Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front.Environ.Sci.Eng.    2009, Vol. 3 Issue (3) : 249-264    https://doi.org/10.1007/s11783-009-0029-0
Research articles
Nanomaterials for environmental burden reduction, waste treatment, and nonpoint source pollution control: a review
Guobin SHAN 1, Rajeshwar D. TYAGI 1, Rao Y. SURAMPALLI 2, Tian C. ZHANG 3, 4,
1.INRS-ETE, University of Quebec, Quebec, G1K 9A9, Canada; 2.U.S. Environmental Protection Agency, Kansas City, KS 66117, USA; 3.Civil Engineering, University of Nebraska-Lincoln, Omaha, NB 68182, USA; 4.2009-10-28 23:11:27;
 Download: PDF(259 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Nanomaterials are applicable in the areas of reduction of environmental burden, reduction/treatment of industrial and agricultural wastes, and nonpoint source (NPS) pollution control. First, environmental burden reduction involves green process and engineering, emissions control, desulfurization/denitrification of nonrenewable energy sources, and improvement of agriculture and food systems. Second, reduction/treatment of industrial and agricultural wastes involves converting wastes into products, groundwater remediation, adsorption, delaying photocatalysis, and nanomembranes. Third, NPS pollution control involves controlling water pollution. Nanomaterials alter physical properties on a nanoscale due to their high specific surface area to volume ratio. They are used as catalysts, adsorbents, membranes, and additives to increase activity and capability due to their high specific surface areas and nano-sized effects. Thus, nanomaterials are more effective at treating environmental wastes because they reduce the amount of material needed.
Keywords nanomaterials      industrial      agricultural      nonpoint source pollution      environmental burden reduction      
Issue Date: 05 September 2009
 Cite this article:   
Guobin SHAN,Rao Y. SURAMPALLI,Rajeshwar D. TYAGI, et al. Nanomaterials for environmental burden reduction, waste treatment, and nonpoint source pollution control: a review[J]. Front.Environ.Sci.Eng., 2009, 3(3): 249-264.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-009-0029-0
https://academic.hep.com.cn/fese/EN/Y2009/V3/I3/249
Fryxell G E, Cao G Z. Environmental Applicationsof Nanomaterials: Synthesis, Sorbents and Sensors. Hackensack: World Scientific Pub.Co. Inc., 2007
Masciangioli T, Zhang W X. Environmental technologiesat the nanoscale. Environmental Science& Technology, 2003, 37: 102A―108A

doi: 10.1021/es0323998
Brennecke F J, Allen D T. Green chemistry and engineering:Preface. Industrial & Engineering ChemistryResearch, 2002, 41: 4439―4439

doi: 10.1021/ie020477e
Pokhodenko V D, Pavlishchuk V V. Green chemistry and moderntechnology. Theoretical and ExperimentalChemistry, 2002, 38(2): 69―87

doi: 10.1023/A:1016080416792
Anastas P T, Zimmerman J B. Design through the 12 principlesof green engineering. Environmental Science& Technology, 2003, 37: 94A―101A

doi: 10.1021/es032373g
Samorjai G A, McCrea K. Roadmap for catalysis sciencein the 21st century: A personal view of building the future on pastand present accomplishments. Applied CatalysisA: General, 2001, 222: 3―18

doi: 10.1016/S0926-860X(01)00825-0
Lu P, Teranishi T, Asakura K, Miyake M, Toshima N. Polymer-protected Ni/Pd bimetallicnano-clusters: Preparation, characterization and catalysis for hydrogenationof nitrobenzene. Journal of Physical ChemistryB, 1999, 103: 9673―9682

doi: 10.1021/jp992177p
Sahle-Demessie E, Gonzalez M, Wang Z M, Biswas P. Synthesizingalcohols and ketones by photoinduced catalytic partial oxidation ofhydrocarbons in TiO2 film reactors preparedby three different methods. Industrial& Engineering Chemistry Research, 1999, 38: 3276―3284

doi: 10.1021/ie990054l
Socolof M L, Overly J G, Kincaid L E, Geibig J R. Desktop computer displays: A life-cycle assessment: Vol I and II. In: Design for the Environment Computer DisplayProject. EPA-744-R-01-004a. Washington,D C: U.S. Environmental ProtectionAgency, 2001
Baughman R H, Zakhidov A A, de Heer W A. Carbon nanotubes—The route toward applications. Science, 2002, 297 (5582): 787―792

doi: 10.1126/science.1060928
Booker R, Boysen E. Nanotechnology for Dummies. Hoboken: Wiley Publishing Inc., 2005
Krupenkin T N, Taylor J A, Schneider T M, Yang S. From RollingBall to Complete Wetting: The Dynamic Tuning of Liquids on NanostructuredSurfaces. Langmuir, 2004, 20(10): 3824―3827

doi: 10.1021/la036093q
Novotny C J, Yu E T, Yu P K L. InP nanowire/polymer hybrid photodiode. Nano Letters, 2008, 8(3): 775―779

doi: 10.1021/nl072372c
Shabaev A, Efros Al L, Nozik A J. Multiexciton generation by a single photon in nanocrystals. Nano Letters, 2006, 6(12): 2856―2863

doi: 10.1021/nl062059v
Rosi N L, Eckert J, Eddaoudi M, Vodak D T, Kim J, O’Keeffe M, Yaghi O M. Hydrogen storage in microporousmetal-organic frameworks. Science, 2003, 300 (5622): 1127―1129

doi: 10.1126/science.1083440
Robichaud C O, Tanzil D, Ulrich W, Wiesner M R. Relative risk analysis of several manufactured nanomaterials: Aninsurance industry context. EnvironmentalScience & Technology, 2005, 39(22): 8985―8994

doi: 10.1021/es0506509
Dabrowski A, Bülow M, Podkościelny P. Adsorption against pollution: Currentstate and perspectives. Progress in Colloidand Polymer Science, 2001, 117: 70―75

doi: 10.1007/3-540-45405-5_13
Jing L Q, Qu Y C, Wang B Q, Li S D, Jiang B J, Yang L B, Fu W, Fu H G, Sun J Z. Review ofphotoluminescence performance of nano-sized semiconductor materialsand its relationships with photocatalytic activity. Solar Energy Materials & Solar Cells, 2006, 90(12): 1773―1787

doi: 10.1016/j.solmat.2005.11.007
Fujishima A, Rao T N, Tryk D A. Titanium dioxide photocatalysis. Journal of Photochemistry and Photobiology C: Photochemsitry Reviews, 2000, 1: 1―21
Biswas P, Wu C Y. Control of toxic metal emissionfrom combustors using sorbents: a review. Journal of the Air & Waste Management Association, 1998, 48: 113―127
Iida K, Pierman J, Tolaymat T, Townsend T, Wu C Y. Control of chromated copperarsenate wood incineration air emissions and ash leaching using sorbenttechnology. Journal of Environmental Engineering, 2004, 130: 184―192

doi: 10.1061/(ASCE)0733-9372(2004)130:2(184)
Biswas P, Yang G, Zachariah M R. In situ processing of ferroelectric materials from leadwaste streams by injection of gas phase titanium precursors: laserinduced fluorescence and x-ray diffraction measurements. Combustion Science and Technology, 1998, 134: 183―200

doi: 10.1080/00102209808924132
Scotto M V, Uberoi M, Peterson T W, Shadman F, Wendt J O L. Metal capture by sorbentsin combustion processes. Fuel Process Technology, 1994, 39: 357―372

doi: 10.1016/0378-3820(94)90192-9
Owens T M, Biswas P. Vapor phase sorbent precursorsfor toxic metal emissions control from combustors. Industrial & Engineering Chemistry Research, 1996, 35: 792―798

doi: 10.1021/ie9502446
Owens T M, Biswas P. Reactions between vapor phaselead compounds and in situ generated silica particles at various lead-siliconfeed ratios: Applications to toxic metal capture in combustors. Journal of the Air & Waste Management Association, 1996, 46: 530―538
Rodriguez S, Almquist C, Lee T G, Furuuchi M, Hedrick E, Biswas P A. Mechanistic model for mercury capture with in situ- generatedtitania particles: Role of water vapor. Journal of the Air & Waste Management Association, 2004, 54: 149―156
Brown T D, Smith D N, Hargis R A, O’Dowd W J. Mercury measurement and its control: What we know, have learned,and need to further investigate. Journalof the Air & Waste Management Association, 1999, 49: 628―640
Kwon S, Vidic R D. Evaluation of two sulfurimpregnation methods on activated carbon and bentonite for the productionof elemental mercury sorbents. EnvironmentalEngineering Science, 2000, 17: 303―313

doi: 10.1089/ees.2000.17.303
Zimmer A T, Biswas P. Mechanistic understandingof aerosol emissions from a brazing operation. American Industrial Hygiene Association Journal, 2000, 16: 351―361
Chianelli R R, Berhault G. Symmetrical synergism andthe role of carbon in transition metal sulfide catalytic materials. Catalysis Today, 1999, 53(3): 357―366

doi: 10.1016/S0920-5861(99)00130-3
Furimsky E. Metalcarbides and nitrides as potential catalysts for hydroprocessing. Applied Catalysis A: General, 2003, 240(1―2): 1―28

doi: 10.1016/S0926-860X(02)00428-3
Liu P, Rodriguez J A, Muckerman J T. Desulfurization of SO2 and thiopheneon surfaces and nanoparticles of molybdenum carbide: Unexpected ligandand steric effects. Journal of PhysicalChemistry B, 2004, 108(40): 15662―15670

doi: 10.1021/jp040267a
Pellet-Rostaing S, Favre-Reguillon A, Lemaire M. Smart nanomaterials for asymetric catalysis, deep desulfurizationof gas oils and ion separation. ActualiteChimique, 2005, 98-107(Suppl): 290―291
Shiraishi Y, Hirai T. Photochemical desulfurizationand denitrogenation of light oil using benzophenone- modified silicagel as a heterogeneous triplet photosensitizer. Solvent Extraction Research Development, Japan, 2003, 10: 79―85
Mitsui Mining Co. Ltd. Gas purification, Austria Patent, 1982087870, 1982-08-31
Więckowska J. Catalyticand adsorptive desulphurization of gases. Catalysis Today, 1995, 24: 405―465

doi: 10.1016/0920-5861(95)00021-7
Subramani V, Ma X L, Song C S. Cyclodextrin-based nano materials as new adsorbents forthe adsorptive desulfurization of transportation fuels for fuel cellapplications. In: 227th American Chemical Society (ACS) National Meeting, Anaheim: American Chemical Society, 2004, 282
Lee Y J, Park N K, Han G B, Ryu S O, Lee T J, Chang C H. The preparation and desulfurization of nano-size ZnO by a matrix-assistedmethod for the removal of low concentration of sulfur compounds. Current Applied Physics, 2008, 8(6): 746―751

doi: 10.1016/j.cap.2007.04.040
Yang X X, Cao C D, Klabunde K J, Hohn K L, Erickson L E. Adsorptive desulfurizationwith xerogel-derived zinc-based nanocrystalline aluminum oxide. Industrial and Engineering Chemistry Research, 2007, 46(14): 4819―4823

doi: 10.1021/ie0701928
Li F, Jiang A X, Shao C H, Yan B, Liu L Y, Sun W N, Yan L L. Effect of cerium on structureand performance of the desulfurization with nanocrystalline ZnO atroom temperature. Rare Metal Materialsand Engineering, 2006, 35(Suppl. 2): 347―350
Zhao S Y, Chen A P, Liu W, Chen X P. Montmorilloniteassembled with nano-SiO2-particles for gasolinedesulfurization. Journal of Inorganic Materials, 2006, 21(4): 953―957
Ko C H, Park J G, Park J C, Song H, Han S S, Kim J N. Surface status and size influences of nickel nanoparticles on sulfurcompound adsorption. Applied Surface Science, 2007, 253(13): 5864―5867

doi: 10.1016/j.apsusc.2006.12.092
Shan G B, Liu H Z, Xing J M, Zhang G D, Wang K. Separation of polycyclic aromatic compoundsfrom model gasoline by magnetic alumina sorbent based on π-complexation. Industrial & Engineering Chemistry Research, 2004, 43(3): 758―761

doi: 10.1021/ie0305059
Premuzic E T, Lin M S, Bohenek M, Zhou W M. Bioconversionreactions in asphaltenes and heavy crude oils. Energy Fuels, 1999, 13(2): 297―304

doi: 10.1021/ef9802375
McFarland B L. Biodesulfurization. Current Opinion inMicrobiology, 1999, 2(3): 257―264

doi: 10.1016/S1369-5274(99)80045-9
Watson G K, Cain R B. Metabolic pathways of pyridinebiodegradation by soil bacteria. BiochemicalJournal, 1975, 146: 157―172
Grant J W, Al-Najjar T R. Degradation of quinolineby a soil bacterium. Microbios, 1976, 15: 177―189
Shan G B, Xing J M, Luo M F, Liu H Z, Chen J Y. Immobilization of Pseudomonas delafieldii with magnetic polyvinyl alcoholbeads and its application in biodesulfurization. Biotechnology Letters, 2003, 25(23): 1977―1981

doi: 10.1023/B:BILE.0000004388.15751.8c
Shan G B, Xing J M, Zhang H Y, Liu H Z. Biodesulfurizationof dibenzothiophene by microbial cells coated with magnetite nanoparticles. Applied and Environmental Microbiology, 2005a, 71(8): 4497―4502

doi: 10.1128/AEM.71.8.4497-4502.2005
Shan G B, Zhang H Y, Cai W Q, Xing J M, Liu H Z. Improvement of biodesulfurization rateby assembling nanosorbents on the surfaces of microbial cells. Biophysical Journal, 2005b, 89(6): L58―L60

doi: 10.1529/biophysj.105.073718
Bhatkhande D S, Pangarkar V G, Beenackers A A C M. Photocatalytic degradation for environmentalapplications—a review. Journal ofChemical Technology and Biotechnology, 2001, 77: 102―116

doi: 10.1002/jctb.532
Li D, Haneda H. Morphologies of zinc oxideparticles and their effects on photocatalysis. Chemosphere, 2003, 51(2): 129―137

doi: 10.1016/S0045-6535(02)00787-7
Torres-Martinez L C, Nguyen L, Kho R, Bae W, Bozhilov K, Klimov V, Mehra R K. Biomolecularly capped uniformlysized nanocrystalline materials:glutathione-capped ZnS nanocrystals. Nanotechnology, 1999, 10: 340―354

doi: 10.1088/0957-4484/10/3/319
Sang Y M, Gu, Q B, Sun T C, Li F S, Liang C Z. Filtration by a novel nanofiber membraneand alumina adsorption to remove copper(II) from groundwater. Journal of Hazardous Materials, 2008, 153(1–2): 860―866

doi: 10.1016/j.jhazmat.2007.09.035
Busch L. Nanotechnologies,food, and agriculture: Next big thing or flash in the pan?Agriculture and Human Values, 2008, 25: 215―218

doi: 10.1007/s10460-008-9119-z
Sugunan A, Warad H C, Thanachayanont C, Dutta J, Hofmann H. Zinc oxide nanowires on non-epitaxialsubstrates from colloidal processing for gas sensing applications. In: Nanostructured and Advanced Materials for Applicationsin Sensor, Optoelectronic and Photovoltaic Technology. Sozopol: NATO-Advance Study Institute, 2004
Hossain M K, Ghosh S C, Boontongkong Y, Thanachayanont C, Dutta J. Growth of zinc oxide nanowiresand nanobelts for gas sensing applications. Journal of Metastable Nanocrystalline Materials, 2005, 23: 27―30

doi: 10.4028/www.scientific.net/JMNM.23.27
Vacassy R, Scholz S M, Dutta J, Plummer C J G, Houriet R, Hofmann H. Synthesis of controlled spherical zinc sulfide particlesby precipitation from homogeneous solutions. Journal of the American Ceramic Society, 1998, 81: 2699―2705
Warad H C, Thanachayanont C, Dutta J. Highly luminescent manganese doped ZnS quantumn dotsfor biological labeling. In: Smart Mat'04,International Conference on Smart Materials, Smart/Intelligent Materialsand Nanotechnology. Chiang Mai: Chiang Mai Journal of Science, 2004
Su X L, Li Y. Quantum dots biolabelingcoupled with immunomagnetic separation for detection of Escherichia Coli O157:H7. Analytical Chemistry, 2004, 76(16): 4806―4810

doi: 10.1021/ac049442+
Taylor T M, Davidson P M, Bruce B D, Weiss J. Liposomal nanocapsulesin food science and agriculture. CriticalReviews in Food Science and Nutrition, 2005, 45: 587―605

doi: 10.1080/10408390591001135
Koeller K M, Wong C H. Enzymes for chemical synthesis. Nature, 2001, 409: 232―240

doi: 10.1038/35051706
Chibata I, Tosa T, Sato T. Biocatalysis: Immobilized cells and enzymes. Journal of Molecular Catalysis, 1986, 37: 1―24

doi: 10.1016/0304-5102(86)85134-3
Katchalski-Katzir E. Immobilizedenzymes: Learning from past successes and failures. Trends Biotechnology, 1993, 11: 471―478

doi: 10.1016/0167-7799(93)90080-S
Mateo C, Palomo J M, Fernandez-Lorente G, Guisan J M, Fernandez-Lafuente R. Improvementof enzyme activity, stability and selectivity via immobilization techniques. Enzyme and Microbial Technology, 2007, 40(6): 1451―1463

doi: 10.1016/j.enzmictec.2007.01.018
Kim J K, Park J K, Kim H K. Synthesis and characterization of nanoporous silica supportfor enzyme immobilization. Colloids andSurfaces A: Physicochemical and Engineering Aspects, 2004, 241(1―3): 113―117

doi: 10.1016/j.colsurfa.2004.04.048
Bai Y, Yang H, Yang W W, Li Y C, Sun C Q. Gold nanoparticles-mesoporous silicacomposite used as an enzyme immobilization matrix for amperometricglucose biosensor construction. Sensorsand Actuators B: Chemical, 2007, 124(1): 179―186

doi: 10.1016/j.snb.2006.12.020
Crespilho F N, Ghica M E, Florescu M, Nart F C, Oliveira O N, Brett C M A Jr. A strategy for enzyme immobilization on layer-by-layerdendrimer-gold nanoparticle electrocatalytic membrane incorporatingredox mediator. Electrochemistry Communications, 2006, 8(10): 1665―1670

doi: 10.1016/j.elecom.2006.07.032
Xiao Q G, Tao X, Zhang J P, Chen J F. Hollow silicananotubes for immobilization of penicillin G acylase enzyme. Journal of Molecular Catalysis B: Enzymatic, 2006, 42(1―2): 14―19

doi: 10.1016/j.molcatb.2006.05.011
Tsang S C, Yu C H, Gao X, Tam K. Silica-encapsulatednanomagnetic particle as a new recoverable biocatalyst carrier. Journal of Physical Chemistry B, 2006, 110: 16914―16922

doi: 10.1021/jp062275s
Zeng L, Luo K K, Gong Y F. Preparation and characterization of dendritic compositemagnetic particles as a novel enzyme immobilization carrier. Journal of Molecular Catalysis B: Enzymatic, 2006, 38: 24―30

doi: 10.1016/j.molcatb.2005.10.007
Betancor L, Fuentes M, Dellamora-Ortiz G, López-Gallego F, Hidalgo A, Alonso-Morales N. Dextran aldehyde coating of glucose oxidaseimmobilized on magnetic nanoparticles prevents its inactivation bygas bubbles. Journal of Molecular CatalysisB: Enzymatic, 2005, 32: 97―101

doi: 10.1016/j.molcatb.2004.11.003
Yu C H, Lo C C H, Tam K, Tsang S C. Monodispersebinary nanocomposite in silica with enhanced magnetization for magneticseparation. Journal of Physical ChemistryC, 2007, 111(22): 7879―7882

doi: 10.1021/jp071289a
Crini G. Non-conventionallow-cost adsorbents for dye removal: A review. Bioresource Technology, 2006, 97: 1061―1085

doi: 10.1016/j.biortech.2005.05.001
Chang Y C, Chen D H. Adsorption kinetics and thermodynamicsof acid dyes on a carboxymethylated chitosan-conjugated magnetic nano-adsorbent. Macromolecular Bioscience, 2005, 5(3): 254―261

doi: 10.1002/mabi.200400153
Shiragami T, Mori Y, Matsumoto J, Takagi S, Inoue H, Yasuda M. Non-aggregated adsorption of cationic metalloporphyrindyes onto nano-clay sheets films. Colloidsand Surfaces A: Physicochemical and Engineering Aspects, 2006, 284―285: 284―289

doi: 10.1016/j.colsurfa.2005.11.102
Shu H Y, Chang M C, Yu H H, Chen W H. Reductionof an azo dye Acid Black 24 solution using synthesized nanoscale zerovalentiron particles. Journal of Colloid andInterface Science, 2007, 314 (1): 89―97

doi: 10.1016/j.jcis.2007.04.071
Hu Z G, Zhang J, Chan W L, Szeto Y S. The sorptionof acid dye onto chitosan nanoparticles. Polymer, 2006, 47(16): 5838–5842

doi: 10.1016/j.polymer.2006.05.071
Li J, Zhou Z G, Wang H J, Li G F, Wu Y. Research on decoloration of dye wastewater by combinationof pulsed discharge plasma and TiO2 nanoparticles. Desalination, 2007, 212 (1–3): 123―128

doi: 10.1016/j.desal.2006.10.006
Sayilkan F, Asilturk M, Tatar P, Kiraz N, Arpac E, Sayilkan H. Photocatalyticperformance of Sn-doped TiO2 nanostructuredmono and double layer thin films for Malachite Green dye degradationunder UV and vis-lights. Journal of HazardousMaterials, 2007, 144(1―2): 140―146

doi: 10.1016/j.jhazmat.2006.10.011
Carneiro P A, Osugi M E, Sene J J, Anderson M A, Zanoni M V B. Evaluation of color removaland degradation of a reactive textile azo dye on nanoporous TiO2 thin-film electrodes. ElectrochimicaActa, 2004, 49(22―23): 3807―3820

doi: 10.1016/j.electacta.2003.12.057
Hidaka H, Suzuki Y, Nohara K, Horikoshi S, Hisamatsu Y, Pelizzetti E, Serpone N. Photocatalyzeddegradation of polymers in aqueous semiconductor suspensions. I. Photooxidationof solid particles of polyvinylchloride. Journal of Polymer Science Part A: Polymer Chemistry, 1996, 34(7): 1311―1316

doi: 10.1002/(SICI)1099-0518(199605)34:7<1311::AID-POLA18>3.0.CO;2-C
Mills A, Le Hunte S. An overview of semiconductorphotocatalysis. Journal of Photochemistryand Photobiology A: Chemistry, 1997, 108(1): 1―35

doi: 10.1016/S1010-6030(97)00118-4
Zan L, Tian L, Liu Z, Peng Z. A new polystyrene-TiO2 nanocomposite film and its photocatalytic degradation. Applied Catalysis A: General, 2004, 264(2): 237―242

doi: 10.1016/j.apcata.2003.12.046
Kim S H, Kwak S Y, Suzuki T. Photocatalytic degradation of flexible PVC/TiO2 nanohybrid as an eco-friendly alternative to the currentwaste landfill and dioxin-emitting incineration of post-use PVC. Polymer, 2006, 47: 3005―3016

doi: 10.1016/j.polymer.2006.03.015
Kwon S, Fan M, Cooper A T, Yang H Q. Photocatalyticapplications of micro- and Nano-TiO2 in environmentalengineering. Critical Reviews in EnvironmentalScience and Technology, 2008, 38(3): 197―226

doi: 10.1080/10643380701628933
Zhang S Y, Ding S W, Liu S J, Kang Q Y, Liu Y C, Ding Y. Synthesisand photocatalytic property of Nano-ZnO. Acta Chimica Sinica, 2002, 60(7): 1225―1229 (in Chinese)
Hong R Y, Li J H, Chen L L, Liu D Q, Li H Z, Zheng Y, Ding J. Synthesis, surface modificationand photocatalytic property of ZnO nanoparticles. Powder Technology, 2009, 189(3): 426―432

doi: 10.1016/j.powtec.2008.07.004
Kwon Y T, Song K Y, Lee W I, Choi G J, Do Y R. Photocatalytic Behavior of WO3-Loaded TiO2 in an OxidationReaction. Journal of Catalysis, 2000, 191(1): 192―199

doi: 10.1006/jcat.1999.2776
Liu Z L, Deng J C, Deng J J, Li F F. Fabricationand photocatalysis of CuO/ZnO nano-composites via a new method. Materials Science and Engineering B: Advanced FunctionalSolid-state Materials, 2008, 150(2): 99―104
Zhou G, Deng H C. Preparation and photocatalyticperformance of Ag/ZnO nano-composites. Materials Science in Semiconductor Processing, 2007, 10: 90―96

doi: 10.1016/j.mssp.2007.05.003
Sobana N, Selvam K, Swaminathan M. Optimization of photocatalytic degradation conditionsof Direct Red 23 using nano-Ag doped TiO2. Separation and Purification Technology, 2008, 62(3): 648―653

doi: 10.1016/j.seppur.2008.03.002
Ding S W, Wang L Y, Zhang S Y, Liu S J, Ding Y, Liu Y C, Kang Q Y. Synthesis, structure andphotocatalytic property of nano-TiO2-ZnO. Chinese Journal of Inorganic Chemistry, 2003, 19(6): 631―635 (in Chinese)
Wang C, Zhao J C, Wang X M, Mai B X, Sheng G Y, Peng P, Fu J M. Preparation, characterizationand photocatalytic activity of nano-sized ZnO/SnO2 coupled photocatalysts. Applied CatalysisB: Environmental, 2002, 39(3): 269―279

doi: 10.1016/S0926-3373(02)00115-7
Vinodgopal K, Bedja I, Kamat P V. Nanostructured semiconductor films for photocatalysis.Photoelectrochemical behavior of SnO2/TiO2 composite systems and its role in photocatalytic degradationof a textile azo dye. Chemistry of Materials, 1996, 8(8): 2180―2187

doi: 10.1021/cm950425y
Peng F, Ren Y Q. Preparation of nano-TiO2-SnO2 composite film and itsphotocatalytic activity for toluene degradation. Chinese Journal of Catalysis, 2003, 24(4): 243―247 (in Chinese)
Xia H L, Zhuang H S, Zhang T, Xiao D C. Photocatalyticdegradation of Acid Blue 62 over CuO-SnO2 nanocompositephotocatalyst under simulated sunlight. Journal of Environmental Sciences—China. 2007, 19(9): 1141―1145

doi: 10.1016/S1001-0742(07)60186-7
He Q H, Zhang Z X, Xiong J W, Xiong Y Y, Xiao H A. A novel biomaterial—Fe3O4:TiO2 core-shell nano particle with magnetic performance and high visiblelight photocatalytic activity. OpticalMaterials, 2008, 31(2): 380―384

doi: 10.1016/j.optmat.2008.05.011
Yin H, Wada Y, Kitamura T, Yanagida S. Photoreductivedehalogenation of halogenated benzene derivatives using ZnS or CdSnanocrystallites as photocatalysts. EnvironmentalScience & Technology, 2001, 35 (1): 227―231

doi: 10.1021/es001114d
Warrier M, Lo M K F, Monbouquette H, Garcia-Garibay, M A. Photocatalytic reduction of aromatic azides to amines using CdS andCdSe nanoparticles. Photochemical &Photobiological Sciences, 2004, 3: 859―863

doi: 10.1039/b404268a
Xiong S, Xi B, Wang C, Xi G, Liu X, Qian Y. Solution-phasesynthesis and high photocatalytic activity of wurtzite ZnSe ultrathinnanobelts: A general route to 1D semiconductor nanostructured materials. Chemistry—A European Journal, 2007, 13(28): 7926―7932

doi: 10.1002/chem.200700334
Lee M K, Shih T H. High photocatalytic activityof heterojunction of zinc selenide grown on nanoscaled titanium oxide. Journal of The Electrochemical Society, 2008, 155(4): K63―K65

doi: 10.1149/1.2833307
Braeken L, Bettens B, Boussu K, Van der Meeren P, Cocquyt J, Vermant J, van der Bruggen B. Transportmechanisms of dissolved organic compounds in aqueous solution duringnanofiltration. Journal of Membrane Science, 2006, 279, 311―319

doi: 10.1016/j.memsci.2005.12.024
Frank M J W, Westerink J B, Schokker A. Recycling of industrial waste water by using a two-stepnanofiltration process for the removal of colour. Desalination, 2002, 145: 69―74

doi: 10.1016/S0011-9164(02)00388-0
DeFriend K A, Wiesner M R, Barron A R. Alumina and aluminate ultrafiltration membrane derivedfrom alumina nanoparticles. Journal ofMembrane Science, 2003, 224: 11―28

doi: 10.1016/S0376-7388(03)00344-2
Ericsson B, Hallberg M, Wachenfeldt J. Nanofiltration of highly colored raw water for drinkingwater production. Desalination, 1996, 108(1-3): 129―141

doi: 10.1016/S0011-9164(97)00018-0
ven der Bruggen B, Vandecasteele C. Removal of pollutants fromsurface water and groundwater by nanofiltration: Overview of possibleapplications in the drinking water industry. Environmental Pollution, 2003, 122: 435―445

doi: 10.1016/S0269-7491(02)00308-1
Hassan A M, Farooque A M, Jamaluddin A T M, Al-Amoudi A S, Al-Sofi M A K, Al-Rubaian A F, Kither N M, Al-Tisan I A R, Rowaili A. A demonstration plant based on the new NF-SWRO process. Desilination, 2000, 131: 157―171

doi: 10.1016/S0011-9164(00)90016-X
Ozaki H, Sharma K, Saktaywin W, Wang D, Yu Y. Application of ultra low pressure reverse osmoisi membraneto water and wastewater. Water Scienceand Technology, 2000, 42(12): 123―135
Matsuura T. Progressin membrane science and technology for seawater desalination—Areview. Desalination, 2001, 134: 47―54

doi: 10.1016/S0011-9164(01)00114-X
Diallo M S, Christie S, Swaminathan P, Johnson Jr J H, Goddard III W A. Dendrimer enhanced ultrafiltration.1. Recovery of Cu(II) form aqueous solutions using PAMAM dendrimerswith ethylene diamine core and terminal NH2 groups. Environmental Science and Technology, 2004, 39: 1366―1377

doi: 10.1021/es048961r
Christen K. Novelnanomaterial strips contaminants from waste streams. Environmental Science & Technology, 2004, 38(23): 453A―454A

doi: 10.1021/es040685t
Binder T P, Handden D K, Sievers L J. Nanofiltration process for making dextrose. US Patent, 5 869 297, Archer Daniels Midland Company (Decatur, IL), 1992
Hinds B J, Chopra N, Rantell T, Andrews R, Gavalas V, Bachas L G. Aligned multiwalled carbon nanotube membranes. Science, 2004, 303: 62―65

doi: 10.1126/science.1092048
Srivastaval A, Srivastava1 O N, Talapatra S, Vajtai R, Ajayan P M. Carbon nanotube filters. Nature materials, 2004, 3: 610―614
Majumder M, Chopra N, Andrews R, Hinds B J. NanoscaleHydrodynamics: Enhanced flow in carbon nanotubes. Nature, 2005, 438: 44

doi: 10.1038/43844a
Holt J K, Park H G, Wang Y, Stadermann M, Artyukhin A B, Grigoropoulos C P, No A, Bakajin O. Fast mass transport throughsub-2-nanometer carbon nanotubes. Science, 2006, 312: 1035―1037

doi: 10.1126/science.1126298
Bellona C, Jörg J E, Drewes E, Xei P, Amy G. Factors affecting the retention of organicsolutes during NF/RO treatment—A literature review. Water Research, 2004, 38(12): 2795―2809

doi: 10.1016/j.watres.2004.03.034
Majumder M, Chopra N, Hinds B J. Effect of tip functionalization on transport throughvertically oriented carbon nanotube membranes. Journal of the American Chemical Society, 2005, 127(25): 9062―9070

doi: 10.1021/ja043013b
Smuleac V, Butterfield D A, Bhattacharyya D. Layer-by-layer-assembled microfiltration membranes forbiomolecule immobilization and enzymatic catalysis. Langmuir, 2006, 22(24): 10118―10124

doi: 10.1021/la061124d
Gnaser H, Huber B, Ziegler C. Nanocrystalline TiO2 for photocatalysis. Encyclopedia of Nanoscience and Nanotechnology, 2004, 6: 505―535
Joo S H, Cheng I F. Nanotechnology for EnvironmentalRemediation. New York: Springer, 2006, 1―165
Kanel S R, Manning B, Charlet L, Choi H. Removal ofarsenic (III) from groundwater by nanoscale zero-valent iron. Environmental Science & Technology, 2005, 39(5): 1291―1298

doi: 10.1021/es048991u
Lowry G V, Johnson K M. Congener-specific dechlorinationof dissolved PCBs by microscale and nanoscale zero valent iron ina water/methanol solution. EnvironmentalScience & Technology, 2004, 38: 5208―5216

doi: 10.1021/es049835q
Pecher K, Haderlein S B, Schwarzenbach R P. Reduction of polyhalogenated methanesby surface-bound Fe(II) in aqueous suspensions of iron oxide. Environmental Science & Technology, 2002, 36(8): 1734―1741

doi: 10.1021/es011191o
Ponder S M, Darab J G, Mallouk T E. Remediation of Cr (IV) and Pb(II) aqueous solutions usingsupported, nanoscale zero-valent iron. Environmental Science & Technology, 2000, 34(12): 2564―2569

doi: 10.1021/es9911420
Wang C B, Zhang W X. Synthesizing nanoscale ironparticles for rapid and complete dechlorination TCE and PEBs. Environmental Science & Technology, 1997, 31(7): 2154―2156

doi: 10.1021/es970039c
Zhang W X, Wang C B, Lien H L. Treatment of chlorinated organic contaminants with nanoscalebimetallic particles. Catalysis Today, 1998, 40(4): 387―395

doi: 10.1016/S0920-5861(98)00067-4
Zhang W X. Nanoscale iron particles for environmental remediation: An overview. Journal of Nanoparticle Research, 2003, 5(3―4): 323―332

doi: 10.1023/A:1025520116015
Mondal K, Jegadeesan G, Lelvani S B. Removal of selenate by Fe and NiFe nanosized particles. Industrial & Engineering Chemistry Research, 2004, 43(16): 4922―4934

doi: 10.1021/ie030715l
Schrick B, Blough J L, Jones A D, Mallouk T E. Hydrodechlorination of trichloroethylene to hydrocarbons using bimetallicnickel-iron nanoparticles. Chemistry ofMaterials, 2002, 14(12): 5140―5147

doi: 10.1021/cm020737i
Xu Y, Zhang W X. Subcolloidal Fe/Ag particlesfor reductive dehalogenation of chlorinated benzenes. Industrial & Engineering Chemistry Research, 2000, 39(7): 2238―2244

doi: 10.1021/ie9903588
Li P, Miser D E, Rabiei S, Yadav R T. The removalof carbon monoxide by iron oxide nanoparticles. Applied Catalysis B: Environmental, 2003, 43(2): 151―162

doi: 10.1016/S0926-3373(02)00297-7
Reddy K J, Lin J P. Nitrate removal from groundwaterusing catalytic reduction. Water Research, 2000, 34(3): 995―1001

doi: 10.1016/S0043-1354(99)00227-4
Gao J F, Xu C Y, Wang J F, Zhuang Y Y. Catalytic reduction of nitrate in water over Pd-Cu-Pt/gamma-Al2O3 catalyst. Chinese Journal of Catalysis, 2004, 25 (11): 869―872 (in Chinese)
Huang Y H, Zhang T C, Shea P J, Comfort S D. Effect of iron coating and selected cations on nitrate reductionby iron. Journal of Environmental Quality, 2003, 32: 1306―1315
Huang Y H, Zhang T C. Effects of dissolved oxygenon formation of corrosion products and concomitant oxygen and nitratereduction in zero-valent iron systems with or without aq. Fe(II). Water Research, 2005, 39: 1751―1760
Choe S, Chang Y Y, Hwang K Y, Khim J. Kinetics ofreductive denitrification by nanoscale zero-valent iron. Chemosphere, 2000, 41(8): 1307―1311

doi: 10.1016/S0045-6535(99)00506-8
Chen S S, Hsu H D, Li C W. A new method to produce nanoscale iron for nitrate removal. Journal of Nanoparticle Research, 2004, 6(6): 639―647

doi: 10.1007/s11051-004-6672-2
Wang W, Jin Z H, Li T L, Zhang H, Gao S. Preparation of spherical iron nanoclustersin ethanol-water solution for nitrate removal. Chemosphere, 2006, 65(8): 1396―1404

doi: 10.1016/j.chemosphere.2006.03.075
Zhang H, Jin Z H, Han L, Qin C H. Synthesisof nanoscale zero-valent iron supported on exfoliated graphite forremoval of nitrate. Transactions of NonferrousMetals Society of China, 2006, 16(Suppl 1): s345―s349

doi: 10.1016/S1003-6326(06)60207-0
Shin K H, Cha D K. Microbial reduction of nitratein the presence of nanoscale zero-valent iron. Chemosphere, 2008, 72(2): 257―262

doi: 10.1016/j.chemosphere.2008.01.043
Yang G C C, Hung C H, Tu, H C. Electrokinetically enhanced removal and degradation ofnitrate in the subsurface using nanosized Pd/Fe slurry. Journal of Environmental Science and Health Part A: Toxic/HazardousSubstances & Environmental Engineering, 2008, 43(8): 945―951

doi: 10.1080/10934520801974517
Santafe-Moros A, Gozalvez-Zafrilla J M, Lora-Garcia J. Performance of commercialnanofiltration membranes in the removal of nitrate ions. Desalination, 2005, 185(1―3): 281―287

doi: 10.1016/j.desal.2005.02.080
Santafe-Moros A, Gozalvez-Zafrilla J M, Lora-Garcia J, Garcia-Diaz J C. Mixture design applied to describe the influence of ioniccomposition on the removal of nitrate ions using nanofiltration. Desalination, 2005, 185(1―3): 289―296

doi: 10.1016/j.desal.2005.02.081
Santafe-Moros A, Gozalvez-Zafrilla J M, Lora-Garcia J. Nitrate removal from ternaryionic solutions by a tight nanofiltration membrane. Desalination, 2007, 204(1―3): 63―71

doi: 10.1016/j.desal.2006.04.024
van der Bruggen B, Everaert K, Wilms D, Vandecasteele C. Applicationof nanofiltration for removal of pesticides, nitrate and hardnessfrom ground water: Rejection properties and economic evaluation. Journal of Membrane Science, 2001, 193(2): 239―248

doi: 10.1016/S0376-7388(01)00517-8
Choi S, Yun Z W, Hong S, Ahn K. The effectof co-existing ions and surface characteristics of nanomembranes onthe removal of nitrate and fluoride. Desalination, 2001, 133(1): 53―64

doi: 10.1016/S0011-9164(01)00082-0
Diawara C K, Paugam L, Pontie M, Schlumpf J P, Jaouen P, Quemeneur F. Influence of chloride, nitrate, and sulphate on the removalof fluoride ions by using nanofiltration membranes. Separation Science and Technology, 2005, 40(16): 3339―3347

doi: 10.1080/01496390500423706
Sarkar B, Venkateswralu N, Rao R N, Bhattacharjee C, Kale V. Treatment of pesticide contaminatedsurface water for production of potable water by a coagulation-adsorption-nanofiltrationapproach. Desalination, 2007, 212(1―3): 129―140

doi: 10.1016/j.desal.2006.09.021
Gaubert E, Barnier H, Nicod L, FavreReguillon A, Foos J, Guy A, Bardot C, Lemaire M. Selective cesium removalfrom a sodium nitrate aqueous medium by nanofiltration-complexation. Separation Science and Technology, 1997a, 32(14): 2309―2320

doi: 10.1080/01496399708000770
Gaubert E, Barnier H, Maurel A, Foos J, Guy A, Bardot C, Lemaire M. Selective strontium removalfrom a sodium nitrate aqueous medium by nanofiltration-complexation. Separation Science and Technology, 1997b, 32(1―4): 585―597

doi: 10.1080/01496399708003217
Ponder S M, Darab J G, Mallouk T E. Remediation of Cr(vi) and Pb(ii) aqueous solutions usingsupported, nanoscale zero-valent iron. Environmental Science and Technology, 2000, 34: 2564―2569

doi: 10.1021/es9911420
Eswaramoorthy M, Sen R, Rao C N R. A study of micropores in single-walled carbon nanotubesby the adsorption of gases and vapors. Chemical Physics Letters, 1999, 304(3―4): 207―210

doi: 10.1016/S0009-2614(99)00311-5
Yang K, Zhu L Z, Xing B S. Adsorption of polycyclic aromatic hydrocarbons by carbonnanomaterials. Environmental Science &Technology, 2006, 40(6): 1855―1861

doi: 10.1021/es052208w
Sun S J. Gas adsorption on a single walled carbon nanotube-model simulation. Physics Letters A, 2008, 372(19): 3493―3495

doi: 10.1016/j.physleta.2008.02.030
Cho H H, Smith B A, Wnuk J D, Fairbrother D H, Ball W P. Influence of surface oxideson the adsorption of naphthalene onto multiwalled carbon nanotubes. Environmental Science & Technology, 2008, 42(8): 2899―2905

doi: 10.1021/es702363e
Long R Q, Yang R T. Carbon nanotubes as superiorsorbent for dioxin removal. Journal ofthe American Chemical Society, 2001, 123: 2058―2059

doi: 10.1021/ja003830l
Liu G H, Wang J L, Zhu Y F, Zhang X R. Applicationof multiwalled carbon nanotubes as a solid-phase extraction sorbentfor chlorobenzenes. Analytical Letters, 2004, 37: 3085―3104

doi: 10.1081/AL-200035912
Agnihotri S, Rood M J, Rostam-Abadi M. Adsorption equilibrium of organic vapors on single-walledcarbon nanotubes. Carbon, 2005, 43(11): 2379―2388

doi: 10.1016/j.carbon.2005.04.020
Crespo D, Yang R T. Adsorption of organic vaporson single-walled carbon nanotubes. Industrial& Engineering Chemistry Research, 2006, 45(16): 5524―5530

doi: 10.1021/ie051106b
Lu C Y, Su F S. Adsorption of natural organicmatter by carbon nanotubes. Separationand Purification Technology, 2007, 58(1): 113―121

doi: 10.1016/j.seppur.2007.07.036
Shim W G, Lee M J, Kang H C. Surface energy heterogeneity and heterogeneous adsorptionof benzene on double-walled carbon nanotubes. Journal of Nanoscience and nanotechnology, 2007, 7(11): 3896―3901

doi: 10.1166/jnn.2007.057
Kowalczyk P, Holyst R. Efficient adsorption of supergreenhouse gas (tetrafluoromethane) in carbon nanotubes. Environmental Science & Technology, 2008, 42(8): 2931―2936

doi: 10.1021/es071306+
Shih Y H, Li M S. Adsorption of selected volatileorganic vapors on multiwall carbon nanotubes. Journal of Hazarous Materials, 2008, 154(1―3): 21―28

doi: 10.1016/j.jhazmat.2007.09.095
Lu C S, Chung Y L, Chang K F. Adsorption of trihalomethanes from water with carbonnanotubes. Water Research, 2005, 39(6): 1183―1189

doi: 10.1016/j.watres.2004.12.033
Yan X M, Shi B Y, Lu J J, Feng C H, Wang D S, Tang H X. Adsorption and desorption of atrazine on carbon nanotubes. Journal of Colloid and Interface Science, 2008, 321(1): 30―38

doi: 10.1016/j.jcis.2008.01.047
Rao G P, Lu C, Su F. Sorption of divalent metal ions from aqueous solutionby carbon nanotubes: A review. Separationand Purification Technology, 2007, 58(1): 224―231

doi: 10.1016/j.seppur.2006.12.006
Wang H J, Zhou A L, Peng F, Yu H, Yang J. Mechanism study on adsorption of acidifiedmultiwalled carbon nanotubes to Pb(II). Journal of Colloid and Interface Science, 2007, 316(2): 277―283

doi: 10.1016/j.jcis.2007.07.075
Chen W, Duan L, Zhu D Q. Adsorption of polar and nonpolar organic chemicals tocarbon nanotubes. Environmental Science& Technology, 2007, 41(24)8295―8300

doi: 10.1021/es071230h
Celebi O, Uezuem C, Shahwan T, Erten H N. A radiotracerstudy of the adsorption behavior of aqueous Ba2+ ions on nanoparticles of zero-valent iron. Journal of Hazardous Materials, 2007, 148(3): 761―767

doi: 10.1016/j.jhazmat.2007.06.122
Giasuddin A B M, Kanel S R, Choi H. Adsorption of humic acid onto nanoscale zerovalent ironand its effect on arsenic removal. EnvironmentalScience & Technology, 2007, 41(6): 2022―2027

doi: 10.1021/es0616534
Kim J, Mann J D, Kwon S. Enhanced adsorption and regeneration with lignocellulose-basedphosphorus removal media using molecular coating nanotechnology. Journal of Environmental Science and Health PartA: Toxic/Hazardous Substances & Environmental Engineering, 2006, 41(1): 87―100

doi: 10.1080/10934520500299570
Decker S P, Klabunde J S, Khaleel A, Klabunde K J. Catalyzed destructive adsorption of environmental toxins with nanocrystallinemetal oxides. Fluoro-, chloro-, bromocarbons, sulfur, and organophosophoruscompounds. Environmental Science &Technology, 2002, 36(4): 762―768

doi: 10.1021/es010733z
Yang Y H, Chen H, Pan G. Particle concentration effect in adsorption/desorptionof Zn(II) on anatase type nano TiO2. Journal of Environmental Sciences—China, 2007, 19(12): 1442―1445

doi: 10.1016/S1001-0742(07)60235-6
Tseng Y H, Lin H Y, Kuo C S, Li Y Y, Huang C P. Thermostability of nano-TiO2 and its photocatalytic activity. Reaction Kinetics and Catalysis Letters, 2006, 89(1): 63―69

doi: 10.1007/s11144-006-0087-2
Xia S, Dong B, Zhang Q, Xu B, Gao N, Causseranda C. Studyof arsenic removal by nanofiltration and its application in China. Desalination, 2007, 204(1―3): 374―379

doi: 10.1016/j.desal.2006.04.035
Ortega L M, Lebrun R, Noël I M, Hausler R. Applicationof nanofiltration in the recovery of chromium (III) from tannery effluents. Separation and Purification Technology, 2005, 44(1): 45―52

doi: 10.1016/j.seppur.2004.12.002
Twardowski Z, Ulan J G. Nanofiltration of concentratedaqueous salt solutions. US Patent 5 858240, 1999.
van der Bruggen B, Everaert K, Wilms D, Vandecasteele C. Applicationof nanofiltration for removal of pesticides, nitrate and hardnessfrom ground water: Rejection properties and economic evaluation. Journal of Membrane Science, 2001, 193(2): 239―248

doi: 10.1016/S0376-7388(01)00517-8
[1] Chi Zhang, Wenhui Kuang, Jianguo Wu, Jiyuan Liu, Hanqin Tian. Industrial land expansion in rural China threatens environmental securities[J]. Front. Environ. Sci. Eng., 2021, 15(2): 29-.
[2] Alisa Salimova, Jian’e Zuo, Fenglin Liu, Yajiao Wang, Sike Wang, Konstantin Verichev. Ammonia and phosphorus removal from agricultural runoff using cash crop waste-derived biochars[J]. Front. Environ. Sci. Eng., 2020, 14(3): 48-.
[3] Huosheng Li, Hongguo Zhang, Jianyou Long, Ping Zhang, Yongheng Chen. Combined Fenton process and sulfide precipitation for removal of heavy metals from industrial wastewater: Bench and pilot scale studies focusing on in-depth thallium removal[J]. Front. Environ. Sci. Eng., 2019, 13(4): 49-.
[4] Panagiotis G. Kougias, Irini Angelidaki. Biogas and its opportunities—A review[J]. Front. Environ. Sci. Eng., 2018, 12(3): 14-.
[5] Pan Gao, Yuan Song, Shaoning Wang, Claude Descorme, Shaoxia Yang. Fe2O3-CeO2-Bi2O3/γ-Al2O3 catalyst in the catalytic wet air oxidation (CWAO) of cationic red GTL under mild reaction conditions[J]. Front. Environ. Sci. Eng., 2018, 12(1): 8-.
[6] Sheng Huang, Xin Zhao, Yanqiu Sun, Jianli Ma, Xiaofeng Gao, Tian Xie, Dongsheng Xu, Yi Yu, Youcai Zhao. Pollution of hazardous substances in industrial construction and demolition wastes and their multi-path risk within an abandoned pesticide manufacturing plant[J]. Front. Environ. Sci. Eng., 2017, 11(1): 12-.
[7] Xubin Pan,Zhongkui Luo,Yongbo Liu. Environmental deterioration of farmlands caused by the irrational use of agricultural technologies[J]. Front. Environ. Sci. Eng., 2016, 10(4): 18-.
[8] Fenglin LIU,Jiane ZUO,Tong CHI,Pei WANG,Bo YANG. Removing phosphorus from aqueous solutions by using iron-modified corn straw biochar[J]. Front. Environ. Sci. Eng., 2015, 9(6): 1066-1075.
[9] Yuankai ZHANG,Zhijiang HE,Hongchen WANG,Lu QI,Guohua LIU,Xiaojun ZHANG. Applications of hollow nanomaterials in environmental remediation and monitoring: A review[J]. Front. Environ. Sci. Eng., 2015, 9(5): 770-783.
[10] Tao HUANG,Akio ONISHI,Feng SHI,Masafumi MORISUGI,Mjo Lwin CHERRY. Regional characteristics of industrial energy efficiency in China: application of stochastic frontier analysis method[J]. Front. Environ. Sci. Eng., 2015, 9(3): 506-521.
[11] Lei YU,Chen TU,Yongming LUO. Fabrication, characterization and evaluation of mesoporous activated carbons from agricultural waste: Jerusalem artichoke stalk as an example[J]. Front. Environ. Sci. Eng., 2015, 9(2): 206-215.
[12] Weifang SHI, Weihua ZENG. Application of k-means clustering to environmental risk zoning of the chemical industrial area[J]. Front Envir Sci Eng, 2014, 8(1): 117-127.
[13] Yang DONG, Yi LIU, Jining CHEN, Yebin DONG, Benliang QU. Forecasting industrial emissions: a monetary approach vs. a physical approach[J]. Front Envir Sci Eng, 2012, 6(5): 734-742.
[14] Yongpeng Lü, Kai YANG, Yue CHE, Zhaoyi SHANG, Jun TAI, Yun JIAN. Industrial solid waste flow analysis of eco-industrial parks: implications for sustainable waste management in China[J]. Front Envir Sci Eng, 2012, 6(4): 575-587.
[15] Wei YANG, Fengjun JIN, Chengjin WANG, Chen LV. Industrial eco-efficiency and its spatial-temporal differentiation in China[J]. Front Envir Sci Eng, 2012, 6(4): 559-568.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed