Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front.Environ.Sci.Eng.    2008, Vol. 2 Issue (4) : 415-420    https://doi.org/10.1007/s11783-008-0056-2
Preparation and characterization of ZnO/ZnS hybrid photocatalysts via microwave-hydrothermal method
ZHAO Jinglian1, WANG Xinping1, ZHAO Liang2
1.State Key Laboratory of Multiphase Flow in Power Engineering; Department of Environmental Engineering, Xi'an Jiaotong University; 2.Department of Physics and Astronomy, Rice University;
 Download: PDF(139 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The photocatalytic performance of ZnO/ZnS hybrid nanocomposite was largely higher than that of the mere ZnO or ZnS nanoparticles, but the complicated procedure and misdistribution of final products limited its large-scale productions. The exploration of a novel synthesis route of ZnO/ZnS hybrid photocatalysts with high catalytic performance is becoming a crucial step for the large-scale application of ZnO/ZnS hybrid photocatalytic technique. Preparation and characterization of nanosized ZnO/ZnS hybrid photocatalysts were studied in this paper. The photocatalysts were obtained via microwave-hydrothermal crystallization with the help of sodium citrate. The products were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), particle size distribution (PSD), and Fourier transformed infrared spectroscopy (FT-IR). The results indicated that so-synthesized ZnO/ZnS samples consisted of the high pure cubic (sphalerite) ZnS and hexagonal ZnO nanocrystallines with a narrow particle size distribution. The possible formation mechanisms of ZnO/ZnS nanocrystallines were mainly attributed to the superficially protective effect of citrate. The photocatalytic experiments demonstrated that the ZnO/ZnS photocatalysts exhibited a higher catalytic activity for the degradation of acid fuchsine than other monocomponents.
Issue Date: 05 December 2008
 Cite this article:   
ZHAO Liang,ZHAO Jinglian,WANG Xinping. Preparation and characterization of ZnO/ZnS hybrid photocatalysts via microwave-hydrothermal method[J]. Front.Environ.Sci.Eng., 2008, 2(4): 415-420.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-008-0056-2
https://academic.hep.com.cn/fese/EN/Y2008/V2/I4/415
1 Wang Z C, Chen J F, Hu X F . Preparation of nanocrystalline TiO2 powders at near room temperature from peroxo-polytitanic acid gel. Materials Letters, 2000, 43(3): 87–90.
doi:10.1016/S0167-577X(99)00236-0
2 Tanaka T, Teramura K, Yamamoto T . TiO2/SiO2 photocatalysts at low levels of loading: Preparation, structureand photocatalysis. Journal of Photochemistryand Photobiology A: Chemistry, 200, 48(31): 277–281
3 Hsien Y H, Chang C F, Chen Y H . Photodegradation of aromatic pollutants in water overTiO2 supported on molecular sieves. Applied Catalysis B: Environmental, 2001, 31(4): 241–249.
doi:10.1016/S0926-3373(00)00283-6
4 Yoichi I, Junya S, Takashi N . Synthesis of visible-light active TiO2 photocatalyst with Pt-modification: Role of TiO2 substrate for high photocatalytic activity. Applied Catalysis B: Environmental, 2008, 79(2): 117–121.
doi:10.1016/j.apcatb.2007.09.040
5 Ozer R R, Ferry J L . Investigation of the photocatalyticactivity of TiO2-polyoxometalate systems. Environmental Science and Technology, 2001, 35(15): 3242–3246.
doi:10.1021/es0106568
6 Yao B H, Zheng H L, Yang L Q . Studies on preparation of CdS/TiO2/Float pearls coupled photocatalyst and degradation of beta-cypermethrin. Spectroscopy and Spectral Analysis, 2007, 27(5): 1010 (in Chinese)
7 Bedja I, Hotchandani S, Kamat P V . Photosensitization of composite metal oxide semiconductorfilms. Berichte der Bunsengesellschaft/PhysicalChemistry Chemical Physics, 1997, 101(11): 1651–1653
8 Li C H, Hsieh Y H, Chiu W T, Liu C C, Kao C L . Study on preparation and photocatalyticperformance of Ag/TiO2 and Pt/TiO2 photocatalysts. Separationand Purification Technology, 2007, 58(1): 148–151.
doi:10.1016/j.seppur.2007.07.013
9 Xie Y, Li Y Z, Zhao X J . Low-temperature preparation and visible-light-inducedcatalytic activity of anatase F-N-codoped TiO2. Journal of Molecular Catalysis A: Chemical, 2007, 277(1-2): 119–126.
doi:10.1016/j.molcata.2007.07.031
10 Aaron D, Allann M, Martin S . Mechanochemical synthesis of nanocrystalline SnO2-ZnO photocatalysts. Nanotechnology, 2006, 17(3): 692–698.
doi:10.1088/0957-4484/17/3/013
11 Kovtyukhova N I, Buzaneva E V, Waraksa C C . Ultrathin nanoparticle ZnS and ZnS: Mn films: Surfacesol-gel synthesis, morphology, photophysical properties. Materials Science and Engineering B: Solid-StateMaterials for Advanced Technology, 2000, (69): 411–417
12 Xu J F, Zhang J R, Ding W P, Yang W, Cheng G, Du Y, Zou J, Xu C, Zhang Y, Du Z . Optical properties of Zn fine particles coated with ZnOand/or ZnS Solid State Communications. 1997, 101(6): 467–470
13 Masashi T, Hirotaka N, Kazuo T, Koichi K . Particulateassemblies of CdS and TiO2 prepared by Langmuir-Blodgetttechnique with octadecylamine/methylstearate mixed films. Thin Solid Films, 2005, 489(1-2): 205–214.
doi:10.1016/j.tsf.2005.05.010
14 Komarneni S, Darigo M C, Leonelli C . Microwave-hydrothermal synthesis of nanophase ferrites. Journal of the American Ceramic Society, 1998, 81(11): 3041–3043
15 Rajamathi M, Seshadri R . Oxide and chalcogenide nanoparticlesfrom hydrothermal/solvothermal reactions. Current Opinion in Solid State and Materials Science, 2002, 6(4): 337–345.
doi:10.1016/S1359-0286(02)00029-3
16 Masui T, Hirai H, Imanaka N . Synthesis of cerium oxide nanoparticles by hydrothermalcrystallization with citric acid. Journalof Materials Science Letters, 2002, 21(6): 489–491.
doi:10.1023/A:1015342925372
17 Kuang W X, Fan Y N, Yao K W, Chen Y . Catalytic propertiesof ultrafine molybdenum-cerium oxide particles prepared by the sol-gelmethod. Catalysis Letters, 1998, 50(1-2): 31–35.
doi:10.1023/A:1019038228932
18 Marcilly C, Courty P, Delmon B . Preparation of highly dispersed mixed oxides and oxidesolid solutions by pyrolysis of amorphous organic precursors. Journal of America Society, 1970, 53(1): 56–7
19 Zhang H M, Teraoka Y, Yamazoe N . Effects of preparation methods on the methane combustionactivity of supported Mn2O3 and LaMnO3 catalysts. Catalysis Today, 1989, 6(1-2): 155–162.
doi:10.1016/0920-5861(89)85018-7
20 Jang J S, Yu C J, Choi S H, Lee J S . Topotacticsynthesis of mesoporous ZnS and ZnO nanoplates and their photocatalyticactivity. Journal of Catalysis, 2008, 254(1): 144–155.
doi:10.1016/j.jcat.2007.12.010
21 Kakihana M, Kato S, Yashima M . Preparation of tetragonal ZrO2-12 mol% CeO2 and ZrO2-6 mol% YO1.5 solid solutions at reduced temperature by a simpleaqueous solution route using citric acid as a complexant. Journal of Alloys andCompounds, 1998, 280(1-2): 125–130.
doi:10.1016/S0925-8388(98)00716-6
22 Li Z Y, Liu Y, Gong P W, Zhai Y C . Preparationof chain copper oxide nanoparticles by microwave. Rare Metals, 2007, 26(5): 476–481.
doi:10.1016/S1001-0521(07)60248-4
23 Liao D L, Badour C A, Liao B Q . Preparation of nanosized TiO2/ZnOcomposite catalyst and its photocatalytic activity for degradationof methyl orange. Journal of Photochemistryand Photobiology A: Chemistry, 2008, 194(1): 11–19.
doi:10.1016/j.jphotochem.2007.07.008
24 Li J P, Xu Y, Liu Y, Wu D, Sun Y . Synthesis of hydrophilic ZnS nanocrystals and their applicationin photocatalytic degradation of dye pollutants. China Particuology, 2004, 2(6): 266–269.
doi:10.1016/S1672-2515(07)60072-4
25 Linsebigler A L, Lu G, Yates J J T . Photocatalysis on TiO2 surfaces.Principles, mechanisms, and selected results.Chemical Reviews, 1995, 95(3): 735.
doi: 10.1021/cr00035a013
26 Martin S T, Lee A T, Hoffmann M R . Chemical mechanism of inorganic oxidants in the TiO2/UV process: Increased rates of degradation of chlorinatedhydrocarbons. Environmental Science andTechnology, 1995, 29(10): 2567.
doi: 10.1021/es00010a017
27 Hoffmann M R, Martin S T, Choi W Y, et al.. Environmental applications of semiconductorphotocatalysis. Chemical Reviews, 1995, 95(1): 69–96.
doi:10.1021/cr00033a004
28 Di Paola A, Palmisano L, Venezia A M . Coupled semiconductor systems for photocatalysis. Preparationand characterization of polycrystalline mixed WO3/WS2 powders.Journalof Physical Chemistry B, 1999, 103(39): 8236–8244.
doi:10.1021/jp9911797
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed