Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front.Environ.Sci.Eng.    2009, Vol. 3 Issue (3) : 294-299    https://doi.org/10.1007/s11783-009-0041-4
Research articles
Noncovalent immobilization of MnP from on carbon nanotubes
Jiaxi LI , Xianghua WEN ,
SKLESPC, Department of Environmental Science and Engineering, Tsinghua University, Beijing 100084, China;
 Download: PDF(150 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Manganese peroxidases (MnP) from Phanerochaete chrysosporium were adsorbed onto multi-walled carbon nanotubes (MWNT). Four different loadings of MnP on MWNTs were investigated, and the maximum enzyme loading of 47.5 µg/mg of MWNTs was obtained in 12 h. The adsorbed MnP showed a catalytic activity of up to 0.1 U/mg of the weight of the system of MnP/MWNTs, with 23% of its original activity retained. The AFM image of the adsorbed enzymes indicated that a layer of MnP covered the surface of the MWNTs and retained its original three-dimensional shape. Amino-based nonspecific interactions may play the dominant role in the adsorption of MnP on MWNTs.
Keywords manganese peroxidases (MnP)      Phanerochaete chrysosporium      carbon nanotubes      immobilization      catalytic activity      
Issue Date: 05 September 2009
 Cite this article:   
Jiaxi LI,Xianghua WEN. Noncovalent immobilization of MnP from on carbon nanotubes[J]. Front.Environ.Sci.Eng., 2009, 3(3): 294-299.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-009-0041-4
https://academic.hep.com.cn/fese/EN/Y2009/V3/I3/294
Field J A, de Jong E, Feijoo-Costa G, de Bont J A M. Screening for ligninolytic fungi applicable to the biodegradationof xenobiotics. Trends in Biotechnology, 1993, 11: 44―49

doi: 10.1016/0167-7799(93)90121-O
Moreira M T, Feijoo G, Sierra-Alvarez R, Lema J, Field J A. Biobleaching of oxygen delignifiedkraft pulp by several white rot fungal strains. Journal of Biotechnology, 1997, 53: 237―251

doi: 10.1016/S0168-1656(97)01676-3
Glenn J K, Gold M H. Purification and propertiesof an extracellular Mn(II)-dependent peroxidase from the lignin-degradingbasidiomycete, Phanerochaete chrysosporium. Archives of Biochemistry and Biophysics, 1985, 242: 329―341

doi: 10.1016/0003-9861(85)90217-6
Kirk T K, Farrell R L. Enzyme “combustion”:The microbial degradation of lignin. AnnualReview of Microbiology, 1987, 41: 465―505

doi: 10.1146/annurev.mi.41.100187.002341
Grabski A C, Rasmussen J K, Coleman P L, Burgess R R. Immobilization of manganese peroxidase from Lentinula edodes of alkylaminatedEmphaze AB 1 Polymer for generation of Mn3+ as an oxidizing agent. Applied Biochemistryand Biotechnology, 1996, 60: 1―17

doi: 10.1007/BF02788055
Mielgo I, Palma C, Guisan J M, Fernandez-Lafuente R, Moreira M T, Feijoo G, Lema J M. Covalentimmobilisation of manganese peroxidases (MnP) from Phanerochaete chrysosporium and Bjerkandera sp. BOS55. Enzyme and Microbial Technology, 2003, 32: 769―775
Patel D S, Aithal R K, Krishna G, Lvov Y M, Tien M, Kuila D. Nano-assemblyof manganese peroxidase and lignin peroxidase from P. chrysosporium for biocatalysis in aqueousand non-aqueous media. Colloids and SurfacesB, 2005, 43: 13―19

doi: 10.1016/j.colsurfb.2005.03.007
Bornscheuer U T. Immobilizing enzymes: How to create more suitable biocatalysts. Angewandte Chemie International Edition, 2003, 42: 3336―3337

doi: 10.1002/anie.200301664
Chen R J, Bangsaruntip S, Drouvalakis K A, Kam N W S, Shim M, Li Y, Kim W, Utz P J, Dai H. Noncovalentfunctionalization of carbon nanotubes for highly specific electronicbiosensors. Proceedings of the NationalAcademy of Sciences of the United States of America, 2003, 100: 4984―4989

doi: 10.1073/pnas.0837064100
Gooding J J, Wibowo R, Liu J, Yang W, Losic D, Orbons S, Mearns F J, Shapter J G, Hibbert D. Proteinelectrochemistry using aligned carbon nanotube arrays. Journal of the American Chemical Society, 2003, 125: 9006―9007

doi: 10.1021/ja035722f
Baughman R H, Changxing C, Zakhidov A A, Iqbal Z, Barisci J N, Spinks G M, Wallace G G, Mazzoldi A, Rossi D D, Rinzler A G, Jaschinski O, Roth S, Kertesz M. Carbon nanotube actuators. Science, 1999, 284: 1340―1344

doi: 10.1126/science.284.5418.1340
Kam N, Jessop T C, Wender P A, Dai H. Nanotube moleculartransporters: Internalization of carbon nanotube-protein conjugatesinto mammalian cells. Journal of the AmericanChemical Society, 2004, 126: 6850―6851

doi: 10.1021/ja0486059
Davis J J, Coleman K S, Azamian B R, Bagshaw C B, Green M L H. Chemical and biochemicalsensing with modified single walled carbon nanotubes. Chemistry—A European Journal, 2003, 9: 3732―3739

doi: 10.1002/chem.200304872
Karajanagi S S, Vertegel A A, Kane R S, Dordick J S. Structure and function of enzymes adsorbed onto single-walled carbonnanotubes. Langmuir, 2004, 20: 11594―11599

doi: 10.1021/la047994h
Gómez J M, Romero M D, Fernández T M. Immobilization of β-Glucosidase on carbon nanotubes. Catalysis Letters, 2005, 101: 275―278

doi: 10.1007/s10562-005-4904-4
Wang Y, Iqbal Z, Malhotra S V. Functionalization of carbon nanotubes with amines andenzymes. Chemical Physics Letters, 2005, 402: 96―101

doi: 10.1016/j.cplett.2004.11.099
Paszczynski A, Crawford R L, Huynh V-B. Manganese peroxidase of Phanerochaetechrysosporium: Purification. Methods Enzymol, 1988, 161: 264―270

doi: 10.1016/0076-6879(88)61028-7
Bradford M M. A rapid and sensitive method for the quantitation of microgram quantitiesof protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 1976, 72: 248―254

doi: 10.1016/0003-2697(76)90527-3
Palma C, Martinez A T, Lema J M, Martinez M J. Different fungal manganese-oxidizing peroxidases: A comparison between Bjerkandera sp. and Phanerochaete chrysosporium. Journal of Biotechnology, 2000, 77: 235―245

doi: 10.1016/S0168-1656(99)00218-7
Bonnarme P, Jeffries T W. Mn(II) regulation of ligninperoxidases and manganeses-dependent peroxidases from lignin-degradingwhite rot fungi. Applied and EnvironmentalMicrobiology, 1990, 56: 210―217
Jeffery L. Proteinadsorption onto latex particles. In: Schwarz J A, Contescu C I, eds. Surfaces of Nanoparticlesand Porous Materials. New York: Marcel Dekker Inc., 1999, 743―761
Lin Y, Allard L F, Sun Y-P. Protein-affinity of single-walled carbon nanotubes inwater. Journal of Physical Chemistry B, 2004, 108: 3760―3764

doi: 10.1021/jp031248o
Sadana A. Proteinadsorption and inactivation on surfaces: Influence of heterogeneities. Chemical Reviews, 1992, 92: 1799―1818

doi: 10.1021/cr00016a006
Azamian B R, Davis J J, Coleman K S, Bagshaw C B, Green M L H. Bioelectrochemical single-walledcarbon nanotubes. Journal of the AmericanChemical Society, 2002, 124: 12664―12665

doi: 10.1021/ja0272989
Li Y-H, Wang S, Luan Z, Ding J, Xu C, Wu D. A dsorptionof cadmium(II) from aqueous solution by surface oxidized carbon nanotubes. Carbon, 2003, 41: 1057―1062

doi: 10.1016/S0008-6223(02)00440-2
Sundaramoorthy M, Kishi K, Gold M H, Poulos T L. The crystal structure of manganese peroxidase from Phanerochaetechrysosporium at 2.06Å resolution. Journal of Biological Chemistry, 1994, 269: 32759―32767
Kong J, Franklin N R, Zhou C, Chapline M G, Peng S, Cho K, Dailt H. Nanotube molecularwires as chemical sensors. Science, 2000, 287: 622―625

doi: 10.1126/science.287.5453.622
Kong J, Dai H. Full and modulated chemicalgating of individual carbon nanotubes by organic amine compounds. Journal of Physical Chemistry B, 2001, 105: 2890―2893

doi: 10.1021/jp0101312
Chattopadhyay D, Galeska I, Papadimitrakopoulos F. A route for bulk separation of semiconductingfrom metallic single-wall carbon nanotubes. Journal of the American Chemical Society, 2003, 125: 3370―3375

doi: 10.1021/ja028599l
Sasaki T, Kajino T, Li B, Sugiyama H, Takahashi H. New pulp biobleaching systeminvolving manganese peroxidase immobilized in a silica support withcontrolled pore sizes. Applied and EnvironmentalMicrobiology, 2001, 67: 2208―2212

doi: 10.1128/AEM.67.5.2208-2212.2001
[1] Karla Ilić Đurđić, Raluca Ostafe, Olivera Prodanović, Aleksandra Đurđević Đelmaš, Nikolina Popović, Rainer Fischer, Stefan Schillberg, Radivoje Prodanović. Improved degradation of azo dyes by lignin peroxidase following mutagenesis at two sites near the catalytic pocket and the application of peroxidase-coated yeast cell walls[J]. Front. Environ. Sci. Eng., 2021, 15(2): 19-.
[2] Xiaoming Wan, Mei Lei, Tongbin Chen. Review on remediation technologies for arsenic-contaminated soil[J]. Front. Environ. Sci. Eng., 2020, 14(2): 24-.
[3] Xiaoyan Guo, Chunyu Li, Chenghao Li, Tingting Wei, Lin Tong, Huaiqi Shao, Qixing Zhou, Lan Wang, Yuan Liao. G-CNTs/PVDF mixed matrix membranes with improved antifouling properties and filtration performance[J]. Front. Environ. Sci. Eng., 2019, 13(6): 81-.
[4] Xuemin Hao, Guanlong Wang, Shuo Chen, Hongtao Yu, Xie Quan. Enhanced activation of peroxymonosulfate by CNT-TiO2 under UV-light assistance for efficient degradation of organic pollutants[J]. Front. Environ. Sci. Eng., 2019, 13(5): 77-.
[5] Ming Zeng, Ping Li, Nan Wu, Xiaofang Li, Chang Wang. Preparation and characterization of a novel microorganism embedding material for simultaneous nitrification and denitrification[J]. Front. Environ. Sci. Eng., 2017, 11(6): 15-.
[6] Yu YANG,Zhicheng YU,Takayuki NOSAKA,Kyle DOUDRICK,Kiril HRISTOVSKI,Pierre HERCKES,Paul WESTERHOFF. Interaction of carbonaceous nanomaterials with wastewater biomass[J]. Front. Environ. Sci. Eng., 2015, 9(5): 823-831.
[7] Shubo DENG,Yue BEI,Xinyu LU,Ziwen DU,Bin WANG,Yujue WANG,Jun HUANG,Gang YU. Effect of co-existing organic compounds on adsorption of perfluorinated compounds onto carbon nanotubes[J]. Front. Environ. Sci. Eng., 2015, 9(5): 784-792.
[8] Lei ZHENG,Wei WANG,Wei QIAO,Yunchun SHI,Xiao LIU. Immobilization of Cu2+, Zn2+, Pb2+, and Cd2+ during geopolymerization[J]. Front. Environ. Sci. Eng., 2015, 9(4): 642-648.
[9] Li SHENG,Shuhang HUANG,Minghao SUI,Lingdian ZHANG,Lei SHE,Yong CHEN. Deposition of copper nanoparticles on multiwalled carbon nanotubes modified with poly (acrylic acid) and their antimicrobial application in water treatment[J]. Front. Environ. Sci. Eng., 2015, 9(4): 625-633.
[10] Shaoxia YANG,Yu SUN,Hongwei YANG,Jiafeng WAN. Catalytic wet air oxidation of phenol, nitrobenzene and aniline over the multi-walled carbon nanotubes (MWCNTs) as catalysts[J]. Front. Environ. Sci. Eng., 2015, 9(3): 436-443.
[11] Junxing YANG,Liqun WANG,Jumei LI,Dongpu WEI,Shibao CHEN,Qingjun GUO,Yibing MA. Effects of rape straw and red mud on extractability and bioavailability of cadmium in a calcareous soil[J]. Front. Environ. Sci. Eng., 2015, 9(3): 419-428.
[12] Yuanting LI, Dawei LI, Wei SONG, Meng LI, Jie ZOU, Yitao LONG. Rapid method for on-site determination of phenolic contaminants in water using a disposable biosensor[J]. Front Envir Sci Eng, 2012, 6(6): 831-838.
[13] Pei MA, Dan ZHANG. Immobilized Lentinus edodes residue as absorbent for the enhancement of cadmium adsorption performance[J]. Front Envir Sci Eng, 2012, 6(4): 498-508.
[14] Fengyu ZAN, Shouliang HUO, Beidou XI, Xiulan ZHAO. Biosorption of Cd2+ and Cu2+ on immobilized Saccharomyces cerevisiae[J]. Front Envir Sci Eng, 2012, 6(1): 51-58.
[15] Huilong WANG, Shuqin LIU, Hui WANG, Wenfeng JIANG, . Solar photocatalytic decomposition of two azo dyes on multi-walled carbon nanotubes (MWCNTs)/TiO 2 composites[J]. Front.Environ.Sci.Eng., 2010, 4(3): 311-320.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed