Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front Envir Sci Eng Chin    0, Vol. Issue () : 152-170    https://doi.org/10.1007/s11783-009-0021-8
RESEARCH ARTICLE
Determination of polyfluoroalkyl compounds in water and suspended particulate matter in the river Elbe and North Sea, Germany
Lutz AHRENS1,2(), Merle PLASSMANN1,3, Zhiyong XIE1, Ralf EBINGHAUS1
1. Institute for Coastal Research, GKSS Research Centre Geesthacht GmbH, D-21502 Geesthacht, Germany; 2. Institute for Ecology and Environmental Chemistry, Leuphana University of Lüneburg, D-21335 Lüneburg, Germany; 3. Department of Applied Environmental Science (ITM), Stockholm University, SE-10691 Stockholm, Sweden
 Download: PDF(426 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The distribution of polyfluoroalkyl compounds (PFCs) in the dissolved and particulate phase and their discharge from the river Elbe into the North Sea were studied. The PFCs quantified included C4-C8 perfluorinated sulfonates (PFSAs), 6∶2 fluorotelomer sulfonate (6∶2 FTS), C6 and C8 perfluorinated sulfinates (PFSiAs), C4-C12 perfluorinated carboxylic acids (PFCAs), perfluoro-3,7-dimethyl-octanoic acid (3,7m2-PFOA), perfluorooctane sulfonamide (FOSA), and n-ethyl perfluroctane sulfonamidoethanol (EtFOSE). PFCs were mostly distributed in the dissolved phase, where perfluorooctanoic acid (PFOA) dominated with 2.9-12.5 ng/L. In the suspended particulate matter FOSA and perfluorooctane sulfonate (PFOS) showed the highest concentrations (4.0 ng/L and 2.3 ng/L, respectively). The total flux of ∑PFCs from the river Elbe was estimated to be 802 kg/year for the dissolved phase and 152 kg/year for the particulate phase. This indicates that the river Elbe acts as a source of PFCs into the North Sea. However, the concentrations of perfluorobutane sulfonate (PFBS) and perfluorobutanoic acid (PFBA) in the North Sea were higher than that in the river Elbe, thus an alternative source must exist for these compounds.

Keywords polyfluoroalkyl compounds (PFCs)      perfluorooctane sulfonate (PFOS)      perfluorooctanoic acid (PFOA)      surface water      water-particulate partitioning     
Corresponding Author(s): AHRENS Lutz,Email:lutz.ahrens@gkss.de   
Issue Date: 05 June 2009
 Cite this article:   
Lutz AHRENS,Merle PLASSMANN,Zhiyong XIE, et al. Determination of polyfluoroalkyl compounds in water and suspended particulate matter in the river Elbe and North Sea, Germany[J]. Front Envir Sci Eng Chin, 0, (): 152-170.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-009-0021-8
https://academic.hep.com.cn/fese/EN/Y0/V/I/152
Fig.1  Map showing the sampling locations in the river Elbe and the North Sea (a dam is located between sampling stations 21 and 22)
analyteacronymformulasupplier (purity)precursor/ product ion [m/z]
perfluorobutane sulfonatePFBSC4F9SO2O-Fluka (97%)298.877/ 79.8
perfluoropentane sulfonatePFPSC5F11SO2O-n.a.348.939/ 79.8
perfluorohexane sulfonatePFHxSC6F13SO2O-Fluka (98%)398.894/ 79.8
perfluoroheptane sulfonatePFHpSC7F15SO2O-Well. Lab.a) (>98%)449.034/ 79.3
perfluorooctane sulfonatePFOSC8F17SO2O-Well. Lab.a) (>98%)498.971/ 79.7
perfluorononane sulfonatePFNSC9F19SO2O-n.a.548.926/ 79.8
perfluorodecane sulfonatePFDSC10F21SO2O-Well. Lab.a) (>98%)598.896/ 79.5
6:2 fluorotelomer sulfonate6:2 FTSC6F13C2H4SO3-ABCR (98%)426.925/ 406.7
perfluoro-1-hexane sulfinatePFHxSiC6F13SO2-Well. Lab.a) (>98%)382.865/ 319.0
perfluoro-1-octane sulfinatePFOSiC8F17SO2-Well. Lab.a) (>98%)482.824/ 418.9
perfluoro-1-decane sulfinatePFDSiC10F21SO2-Well. Lab.a) (>98%)582.934/ 518.9
perfluorobutanoic acidPFBAC3F7COOHABCR (99%)212.900/ 168.7
perfluoropentanoic acidPFPAC4F9COOHAlfa Aesar (98%)262.825/ 218.9
perfluorohexanoic acidPFHxAC5F11COOHFluka (97%)312.934/ 268.8
perfluoroheptanoic acid PFHpAC6F13COOHLanc. Syn.b) (98%)362.950/ 318.9
perfluorooctanoic acidPFOAC7F15COOHLanc. Syn.b) (95%)412.987/ 368.9
perfluorononanoic acidPFNAC8F17COOHLanc. Syn.b) (97%)462.908/ 418.9
perfluorodecanoic acidPFDAC9F19COOHLanc. Syn.b) (97%)512.876/ 469.0
perfluoroundecanoic acidPFUnDAC10F21COOHABCR (96%)562.865/ 519.0
perfluorododecanoic acidPFDoDAC11F23COOHAlfa Aesar (96%)612.991/ 568.9
perfluorotridecanoic acidPFTriDAC12F25COOHWell. Lab.a) (>98%)663.094/ 618.9
perfluorotetradecanoic acidPFTeDAC13F27COOHAlfa Aesar (96%)713.036/ 669.0
perfluorotridecanoic acidPFPDAC14F29COOHn.a.762.980/ 718.9
perfluorohexadecanoic acidPFHxDAC15F31COOHAlfa Aesar (95%)812.840/ 769.1
perfluoroheptadecanoic acidPFHpDAC16F33COOHn.a.862.980/ 818.9
perfluorooctadecanoic acidPFOcDAC17F35COOHAlfa Aesar (97%)912.870/ 869.0
perfluoro-3,7-dimethyl-octanoic acid3,7m2-PFOAC9F19COOHAlfa Aesar (97%)512.885/ 468.9
N-methylperfluorobutane sulfonamideMeFBSAC4F9SO2NH(CH3)3M (n.a.)311.914/ 218.8
perfluorooctane sulfonamideFOSAC8F17SO2NH2ABCR (97%)497.896/ 77.9
N-methyl perfluorooctane sulfonamideMeFOSAC8F17SO2NH(CH3)3M (n.a.)511.849/ 168.9
N-ethyl perfluorooctane sulfonamideEtFOSAC8F17SO2NH(C2H5)ABCR (95%)526.008/ 169.0
N-methylperfluorobutane sulfonamidoethanolMeFBSEC4F9SO2N(CH3)C2H4OH3M (n.a.)416.047/ 59.0
N-methyl perfluorooctane sulfonamidoethanolMeFOSEC8F17SO2N(CH3)C2H4OH3M (n.a.)616.004/ 58.9
N-ethyl perflurooctane sulfonamidoethanolEtFOSEC8F17SO2N(C2H5)C2H4OH3M (n.a.)630.109/ 58.8
2-perfluorohexyl ethanoic acidFHEAC6F13CH2COOHWell. Lab.a) (>98%)376.945/ 292.8
2-perfluorooctyl ethanoic acidFOEAC8F17CH2COOHWell. Lab.a) (>98%)476.909/ 392.9
2-perfluorodecyl ethanoic acidFDEAC10F21CH2COOHWell. Lab.a) (>98%)577.011/ 493.0
2H-perfluoro-2-octenoic acidFHUEAC6F12CHCOOHWell. Lab.a) (>98%)356.885/ 293.0
2H-perfluoro-2-decenoic acidFOUEAC8F16CHCOOHWell. Lab.a) (>98%)456.803/ 292.8
2H-perfluoro-2-dodecenoic acidFDUEAC10F20CHCOOHWell. Lab.a) (>98%)556.937/ 493.1
perfluoro-1-hexane[18O2]sulfonate[18O2]-PFHxSC6F13S[18O2]O-Well. Lab.a) (>98%)402.981/ 83.9
perfluoro-1-[1,2,3,4-13C]octanesulfonate[13C4]-PFOSC4F9[1,2,3,4-13C4]F8SO2O-Well. Lab.a) (>98%)502.899/ 79.5
perfluoro-1-[1,2,3,4-13C]octanesulfinate[13C4]-PFOSiC4F9[1,2,3,4-13C4]F8SO2-Well. Lab.a) (>90%)486.859/ 422.9
perfluoro-n-(1,2,3,4-13C4)butanoic acid[13C4]-PFBA2,3,4-13C3F713COOHWell. Lab.a) (>98%)216.823/ 171.8
perfluoro-n-(1,2-13C2)hexanoic acid[13C2]-PFHxAC4F9[2-13C]F213COOHWell. Lab.a) (>98%)314.891/ 269.9
perfluoro-n-[1,2,3,4-13C4]octanoic acid[13C4]-PFOAC4F9[2,3,4-13C3]F613COOHWell. Lab.a) (>98%)416.978/ 371.8
perfluoro-n-[1,2,3,4,5-13C5]nonanoic acid[13C5]-PFNAC4F9[2,3,4,5-3C4]F813COOHWell. Lab.a) (>98%)467.907/ 423.0
perfluoro-n-[1,2-13C2]decanoic acid[13C2]-PFDAC8F1713CF213COOHWell. Lab.a) (>98%)514.944/ 469.8
perfluoro-n-[1,2-13C2]undecanoic acid[13C2]-PFUnDAC9F1913CF213COOHWell. Lab.a) (>98%)564.959/ 519.8
perfluoro-n-[1,2-13C2]dodecanoic acid[13C2]-PFDoDAC10F2113CF213COOHWell. Lab.a) (>98%)614.913/ 569.9
N-methyl-d3-perfluoro-1-octanesulfonamided3-N-MeFOSAC9D3HF17NO2SWell. Lab.a) (>98%)514.920/ 168.8
N-ethyl-d5-perfluoro-1-octanesulfonamided5-N-EtFOSAC10D5HF17NO2SWell. Lab.a) (>98%)530.984/ 168.8
2-(n-deuteriomethylperfluoro-1-octanesulfoneamido)-1,1,2,2-tetradeuterioethanold7-N-MeFOSEC8F17SO2N(CD3)C2D4OHWell. Lab.a) (>98%)623.058/ 58.9
2-(n-deuterioethylperfluoro-1-octanesulfoneamido)-1,1,2,2-tetradeuterioethanold9-N-EtFOSEC8F17SO2N(C2D5)C2D4OHWell. Lab.a) (>98%)639.054/ 58.9
2-perfluorohexyl-[1,2-13C2]ethanoic acid[13C2]-FHEAC6F1313CH213COOHWell. Lab.a) (>98%)378.912/ 294.0
2-perfluorooctyl-[1,2-13C2]ethanoic acid[13C2]-FOEAC8F1713CH213COOHWell. Lab.a) (>98%)478.911/ 393.8
2-perfluorodecyl-[1,2-13C2]ethanoic acid[13C2]-FDEAC10F2113CH213COOHWell. Lab.a) (>98%)579.017/ 494.1
2H-perfluoro-[1,2-13C2]-2-octenoic acid[13C2]-FHUEAC6F1213CH13COOHWell. Lab.a) (>98%)358.907/ 294.0
2H-perfluoro-[1,2-13C2]-2-decenoic acid[13C2]-FOUEAC8F1613CH13COOHWell. Lab.a) (>98%)458.903/ 393.8
2H-perfluoro-[1,2-13C2]-2-dodecenoic acid[13C2]-FDUEAC10F2013CH13COOHWell. Lab.a) (>98%)558.955/ 494.0
N-deuterioethylperfluoro-1-octanesulfonamidoacetic acidd5-EtFOSAAC8F17SO2N(C2D2 C2D3)C2H2CO2HWell. Lab.a) (>98%)589.015/ 418.7
Tab.1  Analytes, acronyms, formula, supplier, purity, precursor, and product ions for the MS/MS detection
areaNorth SeaElbe estuaryElbe brackish waterHamburg cityLauenburg to Hamburg
location numbera)1-45-89-1516-1819-24
samples size44736
PFBSdissolved1.1-3.9 (2.5)1.3-1.7 (1.5)n.d.-2.0 (1.2)1.1-2.5 (1.6)0.53-1.5 (1.1)
particulaten.d.n.d.n.d.-0.81 (0.12)n.d.n.d.
?/%000-3400
PFPSb)dissolvedn.d.n.d.n.d. -0.67 (0.96)1.3-2.8 (1.8)0.47-2.1 (1.1)
particulaten.d.n.d.n.d.n.d.n.d.
?/%00000
PFHxSdissolved0.15-0.54 (0.31)n.d.-0.72 (0.24)0.37-0.91 (0.66)0.56-0.67 (0.60)0.24-0.49 (0.36)
particulaten.d.n.d.n.d.-0.20 (0.029)n.d.n.d.-0.098 (0.029)
?/%000-2100-17
PFHpSdissolvedn.d.n.d.n.d.n.d.-0.072 (0.024)n.d.
particulaten.d.n.d.n.d.n.d.n.d.
?/%00000
PFOSdissolved1.2-4.2 (2.2)0.18-2.2 (1.1)1.3-7.3 (3.7)5.5-7.5 (6.4)2.8-8.2 (5.5)
particulaten.d.n.d.-0.76 (0.22)n.d.-0.88 (0.48)1.3-1.8 (1.6)0.90-2.3 (1.6)
?/%00-340-2915-2418-30
6:2 FTSdissolvedn.d.n.d.n.d.n.d.-0.47 (0.16)n.d.
particulaten.d.n.d.n.d.n.d.n.d.
?/%00000
PFHxSidissolvedn.d.n.d.-0.060 (0.015)n.d.n.d.n.d.
particulaten.d.n.d.n.d.n.d.n.d.
?/%00000
PFOSidissolvedn.d.-0.085 (0.041)0.074-0.46 (0.20)n.d.-0.85 (0.27)n.d.-1.0 (0.61)n.d.-1.4 (0.62)
particulaten.d.-0.067 (0.045)n.d.-0.36 (0.13)0.052-0.15 (0.097)0.18-0.53 (0.38)0.065-0.42 (0.27)
?/%27-10024-447-10034-1006-100
PFBAdissolved1.5-5.0 (3.0)1.0-2.5 (1.8)n.d.-4.2 (2.4)2.5-3.3 (3.0)0.59-2.6 (2.2)
particulaten.d.n.d.n.d.n.d.n.d.
?/%00000
PFPAdissolved0.81-1.5 (1.1)1.0-1.6 (1.3)2.0-4.7 (3.4)4.0-6.4 (5.4)2.1-4.1 (3.3)
particulaten.d.n.d.n.d.n.d.n.d.
?/%00000
PFHxAdissolved1.1-1.3 (1.1)1.7-2.0 (1.8)2.7-4.6 (3.4)5.2-6.0 (5.6)3.0-5.5 (4.4)
particulaten.d.n.d.n.d.n.d.n.d.
?/%00000
PFHpAdissolved0.48-0.61 (0.56)0.76-1.1 (0.87)1.2-2.6 (1.8)2.7-2.8 (2.7)2.2-3.9 (2.9)
particulaten.d.n.d.n.d.n.d.n.d.
?/%00000
PFOAdissolved3.6-4.0 (3.8)3.7-5.3 (4.5)2.9-10.8 (7.4)10.6-12.5 (11.4)6.2-9.8 (8.0)
particulaten.d.n.d.-0.35 (0.15)n.d.-0.19 (0.071)0.18-0.30 (0.24)n.d.-0.30 (0.15)
?/%00-80-61-30-3
PFNAdissolved0.094-0.21 (0.13)0.20-0.58 (0.38)0.78-2.0 (1.4)1.7-2.0 (1.8)0.6-2.1 (1.7)
particulaten.d.n.d.-0.13 (0.039)n.d.-0.022 (0.008)n.d.-0.088 (0.040)0.003-0.074 (0.044)
?/%00-180-20-40-8
PFDAdissolved0.043-0.30 (0.13)0.042-0.31 (0.16)0.24-1.8 (0.77)0.81-2.1 (1.4)n.d.-0.69 (0.40)
particulaten.d.n.d.n.d.-0.12 (0.059)0.087-0.18 (0.13)0.12-0.19 (0.14)
?/%000-148-100-100
PFUnDAdissolvedn.d.n.d.-0.13 (0.06)n.d.-0.49 (0.17)0.099-0.47 (0.28)n.d.-0.23 (0.11)
particulaten.d.n.d.n.d.-0.11 (0.019)0.12-0.19 (0.15)0.15-0.15 (0.15)
?/%000-190-1000-40
PFDoDAdissolvedn.d.-0.065 (0.016)n.d.n.d.-0.25 (0.035)n.d.-0.12 (0.068)n.d.-0.15 (0.07)
particulaten.d.n.d.n.d.n.d.n.d.
?/%00000
3,7m2-PFOAdissolvedn.d.n.d.-0.22 (0.11)n.d.-0.53 (0.094)n.d.-0.78 (0.28)n.d.-0.12 (0.027)
particulaten.d.n.d.n.d.n.d.n.d.
?/%00000
FOSAdissolved0.44-1.2 (0.85)0.92-2.8 (1.8)1.2-7.8 (3.8)3.5-6.7 (4.9)4.8-8.9 (6.1)
particulate0.14-0.37 (0.22)0.31-0.95 (0.61)0.36-1.2 (0.87)1.3-2.0 (1.8)1.7-4.0 (2.5)
?/%13-2513-389-3923-3720-45
EtFOSEdissolvedn.d.n.d.n.d.n.d.n.d.
particulaten.d.-0.023 (0.006)n.d.n.d.-0.12 (0.023)n.d.-0.009 (0.003)n.d.-0.047 (0.008)
?/%0-10000-1000-1000-100
∑PFCsdissolved13.3-18.4 (16.0)13.4-15.8 (15.7)21.7-41.2 (30.5)44.0-50.7 (48.0)30.1-47.7 (38.0)
particulate0.16-0.41 (0.27)0.34-2.2 (1.2)0.41-2.6 (1.8)3.3-4.8 (4.3)3.1-6.0 (4.9)
Tab.2  Concentration range and mean concentration in brackets for individual PFCs and ∑PFCs in the dissolved and particulate phases in ng/L, and particulate associated fraction range () in % for five different areas from the North Sea and the river Elbe
Fig.2  Relative composition of individual PFCs for the dissolved and particulate phases in the river Elbe and the North Sea
analytestotal flux/(kg·ar-1)
dissolved phaseparticulate phase
PFBS180
PFPSb)210
PFHxS80
PFOS10635
PFOSi1327
PFBA350
PFPA500
PFHxA880
PFHpA540
PFOA16910
PFNA363
PFDA665
PFUnDA03
PFDoDA00
3,7m2-PFOA00
FOSA13963
EtFOSE06
∑PFCs802152
Tab.3  Total estimated flux of individual PFCs in the dissolved and particulate phases in the river Elbe towards the North Sea
1 Yamashita N, Kannan K, Taniyasu S, Horii Y, Petrick G, Gamo T. A global survey of perfluorinated acids in oceans. Marine Poll Bull , 2005, 51: 658-668
doi: 10.1016/j.marpolbul.2005.04.026
2 McLachlan M S, Holmstrom K E, Reth M, Berger U. Riverine discharge of perfluorinated carboxylates from the European continent. Environ Sci Technol , 2007, 41: 7260-7265
doi: 10.1021/es071471p
3 Higgins C P, Luthy R G. Sorption of perfluorinated surfactants on sediment. Environ Sci Technol , 2006, 40: 7251-7256
doi: 10.1021/es061000n
4 Giesy J P, Kannan K. Global distribution of perfluorooctane sulfonate in wildlife. Environ Sci Technol , 2001, 35: 1339-1342
doi: 10.1021/es001834k
5 Kannan K, Koistinen J, Beckmen K, Evans T, Gorzelany J F, Hansen K J, Jones P D, Helle E, Nyman M, Giesy J P. Accumulation of perfluorooctane sulfonate in marine mammals. Environ Sci Technol , 2001, 35: 1593-1598
doi: 10.1021/es001873w
6 Kannan K, Corsolini S, Falandysz J, Fillmann G, Kumar K S, Loganathan B G, Ali Mohd M, Olivero J, Van Wouwe N, Ho Yang J, Aldous K M. Perfluorooctanesulfonate and related fluorochemicals in human blood from several countries. Environ Sci Technol , 2004, 38: 4489-4495
doi: 10.1021/es0493446
7 Olsen G W, Church T R, Larson E B, van Belle G, Lundberg J K, Hansen K J, Burris J M, Mandel J H, Zobel L R. Serum concentrations of perfuorooctanesulfonate and other fuorochemicals in an elderly population from Seattle, Washington. Chemosphere , 2004, 54: 1599-1611
doi: 10.1016/j.chemosphere.2003.09.025
8 Kissa E. Fluorinated Surfactants and Repellents. New York: Marcel Dekker, 2001, 97
9 Martin J W, Mabury S A, Solomon K R, Muir D C G. Bioconcentration and tissue distribution of perfluorinated acids in rainbow trout (Oncorhynchus mykiss). Environ Toxicol Chem , 2003, 22: 196-204
doi: 10.1897/1551-5028(2003)022<0196:BATDOP>2.0.CO;2
10 Austin M E, Kasturi B S, Barber M, Kannan K, Mohan Kumar P S, Mohan Kumar S M J. Neuroendocrine effects of perfluorooctane sulfonate in rats. Environ Health Perspect , 2003, 111: 1485-1489
11 Intrasuksri U, Rangwala S M, O'Brien M, Noonan D J, Feller D R. Mechanisms of peroxisome proliferation by perfluorooctanoic acid and endogenous fatty acids. Gen Pharmacol Vasc Syst , 1998, 31: 187-197
12 Oakes K D, Sibley P K, Solomon K R, Mabury S A, Van Der Kraak G J. Impact of perfluorooctanoic acid on fathead minnow (Pimephales promelas) fatty acyl-CoA oxidase activity, circulating steroids, and reproduction in outdoor microcosms. Environ Toxicol Chem , 2004, 23: 1912-1919
doi: 10.1897/03-190
13 Prevedouros K, Cousins I T, Buck R C, Korzeniowski S H. Sources, fate and transport of perfluorocarboxylates. Environ Sci Technol , 2006, 40: 32-44
doi: 10.1021/es0512475
14 U.S. Environmental Protection Agency in Federal Register. 2002, 67: 11008-11013
15 Martin J W, Ellis D A, Mabury S A, Hurley M D, Wallington T J. Atmospheric chemistry of perfluoroalkanesulfonamides: Kinetic and product studies of the OH radical and Cl atom initiated oxidation of n-ethyl perfluorobutanesulfonamide. Environ Sci Technol , 2006, 40: 864-872
doi: 10.1021/es051362f
16 Tomy G T, Tittlemier S A, Palace V P, Budakowski W R, Braekevelt E, Brinkworth L, Friesen K. Biotransformation of n-ethyl perfluorooctanesulfonamide by rainbow trout (Oncorhynchus mykiss) liver microsomes. Environ Sci Technol , 2004, 38: 758-762
doi: 10.1021/es034550j
17 Ellis D A, Martin J W, Mabury S A, De Silva A O, Hurley M D, Sulbaek Anderson M D, Wallington T J. Degradation of fluorotelomer alcohols: A likely atmospheric source of perfluorinated carboxylic acids. Environ Sci Technol , 2004, 38: 3316-3321
doi: 10.1021/es049860w
18 Risha K, Flaherty J, Wille R, Buck W, Morandi F, Isemura T. Method for trace level analysis of C8, C9, C10, C11, and C13 perfluorocarbon carboxylic acids in water. Anal Chem , 2005, 77: 1503-1508
doi: 10.1021/ac0490548
19 Taniyasu S, Kannan K, So M K, Gulkowska A, Sinclair E, Okazawa T, Yamashita N. Analysis of fluorotelomer alchols, fluorotelomer acids, and short- and long-chain perfluorinated acids in water and biota. J Chromatogr A , 2005, 1093: 89-97
20 Schultz M M, Barofsky D F, Field J A. Quantitative determination of fluorinated alkyl substances by large-volume-injection liquid chromatography tandem mass spectrometry-characterization of municipal wastewaters. Environ Sci Technol , 2006, 40: 289-295
doi: 10.1021/es051381p
21 Yamashita N, Kannan K, Taniyasu S, Horii Y, Okazawa T, Petrick G, Gamo T. Analysis of perfluorinated acids at parts-per-quadrillion levels in seawater using liquid chromatography-tandem mass spectrometry. Environ Sci Technol , 2004, 38: 5522-5528
doi: 10.1021/es0492541
22 Giesy J P, Kannan K. Perfluorochemical surfactants in the environment. These bioaccumulative compounds occur globally, warranting further study. Environ Sci Technol , 2002, 36: 146A-152A
23 van Leeuwen S P J, de Boer J. Extraction and clean-up strategies for the analysis of poly- and perfluoroalkyl substances in environmental and human matrices. J Chromatogr A , 2007, 1153: 172-185
doi: 10.1016/j.chroma.2007.02.069
24 González-Barreiro C, Martínez-Carballo E, Sitka A, Scharf S, Gans O. Method optimization for determination of selected perfluorinated alkylated substances in water samples. Anal Bioanal Chem , 2006, 386: 2123-2132
doi: 10.1007/s00216-006-0902-7
25 Caliebe C, Gerwinski W, Hühnerfuss H, Theobald N. Occurrence of perfluorinates organic acids in the water of the North Sea. Organohalogen Comp , 2004, 66: 4074-4078
26 Schultz M M, Higgins C P, Huset C A, Luthy R G, Barofsky D F, Field J A. Fluorochemical mass flows in a municipal wastewater treatment facility. Environ Sci Technol , 2006, 40: 7350-7357
doi: 10.1021/es061025m
27 Kim S-K, Kannan K. Perfluorinated acids in air, rain, snow, surface runoff, and lakes: Relative importance of pathways to contamination of urban lakes. Environ Sci Technol , 2007, 41: 8328-8334
doi: 10.1021/es072107t
28 So M K, Miyake Y, Yeung W Y, Ho Y M, Taniyasu S, Rostkowski P, Yamashita N, Zhou B S, Shi X J, Wang J X, Giesy J P, Yu H, Lam P K S. Perfluorinated compounds in the Pearl River and Yangtze River of China. Chemosphere , 2007, 68: 2085-2095
doi: 10.1016/j.chemosphere.2007.02.008
29 Schultz M M, Barofsky D F, Field J A. Quantitative determination of fluorotelomer sulfonates in groundwater by LC MS/MS. Environ Sci Technol , 2004, 38: 1828-1835
doi: 10.1021/es035031j
30 Skutlarek D, Exner M, F?rber H. Perfluorinated surfactants in surface and drinking waters. Environ Sci Pollut Res , 2006, 13: 299-307
doi: 10.1065/espr2006.07.326
31 Saito N, Harada K, Inoue K, Sasaki K, Yoshinaga T, Koizumi A. Perfluorooctanoate and perfluorooctane sulfonate concentrations on surface water in Japan. J Occup Health , 2004, 46: 49-59
doi: 10.1539/joh.46.49
[1] Bo Zhang, Xilai Zheng, Tianyuan Zheng, Jia Xin, Shuai Sui, Di Zhang. The influence of slope collapse on water exchange between a pit lake and a heterogeneous aquifer[J]. Front. Environ. Sci. Eng., 2019, 13(2): 20-.
[2] Ning Zhang, Xiang Liu, Rui Liu, Tao Zhang, Miao Li, Zhuoran Zhang, Zitao Qu, Ziting Yuan, Hechun Yu. Influence of reclaimed water discharge on the dissemination and relationships of sulfonamide, sulfonamide resistance genes along the Chaobai River, Beijing[J]. Front. Environ. Sci. Eng., 2019, 13(1): 8-.
[3] Boran Wu, Xiaoli Chai, Youcai Zhao, Xiaohu Dai. Designing an in situ remediation strategy for polluted surface water bodies through the specific regulation of microbial community[J]. Front. Environ. Sci. Eng., 2019, 13(1): 4-.
[4] Shubo DENG,Yue BEI,Xinyu LU,Ziwen DU,Bin WANG,Yujue WANG,Jun HUANG,Gang YU. Effect of co-existing organic compounds on adsorption of perfluorinated compounds onto carbon nanotubes[J]. Front. Environ. Sci. Eng., 2015, 9(5): 784-792.
[5] Haifeng JIA,Shidong LIANG,Yansong ZHANG. Assessing the impact on groundwater safety of inter-basin water transfer using a coupled modeling approach[J]. Front. Environ. Sci. Eng., 2015, 9(1): 84-95.
[6] Yongjun LIU, Aining ZHANG, Xiaoyan MA, Xiaochang WANG. Genotoxicity evaluation of surface waters located in urban area of Xi’an City using Vicia faba bioassays[J]. Front Envir Sci Eng, 2013, 7(6): 860-866.
[7] Huining ZHANG, Xiaohu Zhang, Shuting ZHANG, Bo WEI, Qipei JIANG, Xin YU. Detecting Cryptosporidium parvum and Giardia lamblia by coagulation concentration and real-time PCR quantification[J]. Front Envir Sci Eng, 2013, 7(1): 49-54.
[8] Yongming ZHANG, Rong YAN, Zhen ZOU, Jiewei WANG, Bruce E. RITTMANN. Improved nitrogen removal in dual-contaminated surface water by photocatalysis[J]. Front Envir Sci Eng, 2012, 6(3): 428-436.
[9] Wenfeng SUN, Ruibao JIA, Baoyu GAO. Simultaneous analysis of five taste and odor compounds in surface water using solid-phase extraction and gas chromatography-mass spectrometry[J]. Front Envir Sci Eng, 2012, 6(1): 66-74.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed