Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front Envir Sci Eng Chin    2009, Vol. 3 Issue (2) : 241-247    https://doi.org/10.1007/s11783-009-0023-6
RESEARCH ARTICLE
Relationships of nitrous oxide fluxes with water quality parameters in free water surface constructed wetlands
Juan WU1,2, Jian ZHANG1(), Wenlin JIA1, Huijun XIE3, Bo ZHANG1
1. College of Environmental Science & Engineering, Shandong University, Jinan 250100, China; 2. School of Resources & Environment, Qingdao Agricultural University, Qingdao 266109, China; 3. Environment Research Institute, Shandong University, Jinan 250100, China
 Download: PDF(132 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The effects of chemical oxygen demand (COD) concentration in the influent on nitrous oxide (N2O) emissions, together with the relationships between N2O and water quality parameters in free water surface constructed wetlands, were investigated with laboratory-scale systems. N2O emission and purification performance of wastewater were very strongly dependent on COD concentration in the influent, and the total N2O emission in the system with middle COD influent concentration was the least. The relationships between N2O and the chemical and physical water quality variables were studied by using principal component scores in multiple linear regression analysis to predict N2O flux. The multiple linear regression model against principal components indicated that different water parameters affected N2O flux with different COD concentrations in the influent, but nitrate nitrogen affected N2O flux in all systems.

Keywords free water surface constructed wetland      nitrous oxide emission      water quality parameter      principal component analysis      multiple linear regression     
Corresponding Author(s): ZHANG Jian,Email:zhangjian00@sdu.edu.cn   
Issue Date: 05 June 2009
 Cite this article:   
Juan WU,Jian ZHANG,Wenlin JIA, et al. Relationships of nitrous oxide fluxes with water quality parameters in free water surface constructed wetlands[J]. Front Envir Sci Eng Chin, 2009, 3(2): 241-247.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-009-0023-6
https://academic.hep.com.cn/fese/EN/Y2009/V3/I2/241
Fig.1  Profile of the treatment cell
compositionconcentration/(mg·L-1)a)
ABCDE
COD4.71±4.68123.11±19.79305.65±28.71612.33±59.981135.5±72.14
NH4+—Nb)25.27±5.2025.73±5.0826.74±5.7326.84±5.9424.50±3.63
NO3-—Nc)16.96±2.8117.64±2.8518.51±2.9718.00±2.4517.23±2.87
TNd)51.99±3.5355.14±2.1454.33±8.5950.65±4.2049.37±4.34
TPe)5.96±0.076.4±0.556.55±0.287.35±0.176.57±0.38
DOf)7.07±0.376.63±0.536.75±0.736.49±0.596.07±0.62
pH7.39±0.167.36±0.217.34±0.137.32±0.097.26±0.07
Tab.1  Table 1 Water qualities of synthetic wastewater supplied to constructed wetlands
Fig.2  Variation of nitrous oxide flux
proportionpercentage/%*
ABCDE
N2O–N/TN input0.47±0.031.32±0.050.31±0.050.55±0.053.09±0.27
N2O–N/TN removed1.44±0.052.23±0.070.48±0.040.97±0.084.84±0.31
Tab.2  Average emission of NO–N as percentages of input and removed TN in different constructed wetland systems
parameters
eigenvaluesproportion of variance/%cumulative variance proportion/%
low COD influent concentrationPC 1-L3.0337.8537.85
PC 2-L2.0125.1563.00
PC 3-L1.7521.8584.85
middle COD influent concentrationPC 1-M4.5757.1257.12
PC 2-M1.5018.7575.87
PC 3-M1.1514.4290.29
high COD influent concentrationPC 1-H3.7246.5546.55
PC 2-H1.4117.6364.18
PC 3-H1.1013.7477.92
all dataPC 1-all3.0438.0338.03
PC 2-all2.0826.0064.03
PC 3-all1.3917.3481.37
Tab.3  Descriptive statistics of selected principal components
parameters
CODNH+4—NNO-3—NNO-2—NTNTPDOpH
low COD influent concentrationPC 1-L0.2710.924-0.270-0.3850.0210.797-0.0140.920
PC 2-L-0.729-0.1170.792-0.5370.145-0.0680.815-0.208
PC 3-L0.272-0.0990.4120.6600.9690.5350.036-0.222
communalities0.6790.8770.8700.8720.9600.9260.6660.938
middle COD influent concentrationPC 1-M0.6740.490-0.173-0.933-0.0830.896-0.9030.993
PC 2-M0.5880.204-0.131-0.0780.9940.244-0.3100.048
PC 3-M-0.1350.7090.871-0.2810.0220.2990.111-0.004
communalities0.8180.7840.8060.9560.9950.9510.9250.988
high COD influent concentrationPC 1-H0.8130.0080.878-0.0420.5650.345-0.126-0.949
PC 2-H-0.415-0.0190.0360.680-0.397-0.8480.8830.189
PC 3-H-0.1300.9560.151-0.3690.0070.0530.1610.041
communalities0.8490.9150.7940.6000.4760.8400.8210.938
Tab.4  Principal components of the different water parameters of the NO flux data matrices from the systems with low, middle, and high influent concentration
parametersPC 1-allPC 2-allPC 3-allcommunalities
COD-0.207-0.9190.2200.937
NH+4—N-0.3060.1550.7720.713
NO-3—N0.8530.031-0.1290.746
NO-2—N0.8180.138-0.1650.716
TN0.946-0.0570.1880.934
TP0.353-0.2360.8320.873
DO0.5240.446-0.4470.674
pH-0.1290.9390.1410.918
Tab.5  Principal components of the different water parameters of the NO flux data matrices from all the systems
data setequationR2
low COD influent concentrationy=522.4-42.4 PC 2-L+?0.54
middle COD influent concentrationy=63.3-17.3 PC 1-M+8.2 PC 2-M-8.8PC 3-M+?0.95
high COD influent concentrationy=-574.1+14.4 PC 1-H+?0.57
all systemsy=-713.0+21.4 PC 1-all+37.4 PC 3-all+?0.48
Tab.6  Models derived from stepwise multiple regression of NO flux data versus derived principal components
1 Garcia J, Aguirre P, Barragan J, Mujeriego R, Matamoros V, Bayona J M. Effect of key design parameters on the efficiency of horizontal subsurface flow constructed wetlands. Ecological Engineering , 2005, 25(4): 405-418
doi: 10.1016/j.ecoleng.2005.06.010
2 Luo W G, Wang S H, Huang J, Yan L, Huang J. Impact of photosynthesis and transpiration on nitrogen removal in constructed wetlands. Frontiers of Environmental Science & Engineering in China , 2007, 1(3): 316-319
3 Klomjek P, Nitisoravut S. Constructed treatment wetland: A study of eight plant species under saline conditions. Chemosphere , 2005, 58(5): 585-593
doi: 10.1016/j.chemosphere.2004.08.073
4 Zhang R S, Li G H, Zhou Q, Zhang X. Relationships between loading rates and nitrogen removal effectiveness in subsurface flow constructed wetlands. Frontiers of Environmental Science & Engineering in China , 2008, 2(1): 89-93
5 Inamori R, Gui P, Dass P, Matsumura M, Xu K Q, Kondo T, Ebie Y, Inamori Y. Investigating CH4 and N2O emissions from eco-engineering wastewater treatment processes using constructed wetland microcosms. Process Biochemistry , 2007, 42(3): 363-373
doi: 10.1016/j.procbio.2006.09.007
6 Tallec G, Garnier J, Billen G, Gousailles M. Nitrous oxide emissions from denitrifying activated sludge of urban wastewater treatment plants, under anoxia and low oxygenation. Bioresource Technology , 2008, 99(7): 2200-2209
doi: 10.1016/j.biortech.2007.05.025
7 IPCC. Atmospheric chemistry and greenhouse gases. In: Houghton J T, ed. The Scientific Basis . New York: Cambridge University Press, 2001, 239-287
8 S?vik A K, Kl?ve B. Emission of N2O and CH4 from a constructed wetland in southeastern Norway. Science of the Total Environment , 2007, 380(1): 28-37
doi: 10.1016/j.scitotenv.2006.10.007
9 Bernet N, Dangcong P, Delgenes J P, Moletta R. Nitrification at low oxygen concentration in biofilm reactor. Journal of Environmental Energy , 2001, 127(3): 266-271
10 Hynes R K, Knowles R. Production of nitrous oxide by Nitrosomonas europaea: Effects of acetylene, pH and oxygen. Canadian Journal of Microbiology , 1984, 30(3): 1397-1404
11 Thomas J G, Warren A K, Steven C W, Michael B M, Frederica W V, Stanley W W. Production of NO2 and N2O by nitrifying bacteria at reduced concentration of oxygen. Applied Environmental Microbiology , 1980, 40(3): 526-532
12 Wang Y H, Inamori R, Kong H N, Xu K Q, Inamori Y, Kondo T, Zhang J X. Nitrous oxide emission from polyculture constructed wetlands: Effect of plant species. Environmental Pollution , 2008, 152(2): 351-360
doi: 10.1016/j.envpol.2007.06.017
13 Johansson A E, Kasimir K ?, Klemedtsson L, Svensson B H. Nitrous oxide exchanges with the atmosphere of a constructed wetland treating wastewater. Tellus B , 2003, 55(3):737-750
doi: 10.1034/j.1600-0889.2003.00034.x
14 Teiter S, Mander ü. Emission of N2O, N2, CH4 and CO2 from constructed wetlands for wastewater treatment and from riparian buffer zones. Ecological Engineering , 2005, 25(5): 528-541
doi: 10.1016/j.ecoleng.2005.07.011
15 Zhang J B, Song C C, Yang W Y. Cold season CH4, CO2 and N2O fluxes from freshwater marshes in northeast China. Chemosphere , 2005, 59(11): 1703-1705
doi: 10.1016/j.chemosphere.2004.11.051
16 Standard Method for the Examination of Water and Wastewater Editorial Board. Standard Method for the Examination of Water and Wastewater. Beijing: Environmental Science Press of China, 2002, 200-281 (in Chinese)
17 Saggar S, Hedley C B, Giltrap D L, Lambie S M. Measured and modelled estimates of nitrous oxide emission and methane consumption from a sheep-grazed pasture. Agricultural Ecosystems Environment , 2007, 122(3): 357-365
doi: 10.1016/j.agee.2007.02.006
18 Zhu R B, Sun L G, Ding W X. Nitrous oxide emissions from tundra soil and snowpack in the maritime Antarctic. Chemosphere , 2005, 59(11): 1667-1675
doi: 10.1016/j.chemosphere.2004.10.033
19 Czepiel P, Crill P, Harriss R. Nitrous oxide emissions from municipal wastewater treatment. Environmental Science and Technology , 1995, 29(9): 2352-2356
doi: 10.1021/es00009a030
20 Hanaki K, Hong Z, Matsuo T. Production of nitrous-oxide gas during denitrification of waste-water. Water Science and Technology , 1992, 26: 1027-1036
21 Shrestha N K, Hadano S, Kamachi T, Okura I. Dinitrogen production from ammonia by Nitrosomonas europaea. Applied Catalysis A: General , 2002, 237 (1-2): 33-39
doi: 10.1016/S0926-860X(02)00279-X
22 Bonin P, Tamburini C, Michotey V. Determination of bacterial processes which are sources of nitrous oxide production in marine samples. Water Research , 2002(3), 36: 722-732
doi: 10.1016/S0043-1354(01)00269-X
23 Itokawa H, Hanaki K, Matsuo T. Nitrous oxide production in high-loading biological nitrogen removal process under low COD/N ratio condition. Water Research , 2001, 35(3): 657-664
doi: 10.1016/S0043-1354(00)00309-2
24 Knowles R. Denitrification. Microbiology Review , 1982, 46(1): 43-70
25 Stevens R J, Laughlin R J. Measurement of nitrous oxide and di-nitrogen emissions from agricultural soils. Nutrient Cycling in Agroecosystems , 1998, 52, (2-3): 131-139
doi: 10.1023/A:1009715807023
[1] Marzieh Mokarram, Hamid Reza Pourghasemi, Huichun Zhang. Predicting non-carcinogenic hazard quotients of heavy metals in pepper (Capsicum annum L.) utilizing electromagnetic waves[J]. Front. Environ. Sci. Eng., 2020, 14(6): 114-.
[2] Davoud BEIKNEJAD,Mohammad Javad CHAICHI. Estimation of photolysis half-lives of dyes in a continuous-flow system with the aid of quantitative structure-property relationship[J]. Front.Environ.Sci.Eng., 2014, 8(5): 683-692.
[3] LOU Ziyang,CHAI Xiaoli,ZHAO Youcai,SONG Yu,ZHU Nanwen,JIA Jinping. Indicating landfill stabilization state by using leachate property from Laogang Refuse Landfill[J]. Front.Environ.Sci.Eng., 2014, 8(3): 405-410.
[4] Chuanjia JIANG, Pengyi ZHANG. Indoor carbonyl compounds in an academic building in Beijing, China: concentrations and influencing factors[J]. Front Envir Sci Eng, 2012, 6(2): 184-194.
[5] Pinjing HE, Na YANG, Wenjuan FANG, Fan Lü, Liming SHAO. Interaction and independence on methane oxidation of landfill cover soil among three impact factors: water, oxygen and ammonium[J]. Front Envir Sci Eng Chin, 2011, 5(2): 175-185.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed