Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front.Environ.Sci.Eng.    2009, Vol. 3 Issue (3) : 271-280    https://doi.org/10.1007/s11783-009-0035-2
Research articles
Photocatalytic degradation of methyl orange using ZnO/TiO composites
Ming GE 1, Changsheng GUO 1, Xingwang ZHU 1, Lili MA 1, Wei HU 1, Yuqiu WANG 1, Zhenan HAN 2,
1.College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China;Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Tianjin 300071, China; 2.School of Civil & Environmental Engineering, Nanyang Technological University, Singapore, 639798, Singapore;
 Download: PDF(360 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract ZnO/TiO2 composites were synthesized by using the solvothermal method and ultrasonic precipitation followed by heat treatment in order to investigate their photocatalytic degradation of methyl orange (MO) in aqueous suspension under UV irradiation. The composition and surface structure of the catalyst were characterized by X-ray diffraction (XRD), field emission scanning electron microscope (FE-SEM), and transmission electron microscopy (TEM). The degradation efficiencies of MO at various pH values were obtained. The highest degradation efficiencies were obtained before 30min and after 60min at pH 11.0 and pH 2.0, respectively. A sample analysis was conducted using liquid chromatography coupled with electrospray ionization ion-trap mass spectrometry. Six intermediates were found during the photocatalytic degradation process of quinonoid MO. The degradation pathway of quinonoid MO was also proposed.
Keywords photocatalytic degradation      methyl orange      ZnO/TiO2 composites      high performance liquid chromatography mass spectrometry (HPLC-MS)      
Issue Date: 05 September 2009
 Cite this article:   
Ming GE,Wei HU,Changsheng GUO, et al. Photocatalytic degradation of methyl orange using ZnO/TiO composites[J]. Front.Environ.Sci.Eng., 2009, 3(3): 271-280.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-009-0035-2
https://academic.hep.com.cn/fese/EN/Y2009/V3/I3/271
Pinheiro H M, Touraud E, Thomas O. Aromatic amines from azo dye reduction: status reviewwith emphasis on direct UV spectrophotometric detection in textileindustry wastewaters. Dyes Pigment, 2004, 61: 121―139

doi: 10.1016/j.dyepig.2003.10.009
Gong R M, Li M, Yang C, Sun Y Z, Chen J. Removal of cationic dyes from aqueoussolution by adsorption on peanut hull. J Hazard Mater B, 2005, 121: 247―250

doi: 10.1016/j.jhazmat.2005.01.029
Robinson T, McMullan G, Marchant R, Nigam P. Remediationof dyes in textile effluent: a critical review on current treatmenttechnologies with a proposed alternative. Bioresour Technol, 2001, 77: 247―255

doi: 10.1016/S0960-8524(00)00080-8
Bianco-Prevot A, Basso A, Baiocchi C, Pazzi M, Marci G, Augugliaro V, Palmisano L, Pramauro E. Analytical control of photocatalytic treatments: degradationof a sulfonated azo dye. Anal Bioanal Chem, 2004, 378: 214―220

doi: 10.1007/s00216-003-2286-2
Kansal S K, Singh M, Sud D. Studies on photodegradation of two commercial dyes inaqueous phase using different photocatalysts. J Hazard Mater, 2007, 141: 581―590

doi: 10.1016/j.jhazmat.2006.07.035
Liu Y, Chen X, Li J, Burda C. Photocatalyticdegradation of azo dyes by nitrogen-doped TiO2 nanocatalysts. Chemosphere, 2005, 61: 11―18

doi: 10.1016/j.chemosphere.2005.03.069
Kostedt IV W L, Ismail A A, Mazyck D W. Impact of heat treatment and composition of ZnO-TiO2 nanoparticles for photocatalytic oxidation of an azodye. Ind Eng Chem Res, 2008, 47: 1483―1487

doi: 10.1021/ie071255p
Yu X D, Wu Q Y, Jiang S C, Guo Y H. NanoscaleZnS/TiO2 composites: preparation, characterization,and visible-light photocatalytic activity. Mater Charact, 2006, 57: 333―341

doi: 10.1016/j.matchar.2006.02.011
Rachel A, Subrahmanyam M, Boule P. Comparison of photocatalytic efficiencies of TiO2 in suspended and immobilised form for the photocatalyticdegradation of nitrobenzenesulfonic acids. Appl Catal B: Environ, 2002, 37: 301―308

doi: 10.1016/S0926-3373(02)00007-3
Shephard G S, Stochenström S,Villiers D D, Engelbrecht W J, Wessels G F S. Degradation of microcystin toxins in a falling film photocatalyticreactor with immobilized titanium dioxide catalyst. Water Res, 2002, 36: 140―146

doi: 10.1016/S0043-1354(01)00213-5
Stokke J M, Mazyck D W, Wu C Y, Sheahan R. Photocatalyticoxidation of methanol using silica-titania composites in a packed-bedreactor. Environ Prog, 2006, 25: 312―318

doi: 10.1002/ep.10164
Ansorgova D, Holcapek M, Jandera P. Ion-pairing high-performance liquid chromatography-massspectrometry of impurities and reduction products of sulphonated azodyes. J Sep Sci, 2003, 26: 1011―1027

doi: 10.1002/jssc.200301489
Gosetti F, Gianotti V, Polati S, Gennaro M C. HPLC-MS degradation study of E110 Sunset Yellow FCF in a commercialbeverage. J Chromatogr A, 2005, 1090: 107―115

doi: 10.1016/j.chroma.2005.07.024
Liao D L, Badour C A, Liao B Q. Preparation of nanosized TiO2/ZnOcomposite catalyst and its photocatalytic activity for degradationof methyl orange. J Photochem PhotobioA: Chem, 2008, 194: 11―19

doi: 10.1016/j.jphotochem.2007.07.008
Yang S G, Quan X, Li X Y, Liu Y Z, Chen S, Chen G H. Preparation, characterization and photoelectrocatalytic propertiesof nanocrystalline Fe2O3/TiO2, ZnO/TiO2, andFe2O3/ZnO/TiO2 composite film electrodes towards pentachlorophenoldegradation. Phys Chem Chem Phys, 2004, 6: 659―664

doi: 10.1039/b308336e
Chen S F, Zhao W, Liu W, Zhang S J. Preparation,characterization and activity evaluation of p-n junction photocatalyst p-ZnO/n-TiO2. Appl SurfSci, 2008, 255: 2478―2484

doi: 10.1016/j.apsusc.2008.07.115
Evgenidou E, Fytianos K, Poulios I. Semiconductor-sensitized photodegradation of dichlorvosin water using TiO2 and ZnO as catalysts. Appl Catal B: Environ, 2005, 59: 81―89

doi: 10.1016/j.apcatb.2005.01.005
Tang W ZAn H R. Photocatalytic degradationkinetics and mechanism of acid blue 40 by TiO2/UV in aqueous solution. Chemosphere, 1995, 31: 4171―4183

doi: 10.1016/0045-6535(95)80016-E
Serpone N, Maruthamuthu P, Pichat P, Pelizzetti E, Hidaka H. Exploiting the interparticleelectron transfer process in the photocatalysed oxidation of phenol,2-chlorophenol and pentachlorophenol: Chemical evidence for electronand hole transfer between coupled semiconductors. J Photochem Photobio A: Chem, 1995, 85: 247―252

doi: 10.1016/1010-6030(94)03906-B
Sukharev V, Kershaw R. Concerning the role of oxygenin photocatalytic decomposition of salicylic acid in water. J Photochem Photobio A: Chem, 1996, 98: 165―169

doi: 10.1016/1010-6030(96)04338-9
So C M, Cheng M Y, Yu J C, Wong P K. Degradationof azo dye procion Red MX-5B by photocatalytic oxidation. Chemosphere, 2002, 46: 905―912

doi: 10.1016/S0045-6535(01)00153-9
Hu C, Tang Y H, Jiang Z, Hao Z P, Tang H X, Wong P K. Characterization and photocatalytic activity of noble-metal-supportedsurface TiO2/SiO2. Appl Catal A, 2003, 253: 389―396

doi: 10.1016/S0926-860X(03)00545-3
Kostedt IV W L, Drwiega J, Mazyck D W, Lee S W, Sigmund W, Wu C Y, Chadik P. Magnetically agitated photocatalyticreactor for photocatalytic oxidation of aqueous phase organic pollutions. Environ Sci Technol, 2005, 39: 8052―8056

doi: 10.1021/es0508121
Hasnat M A, Agrios A G, Gray K A, Rajh T, Thurnauer M C. Explaining the enhanced photocatalyticactivity of Degussa P25 mixedphase TiO2 usingEPR. J Phys Chem B, 2003, 107: 4545―4549

doi: 10.1021/jp0273934
Zhu C M, Wang L Y, Kong L R, Yang X, Wang L S, Zheng S J,Chen F L, Feng M Z, Zong H. Photocatalyticdegradation of azo dyes by supports TiO2+UVin aqueous solution. Chemosphere, 2000, 41: 303―309

doi: 10.1016/S0045-6535(99)00487-7
Parks G A. The isoelectric points of solids oxides, solid hydroxides, and aqueoushydroxo complex system. Chem Rev, 1965, 65: 177―198

doi: 10.1021/cr60234a002
Wang Y B, Hong C S. Effect of hydrogen peroxide,periodate and persulfate on photocatalysis of 2-chlorobiphenyl inaqueous TiO2 suspensions. Water Res, 1999, 33: 2031―2036

doi: 10.1016/S0043-1354(98)00436-9
Rafols C, Barcelo D. Determination of mono- anddisulphonated azo dyes by liquid chromatography-atmospheric pressureionization mass spectrometry. J ChromatogrA, 1997, 777: 177―192

doi: 10.1016/S0021-9673(97)00429-9
Augugliaro V, Baiocchi C, Bianco-Prevot A, Lopez E G, Loddo V, Malato S, Marci G, Palmisano L, Pazzi M, Pramauro E. Azo-dyesphotocatalytic degradation in aqueous suspension of TiO2 under solar irradiation. Chemosphere, 2002, 49: 1223―1230

doi: 10.1016/S0045-6535(02)00489-7
Baiocchi C, Brussino M C, Pramauro E, Bianco-Prevot A, Palmisano L, Marci G. Characterization of methyl orange and its photocatalyticdegradation products by HPLC/UV-VIS diode array and atmospheric pressureionization quadrupole ion trap mass spectrometry. Int J Mass Spectrom, 2002, 214: 247―256

doi: 10.1016/S1387-3806(01)00590-5
Bianco-Prevot A, Basso A, Baiocchi C, Pazzi M, Marci G, Augugliaro V, Palmisano L, Pramauro E. Analytical control of photocatalytic treatments: Degradationof a sulfonated azo dye. Anal Bioanal Chem, 2004, 378: 214―220

doi: 10.1007/s00216-003-2286-2
Dai K, Chen H, Peng T Y, Ke D N, Yi H B. Photocatalytic degradation of methylorange in aqueous suspension of mesoporous titania nanoparticles. Chemosphere, 2007, 69: 1361―1367

doi: 10.1016/j.chemosphere.2007.05.021
Sabljic A, Peijnenburg W. Recommendations on modelinglifetime and degradability of organic compounds in air, soil and watersystems. Pure Appl Chem, 2001, 73: 1331―1348

doi: 10.1351/pac200173081331
[1] Xin Li, Jun Xie, Chuanjia Jiang, Jiaguo Yu, Pengyi Zhang. Review on design and evaluation of environmental photocatalysts[J]. Front. Environ. Sci. Eng., 2018, 12(5): 14-.
[2] Min ZHANG,Jian LU,Yiliang HE,P Chris WILSON. Photocatalytic degradation of polybrominated diphenyl ethers in pure water system[J]. Front. Environ. Sci. Eng., 2016, 10(2): 229-235.
[3] Liangzhi LI,Xiaolin LI,Ci YAN,Weiqiang GUO,Tianyi YANG,Jiaolong FU,Jiaoyan TANG,Cuiying HU. Optimization of methyl orange removal from aqueous solution by response surface methodology using spent tea leaves as adsorbent[J]. Front.Environ.Sci.Eng., 2014, 8(4): 496-502.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed