Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front Envir Sci Eng Chin    0, Vol. Issue () : 226-235    https://doi.org/10.1007/s11783-009-0008-5
RESEARCH ARTICLE
Evaluation of factors influencing soluble microbial product in submerged MBR through hybrid ASM model
Fangyue LI1(), Joachim BEHRENDT2, Knut WICHMANN1, Ralf OTTERPOHL2
1. Institute of Water Resources and Water Supply, Hamburg University of Technology, Schwarzenbergstr. 95 E, D-21073 Hamburg, Germany; 2. Department of Wastewater Management, Hamburg University of Technology, Eissendorfer Strasse 42, D-21073 Hamburg, Germany
 Download: PDF(305 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In this study, a mathematical model was established to predict the formation of the soluble microbial product (SMP) in a submerged membrane bioreactor. The developed model was calibrated under the reference condition. Simulation results were in good agreement with the measured results under the reference condition. The calibrated model was then used in the scenario studies to evaluate the effect of three chosen operating parameters: hydraulic retention time (HRT), dissolved oxygen concentration, and sludge retention time (SRT). Simulation results revealed that the SMP dominated the soluble organic substances in the supernatant. The scenario studies also revealed that the HRT can be decreased to 1 h without deteriorating the effluent quality; dissolved oxygen concentration in the reactor can be kept at 2-3 mg/L to maintain the effluent quality, reduce the content of SMP, and minimize operating costs; the optimal SRT can be controlled to 10-15 d to achieve complete nitrification process, less membrane fouling potential, and acceptable organic removal efficiency.

Keywords hybrid activated sludge model (ASM)      membrane bioreactor (MBR)      soluble microbial product (SMP)     
Corresponding Author(s): LI Fangyue,Email:Li.fangyue@tu-harburg.de   
Issue Date: 05 June 2009
 Cite this article:   
Fangyue LI,Joachim BEHRENDT,Knut WICHMANN, et al. Evaluation of factors influencing soluble microbial product in submerged MBR through hybrid ASM model[J]. Front Envir Sci Eng Chin, 0, (): 226-235.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-009-0008-5
https://academic.hep.com.cn/fese/EN/Y0/V/I/226
Fig.1  Schematic description of the hybrid ASM1 model
component i123456789101112131415Process
process jSISSXIXSXBHXBAXPSUAPSBAPXEPSSOSNOSNHSNDXND
aerobic growth of heterotrophs-1YH1-1-k1-kEPS-(1-k1-kEPS)?YH(1-k1-kEPS)?YH-iXBYH?(1-k1-KEPS)?qS?(SSKS+SS)?(SOKOH+SO)?XBH
aerobic growth of heterotrophs on UAP1-1YSMP-1-YSMPYSMP-iXBYSMP?(qUAP?SUAPKUAP+SUAP)?(SOKOH+SO)?XBH
aerobic growth of heterotrophs on BAP1-1YSMP-1-YSMPYSMP-iXBYSMP?(qBAP*SBAPKBAP+SBAP)?(SOKOH+SO)?XBH
aerobic growth of autotrophs1-4.57-k1a-kEPSa-(1-k1a-kEPSa)?YA(1-k1a-kEPSa)?YA1YA-iXB-1YAYA?(1-k1a-KEPSa)?qSa?(SNHKNH+SNH)?(SOKOA+SO)?XBA
decay of heterotrophs1-fP-1fPiXB-fP?iXPbH?XBH
decay of Autotrophs1-fP-1fPiXB-fP?iXPbA?XBA
ammonification of soluble organic nitrogen1-1ka?S?NDXBH
hydrolysis of entrapped organics1-1kh?(XS/XBHKX+XS/XBH)?(SOKOH+SO)?XBH
hydrolysis of entrapped organic nitrogen1-1kh?(XS/XBHKX+XS/XBH)?(SOKOH+SO)?XBH?(XND/XS)
formation of BAP due to hydrolysis of EPS1-1khyd?XEPS
EPS formation by heterotrophs-11kEPS?qS?(SSKS+SS)?(SOKOH+SO)?XBH
EPS formation by autotrophs1-1kEPSa?qSa?(SNHKNH+SNH)?(SOKOA+SO)?XBA
UAP formation by heterotrophs-11k1?qS?(SSKS+SS)?(SOKOH+SO)?XBH
UAP formation by autotrophs1-1k1a?qSa?(SNHKNH+SNH)?(SOKOA+SO)?XBA
Tab.1  Process kinetics and stoichiometry for carbon oxidation, nitrification, and formation and degradation of SMP
Fig.2  Schematic diagram of the MBR grey water treatment system
Fig.3  Oxygen uptake rate and cumulative amount of oxygen demand
Fig.4  Dependence of soluble supernatant COD on the major stoichiometric and kinetic parameters
symboldescriptionunitvaluereference
stoichiometric parameters
YHheterotrophic yield coefficientg XH/g SS0.72estimated
YAautotrophic yield coefficientg XA/g NH0.24[6]
YSMPyield for SMP utilizationg COD/g SMP0.50estimated
k1UAP formation coefficient due to XHg CODUAP/g COD0.25[15]
k1aUAP formation coefficient due to XAg CODUAP/g N0.1[15]
kEPSEPS formation coefficient due to XHg CODEPS/g COD0.25[15]
kEPSaEPS formation coefficient due to XAg CODEPS/g N0.1[15]
iXBmass of nitrogen per mass of COD in biomassg N/g COD0.0875[6]
iXPmass of nitrogen per mass of COD in products from biomassg N/g COD0.06[6]
fpfraction of biomass leading to particulate productsdimensionless0.08[6]
kinetic parameters
qSmax. specific heterotrophic substrate utilization rateg/(g XH?d)8.33estimated
qSamax. specific autotrophic substrate utilization rateg/(g XA?d)3.3estimated
qUAPmax. specific UAP utilization rateg/(g XH?d)1.5estimated
qBAPmax. specific BAP utilization rateg/(g XH?d)0.75estimated
KSsubstrate half saturation coefficient for heterotrophic biomassg COD/m310[14]
KOHoxygen half saturation coefficient for heterotrophic biomassg O2/m30.2[6]
KUAPUAP half saturation coefficient for heterotrophic biomassg CODUAP/m324[14]
KBAPBAP half saturation coefficient for heterotrophic biomassg CODBAP/m370[14]
KNHammonia half-saturation coefficient for autotrophic biomassg NH4–N/m31.0[6]
KOAoxygen half saturation coefficient for autotrophic biomassg O2/m30.4[6]
KXhalf-saturation coefficient for hydrolysis of slowly biodegradable substrateg CODsb/g COD0.03[6]
bHdecay coefficient for heterotrophic biomass1/d0.62[6]
bAdecay coefficient for autotrophic biomass1/d0.08[6]
kaammonification coefficientm3?COD/(g?d)0.08[6]
khmaximum specific hydrolysis rateg CODsb/(g COD?d)3.0[6]
khydfirst order EPS hydrolysis rate1/d0.17[15]
process parameter
wwSMPfraction of BAP rejected by membranedimensionless0.6estimated
Tab.2  Values of kinetic and stoichiometric parameters
Fig.5  Comparison of measured results with predicted results by the model
Fig.6  Influence of HRT on the soluble components
Fig.7  Influence of dissolved oxygen on the soluble components
Fig.8  Influence of SRT on the soluble components
1 Laspidou C S, Rittmann B E. Non-steady state modeling of extracellular polymeric substances, soluble microbial productsand active and inert biomass. Water Res ., 2002a, 36: 1983-1992
doi: 10.1016/S0043-1354(01)00414-6
2 Laspidou C S, Rittmann B E. A unified theory for extracellular polymeric substances, soluble microbial productsand active and inert biomass. Water Res ., 2002b, 36: 2711-2720
doi: 10.1016/S0043-1354(01)00413-4
3 Lee Y, Cho J, Seo Y, Lee J W, Ahn K H. Modeling of submerged membrane bioreactor process for wastewater treatment. Desalination , 2002, 146(1-3): 451-457
doi: 10.1016/S0011-9164(02)00543-X
4 Le-Clech P, Chen V, Fane T A G. Fouling in membrane bioreactors used in wastewater treatment. J. Membr. Sci ., 2006, 284(1-2): 17-53
doi: 10.1016/j.memsci.2006.08.019
5 Rosenberger S, Laabs C, Lesjean B, Gnirss R, Amy G, Jekel M, Schrotter J C. Impact of colloidal and soluble organic material on membrane performance in membrane bioreactors for municipal wastewater treatment. Water Res ., 2006, 40: 710-720
doi: 10.1016/j.watres.2005.11.028
6 Henze M, Gujer W, Mino T, van Loosdrecht M C M. Activated Sludge Models ASM1, ASM2, ASM2d and ASM3. IWA Scientific and Technical Report 9 IWA . London, 2000
7 Ng A N L, Kim A S A. Mini-review of modeling studies on membrane bioreactor (MBR) treatment for municipal wastewaters. Desalination , 2007, 212: 261-281
doi: 10.1016/j.desal.2006.10.013
8 Lu S G, Imai T, Ukita M, Sekine M, Higuchi T, Fukagawa M. A model for membrane bioreactor process based on the concept of formation and degradation of soluble microbial products. Water Res ., 2001, 35: 2038-2048
doi: 10.1016/S0043-1354(00)00461-9
9 Ahn Y T, Choi Y K, Jeong H S, Chae S R, Shin H S. Modelling of extracellular polymeric substances and soluble microbial products production in a submerged membrane bioreactor at various SRTs. Water Sci. Technol ., 2006, 53(7): 259-266
doi: 10.2166/wst.2006.330
10 Spanjers H, Vanrolleghem P A, Olsson G, Dold P L. Respirometry in control of the activated sludge process. Water Sci. Technol ., 1996, 34 (3-4): 117-126
doi: 10.1016/0273-1223(96)84211-9
11 Reichert P. AQUISM 2.0: Computer program for the identification and simulation of aquatic systems. Switzerland: EAWAG, Swiss Federal Institute for Environmental Science and Technology , 1998
12 Frimmel F H. Characterization of natural organic matter as major constituents in aquatic systems. J. Contam. Hydrol ., 1998, 35: 201-216
doi: 10.1016/S0169-7722(98)00133-8
13 Vanrolleghem P A, Spanjers H, Petersen B, Ginestet P, Takacs I. Estimating (combinations of) activated sludge model No. 1 parameters and components by respirometry. Water Sci. Technol ., 1999, 39(1): 195-214
doi: 10.1016/S0273-1223(98)00786-0
14 de Silva D G V, Urbain V, Abeysinghe D H, Rittmann B E. Advanced analysis of membrane-bioreactor performance with aerobic-anoxic cycling. Water Sci. Technol ., 1998, 38(4-5): 505-512
doi: 10.1016/S0273-1223(98)00551-4
15 Merkey B V, Rittmann B E, Chopp D L. A Multi-species, Multi-component Biofilm Model. 2006 http://www.esam.northwestern.edu/~chopp/papers/1dPaper.pdf
16 Namkung E, Rittmann B E. Soluble microbial products (SMP) formation kinetics by biofilms. Water Res ., 1986, 20: 795-806
doi: 10.1016/0043-1354(86)90106-5
17 Kang I J, Lee C H, Kim K J. Characteristics of micro-filtration membrane in a membrane coupled sequencing batch reactor system. Water Res ., 2003, 37: 1192-1197
doi: 10.1016/S0043-1354(02)00534-1
18 Jang N, Ren X, Choi K, Kim I S. Comparison of membrane bio-fouling in nitrification and denitrification for the membrane bioreactor (MBR). Water Sci. Technol ., 2006, 53(6): 43-49
doi: 10.2166/wst.2006.169
19 Drews A, Mante J, Iversen V, Vocks M, Lesjean B, Kraume M. Impact of ambient conditions on SMP elimination and rejection in MBRs. Water Res ., 2007, 41: 3850-3858
doi: 10.1016/j.watres.2007.05.046
20 Barker D J, Stuckey D C. A review of soluble microbial products (SMP) in wastewater treatment systems. Water Res ., 1999, 33: 3063-3082
doi: 10.1016/S0043-1354(99)00022-6
[1] Tingwei Gao, Kang Xiao, Jiao Zhang, Wenchao Xue, Chunhai Wei, Xiaoping Zhang, Shuai Liang, Xiaomao Wang, Xia Huang. Techno-economic characteristics of wastewater treatment plants retrofitted from the conventional activated sludge process to the membrane bioreactor process[J]. Front. Environ. Sci. Eng., 2022, 16(4): 49-.
[2] Jinlan Yu, Kang Xiao, Wenchao Xue, Yue-xiao Shen, Jihua Tan, Shuai Liang, Yanfen Wang, Xia Huang. Excitation-emission matrix (EEM) fluorescence spectroscopy for characterization of organic matter in membrane bioreactors: Principles, methods and applications[J]. Front. Environ. Sci. Eng., 2020, 14(2): 31-.
[3] Kang XIAO, Ying XU, Shuai LIANG, Ting LEI, Jianyu SUN, Xianghua WEN, Hongxun ZHANG, Chunsheng CHEN, Xia HUANG. Engineering application of membrane bioreactor for wastewater treatment in China: Current state and future prospect[J]. Front. Environ. Sci. Eng., 2014, 8(6): 805-819.
[4] Xia HUANG, Kang XIAO, Yuexiao SHEN. Recent advances in membrane bioreactor technology for wastewater treatment in China[J]. Front.Environ.Sci.Eng., 2010, 4(3): 245-271.
[5] LIU Chun, HUANG Xia. Enhanced atrazine removal using membrane bioreactor bioaugmented with genetically engineered microorganism[J]. Front.Environ.Sci.Eng., 2008, 2(4): 452-460.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed