Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front Envir Sci Eng Chin    2009, Vol. 3 Issue (1) : 69-74    https://doi.org/10.1007/s11783-008-0076-y
Research Article
Contribution of black carbon to nonlinearity of sorption and desorption of acetochlor on sediment
Jianqiu LIU, Yaobin ZHANG(), Hong CHEN, Yazhi ZHAO, Xie QUAN
Key Laboratory of Industrial Ecology and Environmental Engineering
 Download: PDF(111 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In order to investigate the contribution of various black carbon (BC) contents to nonlinearity of sorption and desorption isotherms for acetochlor on sediment, equilibrium sorption and desorption isotherms were determined to measure sorption and desorption of acetochlor in sediment amended with various amounts of BC. In this paper, two types of BC referred to as BC400 and BC500 were prepared at 400°C and 500°C, respectively. Higher preparation temperature facilitated the formation of micropores on BC to enhance its sorption capacity. Increase of the BC content obviously increased the sorption amount and reduced the desorption amount for acetochlor. When the BC500 contents in total organic carbon (TOC) increased from 0 to 60%, Freundlich sorption coefficient (Kf) increased from 4.07 to 35.74, and desorption hysteresis became gradually obvious. When the content of BC in TOC was lower than 23%, the sorption isotherm had a significant linear correlation (p = 0.05). In case of desorption, a significant nonlinear change could be observed when the content of BC was up to 13%. Increase of BC content in the sediment would result in shifting the sorption-desorption isotherms from linearity to nonlinearity, which indicated that contribution of BC to nonlinear adsorption fraction became gradually remarkable.

Keywords black carbon (BC)      sorption      desorption      sediment     
Corresponding Author(s): ZHANG Yaobin,Email:zhangyb@dlut.edu.cn   
Issue Date: 05 March 2009
 Cite this article:   
Jianqiu LIU,Yaobin ZHANG,Hong CHEN, et al. Contribution of black carbon to nonlinearity of sorption and desorption of acetochlor on sediment[J]. Front Envir Sci Eng Chin, 2009, 3(1): 69-74.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-008-0076-y
https://academic.hep.com.cn/fese/EN/Y2009/V3/I1/69
type of BCSSA/m2·g-1Vmicrototal/mL·g-1Vporetotal/mL·g-1Vmicrototal/Vporetotal
BC400148.130.0420.09146.15%
BC500299.710.160.1888.89%
Tab0  Characteristics of two types of BC
Fig0  Freundlich sorption isotherms on the sediment amended with BC400 and BC500
1 StamperD M, TrainaS J, TuovinenO H. Anaerobic transformation of alachlor, propachlor, and metolachlor with sulfide. J. Environ. Qual. , 1997, 26: 488–494
2 NamK, AlexanderM. Role of nanoporosity and hydrophobicity in sequestration and bioavailability: tests with model solids. Environ. Sci. Technol. , 1998, 32: 71–74
doi: 10.1021/es9705304
3 HuangW L, YuH, WeberJr. Hysteresis in the sorption and desorption of hydrophobic organic contaminants by soils and sediments. 1. A comparative analysis of experimental protocols. J. Contam. Hydrol. , 1998, 31: 129–148 (in Dutch)
4 KanA T, FuG, HunterM, ChenW, WardC H, TomsonM B. Irreversible sorption of neutral hydrocarbons to sediments: experimental observations and model predictions. Environ. Sci. Technol ., 1998, 32: 892–902
doi: 10.1021/es9705809
5 HuangW L, PIngP A, YuZ Q, FuH M. Effects of organic matter heterogeneity on sorption and desorption of organic contaminants by soils and sediments. J. Appl. Geochem. , 2003, 18: 955–972
doi: 10.1016/S0883-2927(02)00205-6
6 GoldbergE D. Black Carbon in the Environment: Properties and Distribution. New York: John Wiley, 1985
7 SchmidtM W I, NoackA G. Black carbon in soils and sediments: Analysis, distribution, implication, and challenges. Global Biogeochem.Cycles , 2002, 14: 777–793
doi: 10.1029/1999GB001208
8 BraidaW J, PignatelloJ J, LuY, RavikovitchP I, NeimarkA V, XingB. Sorption Hysteresis of Benzene in Charcoal Particles. Environ. Sci. Technol ., 2003, 37: 409–417
doi: 10.1021/es020660z
9 Accardi-DeyA, GschwendP M. Reinterpreting literature sorption data considering both absorption into organic carbon and adsorption onto black carbon. Environ. Sci. Technol. , 2003, 37: 99–106
doi: 10.1021/es020569v
10 CornelissenG, Gustafson?. Sorption of phenanthrene to environmental black carbon in sediment with and without organic matter and native sorbates. Environ. Sci. Technol ., 2004, 38: 148–155 (in Dutch)
doi: 10.1021/es034776m
11 HuangW L, WeberW J Jr. A distributed reactivity model for sorption by soils and sediments. 10. Relationships between desorption, hysteresis, and the chemical characteristics of organic domains. Environ. Sci. Technol. , 1997, 31: 2562–2569 (in Dutch)
doi: 10.1021/es960995e
12 CornelissenG, RigterinkH, TenH D E M, VrindB E A A, VanN P C M. A simple TENAX extraction method to determine the availability of sediment-sorbed organic compounds. Environ. Toxicol. Chem. , 2001, 20: 706–711
doi: 10.1897/1551-5028(2001)020<0706:ASTEMT>2.0.CO;2
13 Allen-KingR M, GrathwohlP, BallW P. Ozone oxidation of compounds resistant to biological degradation. Water Res. , 2002, 25: 985–993
doi: 10.1016/S0309-1708(02)00045-3
14 Accardi-DeyA, GschwendP M. Reinterpreting literature sorption data considering both absorption into organic carbon and adsorption onto black carbon. Environ. Sci. Technol. , 2003, 37: 99–106
doi: 10.1021/es020569v
15 MiddelburgJ J, NieuwenhuizeJ, Van BreugelP. Black carbon in marine sediments. Mar. Chem. , 1999, 65: 245–252
doi: 10.1016/S0304-4203(99)00005-5
16 Gustafsson?, GschwendP M. The flux of black carbon to surface sediments on the New England continetal shelf. Geochim. Cosmichim.Acta , 1998, 62: 465–472
[1] Seyyed Salar Meshkat, Ebrahim Ghasemy, Alimorad Rashidi, Omid Tavakoli, Mehdi Esrafili. Experimental and DFT insights into nitrogen and sulfur co-doped carbon nanotubes for effective desulfurization of liquid phases: Equilibrium & kinetic study[J]. Front. Environ. Sci. Eng., 2021, 15(5): 109-.
[2] Guolong Zeng, Yiyang Liu, Xiaoguo Ma, Yinming Fan. Fabrication of magnetic multi-template molecularly imprinted polymer composite for the selective and efficient removal of tetracyclines from water[J]. Front. Environ. Sci. Eng., 2021, 15(5): 107-.
[3] Hefu Pu, Aamir Khan Mastoi, Xunlong Chen, Dingbao Song, Jinwei Qiu, Peng Yang. An integrated method for the rapid dewatering and solidification/stabilization of dredged contaminated sediment with a high water content[J]. Front. Environ. Sci. Eng., 2021, 15(4): 67-.
[4] Ragini Pirarath, Palani Shivashanmugam, Asad Syed, Abdallah M. Elgorban, Sambandam Anandan, Muthupandian Ashokkumar. Mercury removal from aqueous solution using petal-like MoS2 nanosheets[J]. Front. Environ. Sci. Eng., 2021, 15(1): 15-.
[5] Wenzhong Tang, Liu Sun, Limin Shu, Chuang Wang. Evaluating heavy metal contamination of riverine sediment cores in different land-use areas[J]. Front. Environ. Sci. Eng., 2020, 14(6): 104-.
[6] Lingchen Kong, Xitong Liu. Emerging electrochemical processes for materials recovery from wastewater: Mechanisms and prospects[J]. Front. Environ. Sci. Eng., 2020, 14(5): 90-.
[7] Yang Deng. Low-cost adsorbents for urban stormwater pollution control[J]. Front. Environ. Sci. Eng., 2020, 14(5): 83-.
[8] Wenlu Li, John D. Fortner. (Super)paramagnetic nanoparticles as platform materials for environmental applications: From synthesis to demonstration[J]. Front. Environ. Sci. Eng., 2020, 14(5): 77-.
[9] Xinyi Hu, Ting Yang, Chen Liu, Jun Jin, Bingli Gao, Xuejun Wang, Min Qi, Baokai Wei, Yuyu Zhan, Tan Chen, Hongtao Wang, Yanting Liu, Dongrui Bai, Zhu Rao, Nan Zhan. Distribution of aromatic amines, phenols, chlorobenzenes, and naphthalenes in the surface sediment of the Dianchi Lake, China[J]. Front. Environ. Sci. Eng., 2020, 14(4): 66-.
[10] Meng Zhu, Yongming Luo, Ruyi Yang, Shoubiao Zhou, Juqin Zhang, Mengyun Zhang, Peter Christie, Elizabeth L. Rylott. Diphenylarsinic acid sorption mechanisms in soils using batch experiments and EXAFS spectroscopy[J]. Front. Environ. Sci. Eng., 2020, 14(4): 58-.
[11] Jing Li, Haiqin Yu, Xue Zhang, Rixin Zhu, Liangguo Yan. Crosslinking acrylamide with EDTA-intercalated layered double hydroxide for enhanced recovery of Cr(VI) and Congo red: Adsorptive and mechanistic study[J]. Front. Environ. Sci. Eng., 2020, 14(3): 52-.
[12] Ouchen Cai, Yuanxiao Xiong, Haijun Yang, Jinyong Liu, Hui Wang. Phosphorus transformation under the influence of aluminum, organic carbon, and dissolved oxygen at the water-sediment interface: A simulative study[J]. Front. Environ. Sci. Eng., 2020, 14(3): 50-.
[13] Alisa Salimova, Jian’e Zuo, Fenglin Liu, Yajiao Wang, Sike Wang, Konstantin Verichev. Ammonia and phosphorus removal from agricultural runoff using cash crop waste-derived biochars[J]. Front. Environ. Sci. Eng., 2020, 14(3): 48-.
[14] Ziwen Du, Chuyi Huang, Jiaqi Meng, Yaru Yuan, Ze Yin, Li Feng, Yongze Liu, Liqiu Zhang. Sorption of aromatic organophosphate flame retardants on thermally and hydrothermally produced biochars[J]. Front. Environ. Sci. Eng., 2020, 14(3): 43-.
[15] Zhenyu Yang, Rong Xing, Wenjun Zhou, Lizhong Zhu. Adsorption characteristics of ciprofloxacin onto g-MoS2 coated biochar nanocomposites[J]. Front. Environ. Sci. Eng., 2020, 14(3): 41-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed