6, 0.9, 1.0, 1.0, and 4.7 g/L for the five macroalgae above, respectively. E. clathrata, L. japonica and U. pertusa showed strong allelopathic effect on the growth of S. costatum. There have been no previous reports with regard to the allelopathic effects of the former two macroalgae so far. The possible allelochemicals of 21 compounds of the E. clathrata were detected using Gas chromatography-mass spectrometry (GC-MS) analysis. Unsaturated fatty acids, acrylic acid (C3H4O2), and linolenic acid (C18H30O2) were the most likely allelochemicals in E. clathrata.
Issue Date: 05 September 2008
 Cite this article:   
WANG Zhenyu,AN Zhen,LI Fengmin, et al. Allelopathic inhibition on red tide microalgae by five macroalgal extracts[J]. Front.Environ.Sci.Eng., 2008, 2(3): 297-305.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-008-0055-3
https://academic.hep.com.cn/fese/EN/Y2008/V2/I3/297
1 Anderson D M, Glibert P M, Burkholder J M . Harmful algal blooms and eutrophication, nutrient sources,composition, and consequences. Estuaries, 2002, 25: 704–726
2 Parsons M L, Dortch Q, Turner R E . Sedimentological evidence of an increase in Pseudo-nitzschia (Bacillariophyceae) abundancein response to coastal eutrophication. Liminology and Oceanography, 2002, 47: 551–558
3 Shumway S E, Allen S M, Boersma P D . Marine birds and harmful algal blooms, sporadic victimsor under-reported events?Harmful Algae, 2003, 2: 1–17.
doi:10.1016/S1568‐9883(03)00002‐7
4 Nagayama K, Shibata T, Fujimoto K, et al.. Algicidal effect of phlorotannins from the brownalga Ecklonia kurome on red tidemicroalgae. Aquaculture, 2003, 218: 601–611.
doi:10.1016/S0044‐8486(02)00255‐7
5 Jeong J H, Jin H J, Sohn C H . Algicidal activity of the seaweed Corallina pilulifera against red tide microalgae. Journal of Applied Phycology, 2000, 12: 37–43.
doi:10.1023/A:1008139129057
6 Rice E L . Allelopathy. 2nd ed.London: Academic Press, 1984
7 Hasler A D, Jones E . Demonstration of the antagonisticaction of large aquatic plants on algae and rotifers. Ecology, 1949, 30: 359–364.
doi:10.2307/1932616
8 Gross E M . Allelopathy of aquatic autotrophs. CriticalReviews in Plant Science, 2003, 22: 313–339.
doi:10.1080/713610859
9 Gross E M, Feldbaum C, Graf A . Epiphyte biomass and elemental composition on submersedmacrophytes in shallow entrophic lakes. Hydrobiologia, 2003 : 506–509, 559–565.
doi:10.1023/B:HYDR.0000008538.68268.82
10 Gross E M, Erhard D, Ivanyi E . Allelopathic activity of Ceratophyllumdemersum L. and Najas marina ssp. Intermedia (Wolfgang) Casper. Hydrobiologia, 2003, 506: 583–589.
doi:10.1023/B:HYDR.0000008539.32622.91
11 Vyvyan J R . Allelochemicals as leads for new herbicides and agrochemicals. Tetrahedron, 2002, 58(9): 1631–1646.
doi:10.1016/S0040‐4020(02)00052‐2
12 Schrader K K, Nanayakkara N P D, Tucker C S, et al.. Novel derivatives of 9, 10-anthraquinone areselective algicides against the musty-odor cyanobacterium Oscillatoria perornata. Applied and Environment Microbiology, 2003, 69: 5319–5327.
doi:10.1128/AEM.69.9.5319‐5327.2003
13 Jasser I . Theinfluence of macrophytes on a phytoplankton community in experimentalconditions. Hydrobiologia, 1995, 306: 21–32.
doi:10.1007/BF00007855
14 Mjelde M, Faafeng B A . Ceratophyllumdemersum hampers phytoplankton development in some smallNorwegian lakes over a wide range of phosphorus concentrations andgeographical latitude. Freshwater Biology, 1997, 37(2): 355–365.
doi:10.1046/j.1365‐2427.1997.00159.x
15 Mulderij G, Mooij W M, van Donk E . Allelopathic growth inhibition and colony formation ofthe green alga Scenedesmus obliquus by the aquatic macrophyte Stratiotes aloides. Aquatic Ecology, 2005, 39: 11–21.
doi:10.1007/s10452‐004‐1021‐1
16 Aliotta G, Molinaro A, Monaco P . Studies on aquatic plants. Part 20. Three biologicallyactive phenylpropanoid glucosides from Myriophyllumverticillatum. Phytochemistry, 1992, 31: 109–111.
doi:10.1016/0031‐9422(91)83017‐F
17 Gross E M, Meyer H, Schilling G . Release and ecological impact of algicidal hydrolysablepolyphenols in Myriophyllum spicatum. Phytochemistry, 1996, 41(1): 133–138.
doi:10.1016/0031‐9422(95)00598‐6
18 Nakai S, Inoue T, Hosomi M, et al.. Myriophyllum spicatum released allelopathic polyphenols inhibiting growth of blue-greenalgae Microcystis aeruginosa. Water Research, 2000, 34: 3026–3032.
doi:10.1016/S0043‐1354(00)00039‐7
19 Li F M, Hu H Y . Allelopathic effects of differentmacrophytes on the growth of Micrcystis aeruginosa. Allelopathy Journal, 2005, 15(1): 145–152
20 Nan C R, Dong S L . Progress on the competitionbetween macroalgae and microalgae. MarineScience Sinica, 2004, 28(11): 64–66 (in Chinese)
21 Xu Y, Dong S L . Study on inhibitory effectsof nine macroalgae on the growth of Heterosigmaakashiwo. Journal of Ocean Universityof China, 2005, 35(3): 475–477 (in Chinese)
22 Xu Y, Dong S L, Yu X M . The allelopathic effects of Entermorphalinza on Heterosigma akashiwo. Acta Ecologica Sinica, 2005, 25(10): 2681–2685
23 Wang Y, Yu Z M, Song X X . Effects of Ulva pertusa and Gracilaria lemaneiformis onGrowth of Heterosigma akashiwo (Raphidophyceae)in Co-Culture. Environment Science Sinica, 2006, 27(2): 246–252 (in Chinese)
24 Jin Q, Dong S L, Wang C Y . Growth inhibition to three red tide microalgae by extractsof Ulva pertusa. Chinese Journal of Oceanology and Limnology, 2006, 24(2): 147–153 (in Chinese).
doi: 10.1007/BF02842814
25 Wang R J, Xiao H, Wang Y, et al.. Effects of three macroalgae, Ulva linza (Chlorophyta), Corallina pilulifera (Rhodophyta) and Sargassum thunbergii (Phaeophyta) on thegrowth of the red tide microalga Prorocentrumdonghaiense under laboratory conditions. Journal of Sea Research, 2007, (58)3: 189–197[26] Gross E M, SütfeldR. Polyphenols with algicidal activity in the submerged macrophyte Myriophyllum spicatum L. Acta Horticturae, 1994, 381: 710–716
26 Xian Q M, Chen H D, Qu L J, et al.. Allelopathic potential of aqueous extracts ofsubmerged macrophytes against algal growth. Allelopathy Journal, 2005, 15(1): 95–104
27 Della Greca M, Fiorentino A, Monaco P, et al.. Action of antialgal compounds from Juncus effusus L. on Selenastrum capricornutum. Journal of Chemical Ecology, 1996, 22: 587–603.
doi:10.1007/BF02033657
28 Della Greca M, Fiorentino A, Monaco P . Antialgal phenylpropane glycerides from Juncus effuses. Natural Product Letters, 1998, 12: 263–270.
doi:10.1080/10575639808048300
29 Li F M, Hu H Y . Isolation and characterizationof a novel antigal allelochemical from Phragmitescommunis. Applied and EnvironmentalMicrobiology, 2005, 71(11): 6545–6553.
doi:10.1128/AEM.71.11.6545‐6553.2005
30 Guillard R R L, Ryther J H . Studies of marine planktonicdiatoms I. Cyclotella nana (Hustedt)and Detonula confervacea (Gleve)Gran. Canadian Journal of Microbiology, 1996, 8: 229–239
31 Zhou Z H . Methods of ailelopathy bioassay and the affecting factor. Ecologic Science Sinica, 1999, 18(7): 35–38 (in Chinese)
32 Zhou Y X, Zhang Z S . The toxicity test methodsof hydrobiology. 1st ed.Beijing: Agricultural Press, 1989 (in Chinese)
33 Li F M, Hu H Y, Chong Y X et al.. Influence of EMA isolated from Phragmites communis on physiological charactersof Microcystis aeruginosa. China Environmental Science, 2007, 27(3): 377–381 (in Chinese)
34 Beninger C W, Hall J C . Allelopathic activity ofluteolin 7-O-β-glucuronide isolated from Chrysanthemum morifolium L. Biochemical Systematics and Ecology, 2005, 33: 103–111.
doi:10.1016/j.bse.2004.06.016
35 Hagmann L, Juttner F . Fischerellin A, a novel photosystem-II-inhibiting allelochemicailof theCyanobaterium Fischerella muscicola with antifungal and herbicidalactivity. Tetrahedron letters, 1996, 37(36): 6539–6542.
doi:10.1016/0040‐4039(96)01445‐1
36 Liu D L, Lovett J V . Biologically active secondarymetabolites of barley. II. Hytotoxicity of barley allelochemicals. Journal of Chemical Ecology, 1993, 19(10): 2231–2244.
doi:10.1007/BF00979660
37 Politycka B . Peroxidaseactivity and lipid peroxidation in roots of cucumber seedlings influencedby derivatives of cinnamic and benzoic acids. Acta Physiologiae Plantarum, 1996, 18(4): 365–370
38 Yu J Q, Matsui Y . Effects of root exudatesof cucumber (Cucumis sativus L.)and allelochemicals on ion uptake by cucumber seedlings. Journal of Chemical Ecology, 1997, 23(3): 817–827.
doi:10.1023/B:JOEC.0000006413.98507.55
39 Baziramakenga R, Leroux G D, Simard R R . Effects of benzoic and cinnamic acid on growth, mineralcomposition and chloro-phyll content of soybean. Journal of Chemical Ecology, 1995, 20: 2821–2833.
doi:10.1007/BF02098391
40 Kong C H, Hu F . Advance in the research onchemical communication between plants. Acta Phytoecologica Sinica, 2003, 27(4): 561–566 (in Chinese)
41 Prusak A C, Julia J O, Kubanek J . Prevalence of chemical defenses among freshwater plants. Chemical Ecology, 2005, 31(5): 1145–1160.
doi:10.1007/s10886‐005‐4253‐1
42 Ikaw M, Sansner J J, Haney J F . Inhibition of Chlorella growth by degradation and related products of linoletic and linolenicacids and the possible significance of polyunsaturated fatty acidsin phytoplankton ecology. Hydrobiologia, 1997, 356: 143–148.
doi:10.1023/A:1003103726520
43 Kakisawa H, Asari F, Kusumi T, et al.. An allelopathic fatty acid from the brown alga Cladosiphon okamuranus. Phytochemistry, 1988, 27: 731–735.
doi:10.1016/0031‐9422(88)84084‐6
44 Suzuki Y, Takabayashi T, Kawaguchi T . Isolation of allelopathic substance from the crustosecoralline algae, Lithophyllum spp.and its effect on the brown Algae, Laminariareligiosa miyabe (phaeophyta). Journal of Experimental Marine Biology and Ecology, 1998, 225: 69–77.
doi:10.1016/S0022‐0981(97)00208‐6
45 Ikaw M, Haney J F, Sansner J J . Inhibition of chlorella growth by the lipids of cyanobacteriummicrocystis aeruginosa. Hydrobiologia, 1996, 331: 167–170.
doi:10.1007/BF00025418
46 Ikawa M, Sansner J J, Haney J F . Activity of cyanbacterial and algal odor compounds foundin lake waters on green alga Chlorella pyrenoidosa growth. Hydrobiologia, 2001, 443(1–3): 19–22.
doi:10.1023/A:1017535801766
47 Jin Q . Studieson the allelopathic effects of macroalga Ulva pertusa on red tidemicroalgae and isolation characterization of its allelochemicals.Dissertation for the Doctoral Degree.Qingdao: Ocean University of China, 2005 (in Chinese)
48 Bernhard M . Chemicalcontamination of culture media, assessment, avoidance and control. In: Kinne O, ed. Marine Ecology, A Comprehensive, Integrated Treatise on Life in Oceansand Costal Waters. 3, Cultivation Part 3. Chichester: John Wiley & SonsLtd, 1977
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed