Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front Envir Sci Eng Chin    0, Vol. Issue () : 62-68    https://doi.org/10.1007/s11783-009-0009-4
RESEARCH ARTICLE
Soil selenium concentration and Kashin-Beck disease prevalence in Tibet, China
Shunjiang LI1,2(), Wei LI1, Xia HU3, Linsheng YANG2, Ruodeng XIRAO4
1. School of Environment, Beijing Normal University, Beijing 100875, China; 2. Institute of Geographical Science and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; 3. Academy of Disaster Reduction and Emergency Management, Beijing Normal University, Beijing 100875, China; 4. Tibet Municipality Centers for Disease Control and Prevention, Lhasa 850000, China
 Download: PDF(361 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In order to investigate the correlation between the prevalence of Kashin-Back disease (KBD) and Se concentrations, natural soil samples and cultivated soil samples were collected from southeastern Tibet, China; and the soil Se concentrations were measured by atomic fluorescent spectrophotometer. It was found that the mean Se concentrations of natural soil samples in KBD areas, from the first layer to the third layer, were 0.17 mg/kg, 0.11 mg/kg, and 0.10 mg/kg, respectively, and in non-disease areas were 0.21 mg/kg, 0.24 mg/kg, and 0.13 mg/kg, respectively. The mean Se concentrations of cultivated soil samples were 0.10 mg/kg in KBD areas and 0.23 mg/kg in non-disease areas, respectively. Soil Se concentrations in KBD areas were lower than that in non-disease areas, and the mean concentrations of soil Se in Tibet were lower than the average of China (0.29 mg/kg). Therefore , there is a close relationship between soil Se concentrations and KBD in Tibet. More studies should be concentrated on the impacts of Se deficiency in soils and its relationship with Se concentrations in food-grain and the human body in Tibet areas.

Keywords Kashin-Beck disease (KBD)      selenium (Se)      soil      Tibet     
Corresponding Author(s): LI Shunjiang,Email:shunjiangli@163.com   
Issue Date: 05 March 2009
 Cite this article:   
Shunjiang LI,Wei LI,Xia HU, et al. Soil selenium concentration and Kashin-Beck disease prevalence in Tibet, China[J]. Front Envir Sci Eng Chin, 0, (): 62-68.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-009-0009-4
https://academic.hep.com.cn/fese/EN/Y0/V/I/62
Fig.1  Distribution of Kashin-Beck disease in China []
Fig.2  Soil selenium deficiency in China []
Fig.3  Locations of sampling sites in Tibet
sample codelocation (village, county)depth of soil layers/cmclimate type
A+Kanuo, ChangduA1: 0-12; A2: 12-40; A3: 40-60humid climate
B+Kangsha, LuolongB1: 0-25; B2: 25-44; B3: 44-60
E-Yongcun,BianbaE1: 0-10; E2: 10-40; E3: 40-140
D+Dabasa, GongbujinagdaD1: 0-10; D2: 10-30; D3: 30-50
F-Gangshui, BianbaF1: 0-10; F2: 10-26; F3: 26-48
H-Ranni, LuolongH1: 0-11; H2: 11-31
I-Ma-ga, LuolongI1: 0-20; I2: 20-40; I3: 40-70
J-A’mai, LinzhouJ1: 0-10; J2: 10-30subhumid climate
K-Biba, SangriK1: 0-30; K2: 30-70; K3: 70-140
L-Sangga, NaidongL1: 0-9; L2: 9-18; L3: 18-90
C+Lukang, SangriC1: 0-40; C2: 40-80; C3: 80-160
Tab.1  Information of natural soil samples
sample codelocation(village, county)climate typesample codelocation(village, county)climate type
S1-Xialin, Bianbahumid climateS12+Nibi, Gongbujiangdahumid climate
S2-Kanuo, ChangduS13+Zhongcun, Gongbujiangda
S4-Kangsha, LuolongS14+Dabasa, Gongbujiangda
S6+Wengcun, BasuS16+Maga, Luolong
S7+Yongcun, BianbaS17+Ranni, Luolong
S8+Yongcun, BianbaS18+Ranni, Luolong
S9+Gangshui, BianbaS19+Zhongsong, Luolong
S10+Jue’a, BianbaS20+Zhongsong, Luolong
S11+Nanduo, Bomi
S3-Zongxue, Linzhousub-humidS15+-A’mai, Linzhousub-humid climate
S5-Lukang, SangriclimateS21+Sangga, Naidong
S22+Biba, Sangri
Tab.2  Information of cultivated soil samples
Fig.4  Se concentrations in different layer of all natural soil samples
(Sampling sites A, B, D, E, F, H, and I are in humid climate areas, and J, K, L, and C are in sub-humid climate areas
soil layerminimum/(mg?kg-1)maximum/(mg?kg-1)average/(mg?kg-1)t-test between first and third layer
t valuep value
first layer0.130.390.23±0.112.8860.015
second layer 0.090.340.15±0.09
third layer0.050.280.10±0.04
Tab.3  -test results about average concentrations of Se in natural soil samples in humid area in Tibet
soiltotal comparisons/(mg?kg-1)group comparisons/(mg?kg-1)
averageminimummaximumKBD-affected areasnon-disease areas
first layer0.19 ± 0.10 (11)0.060.390.17 ± 0.10 (7)0.21 ± 0.13 (4)
second layer0.15 ± 0.09 (11)0.070.340.11 ± 0.03 (7)0.24 ± 0.10 (4)
third layer0.11 ± 0.07 (10)0.060.280.10 ± 0.04 (6)0.13 ± 0.10 (4)
Tab.4  Statistic results about Se concentrations of natural soil samples in Tibet
cultivated soilsaverage/(mg?kg-1)minimum/(mg?kg-1)maximum/(mg?kg-1)t-test between KBD-affected and non-disease areas
t valuep value
KBD-affected areas0.10±0.08 (17) *0.040.382.1360.045
non-disease areas0.23±0.21 (5)0.060.59
total China topsoil [34]0.29
Tab.5  Se concentration of cultivated soils in Tibet
humid areassub-humid areas
sampling sites(village, county)cultivated soil/(mg?kg-1)natural soil/(mg?kg-1)sampling sites(village, county)cultivated soil/(mg?kg-1)natural soil/(mg?kg-1)
Kanuo, Changdu0.060.13A’mai, Linzhou0.050.16
Kangsha, Luolong0.140.39Biba, Sangri0.080.06
Dabasa, Gongbujiangda0.070.22Sangga, Naidong0.070.07
Yongcun, Bianba0.070.24Lukang, Sangri0.130.10
Ranni, Luolong0.070.15
Ma-ga, Luolong0.110.15
Tab.6  Se concentrations of the topsoil in natural and cultivated soil samples
1 EGAS (The group of environment and endemic disease, institute of geography, Chinese academy of Sciences). The characteristics of geographical epidemiology for Kashin-Beck disease in China and its pathogenicity. Scientia Geographica Sinica , 1985, 5(1): 1-8 (in Chinese)
2 Hinsenkamp M. Kashin-Beck disease. International Orthopaedics (SICOT) , 2001, 25: 133
doi: 10.1007/s002640000177
3 Wang W Y, Wang M Y, Zhu Z Y, Wang L Z, Li D Z. Study on the geographical epidemiology on Keshan and Kashin-Beck disease of Tibet. In: Proceedings of the Second Chemical Geography Conference of China . Beijing: Science Press, 1985, 85-91 (in Chinese)
4 Zhu Z Y, Hou S F. Researches on geographical cause of Kashin-Beck disease and Keshan disease. Scientia Geographica Sinica , 1984, 4(4): 365-373 (in Chinese)
5 Tan J A, Zhu W Y, Wang W Y, Li R B, Hou S F, Wang D S, Yang L S. Selenium in soil and endemic diseases in China. Science of the Total Environment , 2002, 284: 227-235
6 Utiger R D. Kashin-Beck disease-expanding the spectrum of iodine-deficiency. The New England Journal of Medicine , 1998, 339(16): 1156-1158
doi: 10.1056/NEJM199810153391611
7 Oldfield J E. Contributions of animals to nutrition research with selenium. In: Combs G F, Spallholz J E, Levander O A, Oldfield J E, eds. Selenium in Biology and Medicine. Third International Symposium 1984 Beijing . New York: Van Nostrand Reinhold Company, 1987, 33-46
8 Stadtman T C. Bacterial selenoenzymes and seleno–tREAs. In: Combs G F, Spallholz J Z, Levander O A, Oldfield J E, eds. Selenium in Biology and Medicine. Third International Symposium 1984 Beijing . New York: Van Nostrand Reinhold Company, 1987, 81-89
9 WHO. Environmental Health, Criteria 58, Selenium. 1987, 91-123
10 Tan J A, Li R B, Hou S F, Zhu W Y, Zheng D X, Zhu Z Y, eds. Environment Selenium and Health. Beijing: People Health Publishing Company, 1989, 4-34 (in Chinese)
11 Hou S F, Zhu Z Y. A study of selenium nutrition state of the population in the Kashin-Beck disease regions in China. Chinese Journal of Endemiology , 1982, 1(2): 84-89 (in Chinese)
12 Tan J A, ed. The Atlas of Endemic Disease and Their Environments in the People’s Republic of China. Beijing: Science Press, 1989, 83-86
13 Moreno-Reyes R, Suetens C, Mathieu F, Begaux F, Zhu D, Rivera M T, Boelaert M, Nève J, Perlmutter N, Vanderpas J. Kashin-Beck osteoarthropathy in rural Tibet in relation to selenium and iodine status. The New England Journal of Medicine , 1998, 339(16): 1112-1120
doi: 10.1056/NEJM199810153391604
14 National KBD surveillance group. The monitoring report of KBD prevalence rate of the whole country in 1999. Chinese Journal of Endemiology , 1999, 18(5): 344-348 (in Chinese)
15 National KBD surveillance group. The monitoring report of KBD prevalence rate of the whole country in 2000. Chinese Journal of Endemiology , 2000, 19(6): 433-435 (in Chinese)
16 National KBD surveillance group. The monitoring report of KBD prevalence rate of the whole country in 2001. Chinese Journal of Endemiology , 2001, 20(5): 350-353 (in Chinese)
17 Yang L S, Li H R, Wang W Y, Tan J A, Li Y H. Study on the relationship between Kashin-Beck disease distribution and land use changes in Tibet. Chinese Journal of Endemiology , 2003, 18(5): 284-286 (in Chinese)
18 Wan X Y, Wu Q, Zhang X Y, Wang Y Q, Cui Y G, Shao X Z, Duan L B, Feng B X. The monitoring report of KBD prevalence rate of Jilin province in 2003. Chinese Journal of Endemiology , 2003, 18(5): 309 (in Chinese)
19 Zhou X G, Xu J M, Wang W L, Wu M L, Ren Y G, Li J, Li X W, Zhang B, Wang J, Yu A L, Wang L. Analysis of factors leading to epidemic decline of Kashin-Beck disease in Gansu. Endemic Diseases Bulletin , 1995, 10(4): 38-42 (in Chinese)
20 Li J, Ding Z Q P. The monitor report of Kashin-Beck disease prevalence rate in Changdu of Tibet. Chinese Journal of Endemiology , 2001, 20(2): 130-131 (in Chinese)
21 Investigative group on KBD in Tibet of Center for endemic control of China. Investigative report on the prevalence condition of Kashin-Beck disease in Tibet. Chinese Journal of Endemiology , 2000, 19(1): 41-43 (in Chinese)
22 Yamamuro T. Kashin-Beck disease: A historical overview. International Orthopaedics (SICOT) , 2001, 25: 134-137
doi: 10.1007/s002640000178
23 Chasseur C, Suetens C, Michel V, Mathieu F, Begaux F, Nolard N, Haubruge E. A 4-year study of the mycological aspects of Kashin-Beck disease in Tibet. International Orthopaedics (SICOT) , 2001, 25: 154-158
doi: 10.1007/s002640000218
24 Malaisse F, Haubruge E, Mathieu F, Begaux F. Ethno-agricultural approach to the rural environment in the prevention of Kashin-Beck disease. International Orthopaedics (SICOT) , 2001, 25: 170-174
doi: 10.1007/s002640000215
25 Wang Z J, Gao Y X. Biogeochemical cycling of selenium in Chinese environments. Applied Geochemistry , 2001, 16: 1345-1351
doi: 10.1016/S0883-2927(01)00046-4
26 Niu G H, Zhang B Z, Li X Z, Liu J X, Zhu Z Y, Hou S F. Results of study of two years on the preventing and controlling Kashin-Beck disease with selenium seen under X-rays and discussion of etiology. Chinese Journal of Endemiology , 1984, 3(2): 197-201
27 Zhang R Z, Zheng D, Yang Q Y, eds. Physical Geography of Tibet. Beijing: Science Press, 1982, 14-87 (in Chinese)
28 Guo X W, Zhang W Q, Yang M Y. Determination of trace amount of selenium and tellurium in geological samples by hydride generation nondispersive atomic fluorescence spectrometry. Acta Petrologica Mineralogica et Analytica , 1983, 2(4): 288-192 (in Chinese)
29 Chen F S, Zeng D H, He X Y. Small-Scale spatial variability of soil nutrients and vegetation properties in semi-arid Northern China. Pedosphere , 2006, 16(6): 778-787
doi: 10.1016/S1002-0160(06)60114-8
30 Buber A, Zhang D W, Liu L. Regional environmental differentiation and regional safety threshold of soil selenium. Acta Pedologica Sinica , 1995, 32(2): 186-193 (in Chinese)
31 Yang L S, Lv Y, Li H R, Li S J, Li Y H, Wang W Y, Tan J A. Study on the relationship between Kashin-Beck disease (KBD) distribution and mountain semi-Luvisols’ distribution in Tibet. Progress in Geography , 2005, 24(2): 24-29 (in Chinese)
32 Yang L S, Lv Y, Li H R, Li S J, Li Y H, Wang W Y, Tan J A. The relationship between Kashin-Beck disease distribution and mountain luvisols’ distribution in Tibet. Journal of Mountain Science , 2005, 23(4): 385-390 (in Chinese)
33 Li S J, Yang L S, Li Y H, Wang W Y, Xirao R D. Relationship between the content of selenium in grains and the Kashin-Beck disease in Tibet, China. Chinese Journal of Endemiology , 2006, 25(6): 673-674 (in Chinese)
34 Zhang X P, Zhang Y X. Content and distribution of selenium in soils of Tibet. Acta Pedologica Sinica , 2000, 37(4): 558-562 (in Chinese)
[1] Zebin Huo, Mengjun Xi, Lianrui Xu, Chuanjia Jiang, Wei Chen. Colloid-facilitated release of polybrominated diphenyl ethers at an e-waste recycling site: evidence from undisturbed soil core leaching experiments[J]. Front. Environ. Sci. Eng., 2024, 18(2): 21-.
[2] Yang Zhang, Mei Lei, Kai Li, Tienan Ju. Spatial prediction of soil contamination based on machine learning: a review[J]. Front. Environ. Sci. Eng., 2023, 17(8): 93-.
[3] Mengke Zhu, Bocong Huang, Shenghao Ai, Zongyang Liu, Xiaoyan Ai, Meihua Sheng, Yingwei Ai. The distribution and availability of phosphorus fractions in restored cut slopes soil aggregates: a case study of subalpine road, Southwest China[J]. Front. Environ. Sci. Eng., 2023, 17(4): 42-.
[4] Muhammad Masood Ashiq, Farhad Jazaei, Kati Bell, Ahmed Shakir Ali Ali, Alireza Bakhshaee, Peyman Babakhani. Abundance, spatial distribution, and physical characteristics of microplastics in stormwater detention ponds[J]. Front. Environ. Sci. Eng., 2023, 17(10): 124-.
[5] Xue Bai, Chang Li, Lingyu Ma, Pei Xin, Fengjie Li, Zhenjia Xu. Quantitative analysis of microplastics in coastal tidal-flat reclamation in Dongtai, China[J]. Front. Environ. Sci. Eng., 2022, 16(8): 107-.
[6] Kehui Liu, Xiaojin Guan, Chunming Li, Keyi Zhao, Xiaohua Yang, Rongxin Fu, Yi Li, Fangming Yu. Global perspectives and future research directions for the phytoremediation of heavy metal-contaminated soil: A knowledge mapping analysis from 2001 to 2020[J]. Front. Environ. Sci. Eng., 2022, 16(6): 73-.
[7] Xiaoqiang Gong, Jinbiao Li, Scott X. Chang, Qian Wu, Zhengfeng An, Chengpeng Huang, Xiangyang Sun, Suyan Li, Hui Wang. Cattle manure biochar and earthworm interactively affected CO2 and N2O emissions in agricultural and forest soils: Observation of a distinct difference[J]. Front. Environ. Sci. Eng., 2022, 16(3): 39-.
[8] Rui Yue, Zhikang Chen, Liujun Liu, Lipu Yin, Yicheng Qiu, Xianhui Wang, Zhicheng Wang, Xuhui Mao. Combination of steam-enhanced extraction and electrical resistance heating for efficient remediation of perchloroethylene-contaminated soil: Coupling merits and energy consumption[J]. Front. Environ. Sci. Eng., 2022, 16(11): 147-.
[9] Jie Wu, Jian Lu, Jun Wu. Adsorption and desorption of steroid hormones on saline soil[J]. Front. Environ. Sci. Eng., 2022, 16(11): 140-.
[10] Chengjie Xue, Juan Wu, Kuang Wang, Yunqiang Yi, Zhanqiang Fang, Wen Cheng, Jianzhang Fang. Effects of different types of biochar on the properties and reactivity of nano zero-valent iron in soil remediation[J]. Front. Environ. Sci. Eng., 2021, 15(5): 101-.
[11] Junlian Qiao, Yang Liu, Hongyi Yang, Xiaohong Guan, Yuankui Sun. Remediation of arsenic contaminated soil by sulfidated zero-valent iron[J]. Front. Environ. Sci. Eng., 2021, 15(5): 83-.
[12] Kehui Liu, Jie Xu, Chenglong Dai, Chunming Li, Yi Li, Jiangming Ma, Fangming Yu. Exogenously applied oxalic acid assists in the phytoremediation of Mn by Polygonum pubescens Blume cultivated in three Mn-contaminated soils[J]. Front. Environ. Sci. Eng., 2021, 15(5): 86-.
[13] Haiyan Mou, Wenchao Liu, Lili Zhao, Wenqing Chen, Tianqi Ao. Stabilization of hexavalent chromium with pretreatment and high temperature sintering in highly contaminated soil[J]. Front. Environ. Sci. Eng., 2021, 15(4): 61-.
[14] Weichuan Qiao, Rong Li, Tianhao Tang, Achuo Anitta Zuh. Removal, distribution and plant uptake of perfluorooctane sulfonate (PFOS) in a simulated constructed wetland system[J]. Front. Environ. Sci. Eng., 2021, 15(2): 20-.
[15] Hanli Wan, Jianmin Bian, Han Zhang, Yihan Li. Assessment of future climate change impacts on water-heat-salt migration in unsaturated frozen soil using CoupModel[J]. Front. Environ. Sci. Eng., 2021, 15(1): 10-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed