Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front.Environ.Sci.Eng.    2009, Vol. 3 Issue (4) : 434-442    https://doi.org/10.1007/s11783-009-0150-0
Research articles
Phenanthrene sorption to environmental black carbon in sediments from the Song-Liao watershed (China)
Jinghuan ZHANG,Mengchang HE,Chunye LIN,Ke SUN,Bin MEN,John L. ZHOU,
State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China;
 Download: PDF(201 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Black carbon (BC) in ten contaminated sediments from the Song-Liao watershed, NE China, was isolated upon treatments using a combustion method at 375°C, and the isolates’ sorption isotherms for phenanthrene (Phen) were determined. All sorption isotherms were nonlinear and fitted well by the Freundlich model. A negative relation was found between Freundlich sorption nonlinearity parameter (n values) and BC/total organic carbon (TOC) content of the original sediments (r2=0.687, p<0.01), indicating the dominance of BC in Phen sorption nonlinearity. The BC isolates from this industrialized region had n values of 0.342 to 0.505 and logKFOC values of 6.02 to 6.42(μg·kg−1·OC−1)/(μg·L−1) n for Phen. At a given Ce, the BC had higher Koc value than the original sediments, revealing a higher sorption capacity for BC. BC was responsible for 50.0% to 87.3% of the total sorption at Ce=0.05 Sw, clearly indicating the dominance of BC particles in overall sorption of Phen by sediments.
Keywords phenanthrene      sorption      black carbon      sediment      Song-Liao watershed      
Issue Date: 05 December 2009
 Cite this article:   
Jinghuan ZHANG,Chunye LIN,Mengchang HE, et al. Phenanthrene sorption to environmental black carbon in sediments from the Song-Liao watershed (China)[J]. Front.Environ.Sci.Eng., 2009, 3(4): 434-442.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-009-0150-0
https://academic.hep.com.cn/fese/EN/Y2009/V3/I4/434
Weber Jr W J, McGinley P M, Katz L E. A distributed reactivity model for sorption by soilsand sediments.1. Conceptual Basis and Equilibrium Assessments. Environmental Science and Technology, 1992, 26: 1955―1962

doi: 10.1021/es00034a012
Young T M, Weber Jr W J. A distributed reactivitymodel for sorption by soils and sediments. 3. Effects of diageneticprocesses on sorption energetics. EnvironmentalScience and Technology, 1995, 29: 92―97

doi: 10.1021/es00001a011
Benner Jr B A. Distinguishing the contributions of residential wood combustion andmobile source emissions using relative concentrations of dimethylphenanthreneisomers. Environmental Science and Technology, 1995, 29: 2382―2389

doi: 10.1021/es00009a034
Reddy C M, Pearson A, Xu L, McNichol A P, Benner Jr B A, Wise S A, Klouda G A, Currie L A, Eglinton T I. Radiocarbon as a tool to apportion the sources of polycyclicaromatic hydrocarbons and black carbon in environmental samples. Environmental Science and Technology, 2002, 36: 1774―1782

doi: 10.1021/es011343f
Bucheli T D, Gustafsson O. Quantification of the soot-waterdistribution coefficient of PAHs provides mechanistic basis for enhancedsorption observations. Environmental Scienceand Technology, 2000, 34: 5144―5151

doi: 10.1021/es000092s
Accardi-Dey A, Gschwend P M. Assessing the combined rolesof natural organic matter and black carbon as sorbents in sediments. Environmental Science and Technology, 2002, 36: 21―29

doi: 10.1021/es010953c
Guo W, He M, Yang Z, Lin C, Quan X, Wang H. Comparisonof polycyclic aromatic hydrocarbons in sediments from the SonghuajianigRiver (China) during different sampling seasons. Journal of Environmental Science and Health Part A: Toxic/HazardousSubstances and Environmental Engineering, 2007, 42: 119―127

doi: 10.1080/10934520601011171
Chiou C, Mcgroddy S, Kile D. Partition characteristics of polycyclic aromatic hydrocarbonson soils and sediments. Environmental Scienceand Technology, 1998, 32: 264―269

doi: 10.1021/es970614c
Persson N J, Gustafsson O, Bucheli T D, Ishaq R, Naes K, Broman D. Soot-carboninfluenced distribution of PCDD/Fs in the marine environment of theGrenlandsfjords, Norway. EnvironmentalScience and Technology, 2002, 36: 4968―4974

doi: 10.1021/es020072l
Cornelissen G, Gustafsson O. Sorption of phenanthreneto environmental black carbon in sediment with and without organicmatter and native sorbates. EnvironmentalScience and Technology, 2004, 38: 148―155

doi: 10.1021/es034776m
Gustafsson O, Gschwend P M. The flux of black carbonto surface sediments on the New England continental shelf. Geochimica et Cosmochimica Acta, 1998, 62: 465―472

doi: 10.1016/S0016-7037(97)00370-0
Lim B, Cachier H. Determination of black carbonby chemical oxidation and thermal treatment in recent marine and lakesediments and Cretaceous-Tertiary clays. Chemical Geology, 1996, 131: 143―154

doi: 10.1016/0009-2541(96)00031-9
Middelburg J J, Nieuwenhuize J, Van Breugel P. Black carbon in marine sediments. Marine Chemistry, 1999, 65: 245―252

doi: 10.1016/S0304-4203(99)00005-5
Song J, Peng P, Huang W. Black carbon and kerogen in soils and sediments. 1. Quantificationand characterization. Environmental Scienceand Technology, 2002, 36: 3960―3967

doi: 10.1021/es025502m
Kilduff J E, Wigton A. Sorption of TCE by humic-preloadedactivated carbon: Incorporating size- exclusion and pore blockagephenomena in a competitive adsorption model. Environmental Science and Technology, 1999, 33: 250―256

doi: 10.1021/es980321z
Karapanagioti H K, Kleineidam S, Sabatini D A, Grathwohl P, Ligouis B. Impacts of heterogeneousorganic matter on phenanthrene sorption: Equilibrium and kinetic studieswith aquifer material. Environmental Scienceand Technology, 2002, 34: 406―414

doi: 10.1021/es9902219
Mayer L M. Surface area control of organic carbon accumulation in continentalshelf sediments. Geochimica et CosmochimicaActa, 1994, 58: 1271―1284

doi: 10.1016/0016-7037(94)90381-6
Gustafsson O, Gschwend P M. Soot as a strong partitionmedium for polycyclic aromatic hydrocarbons in aquatic systems, In: Eganhouse R P, ed. Molecular Markers in Environmental Geochemistry, ACS Symposium Series671. Washinton DC: American Chemical Society, 1997, 365―381
Oen A M P, Cornelissen G, Breedveld G D. Relation between PAH and black carbon contents in sizefraction of Norwegian harbor sediments. Environmental Pollution, 2006, 141: 370―380

doi: 10.1016/j.envpol.2005.08.033
Xiao B, Yu Z, Huang W, Song J, Peng P. Black carbon and kerogen in soils andsediments. 2. Their roles in equilibrium sorption of less-polar organicpollutants. Environmental Science and Technology, 2004, 38: 5842―5852

doi: 10.1021/es049761i
Huang W, Young T M, Schlautman M A, Yu H, Weber Jr W J. A distributed reactivitymodel for sorption by soils and sediments. 9. General isotherm nonlinearityand applicability of the dual reactive domain model. Environmental Science and Technology, 1997, 31: 1703―1710

doi: 10.1021/es960677f
Nguyen T H, Sabbah I, Ball W P. Sorption nonlinearity for organic contaminants with dieselsoot: method development and isotherm interpretation. Environmental Science and Technology, 2004, 38: 3595―3603

doi: 10.1021/es0499748
James G, Sabatini D A, Chiou C T, Rutherford D, Scott A C, Karapanagioti H K. Evaluating phenanthrene sorption on variouswood chars. Water Research, 2005, 39: 549―558

doi: 10.1016/j.watres.2004.10.015
Nguyen T H, Ball W P. Absorption and adsorptionof hydrophobic organic contaminants to diesel and hexane soot. Environmental Science and Technology, 2006, 40: 2958―2964

doi: 10.1021/es052121a
Cornelissen G, Kukulska Z, Kalaitzidis S, Christanis K, Gustafsson O. Relations between environmentalblack carbon sorption and geochemical sorbent characteristics. Environmental Science and Technology, 2004, 38: 3632―3640

doi: 10.1021/es0498742
Kleineidam S, Schuth C, Grathwohl P. Solubility-normalized combined adsorption-partitioningsorption isotherms for organic pollutants. Environmental Science and Technology, 2002, 36: 4689―4697

doi: 10.1021/es010293b
Jonker M T O, Koelmans A A. Sorption of polycyclic aromatichydrocarbons and polychlorinated biphenyls to soot and soot-like materialsin the aqueous environment: mechanistic considerations. Environmental Science and Technology, 2002, 36: 3725―3734

doi: 10.1021/es020019x
Ran Y, Sun K, Yang Y, Xing B, Zeng E. Strong sorption of phenanthrene by condensedorganic matter in soils and sediments. Environmental Science and Technology, 2007, 41: 3952―3958

doi: 10.1021/es062928i
Means J C, Wood S G, Hassett J J, Banwart W L. Sorption polynuclear aromatic hydrocarbons by sediments and soils. Environmental Science and Technology, 1980, 14: 1524―1528

doi: 10.1021/es60172a005
Karickhoff S W. Organic pollutant sorption in aquatic systems. Journal of Hydraulic Engineering, 1984, 110: 707―735

doi: 10.1061/(ASCE)0733-9429(1984)110:6(707)
Chun Y, Sheng G, Chiou C T. Evaluation of current techniques for isolation of charsas natural adsorbents. Environmental Scienceand Technology, 2004, 38: 4227―4232

doi: 10.1021/es034893h
Carter M C, Weber Jr W J. Modeling adsorption of TCEby activated carbon preloaded by background organic matter. Environmental Science and Technology, 1994, 28: 614―623

doi: 10.1021/es00053a013
[1] Seyyed Salar Meshkat, Ebrahim Ghasemy, Alimorad Rashidi, Omid Tavakoli, Mehdi Esrafili. Experimental and DFT insights into nitrogen and sulfur co-doped carbon nanotubes for effective desulfurization of liquid phases: Equilibrium & kinetic study[J]. Front. Environ. Sci. Eng., 2021, 15(5): 109-.
[2] Guolong Zeng, Yiyang Liu, Xiaoguo Ma, Yinming Fan. Fabrication of magnetic multi-template molecularly imprinted polymer composite for the selective and efficient removal of tetracyclines from water[J]. Front. Environ. Sci. Eng., 2021, 15(5): 107-.
[3] Hefu Pu, Aamir Khan Mastoi, Xunlong Chen, Dingbao Song, Jinwei Qiu, Peng Yang. An integrated method for the rapid dewatering and solidification/stabilization of dredged contaminated sediment with a high water content[J]. Front. Environ. Sci. Eng., 2021, 15(4): 67-.
[4] Ragini Pirarath, Palani Shivashanmugam, Asad Syed, Abdallah M. Elgorban, Sambandam Anandan, Muthupandian Ashokkumar. Mercury removal from aqueous solution using petal-like MoS2 nanosheets[J]. Front. Environ. Sci. Eng., 2021, 15(1): 15-.
[5] Rencheng Zhu, Jingnan Hu, Liqiang He, Lei Zu, Xiaofeng Bao, Yitu Lai, Sheng Su. Effects of ambient temperature on regulated gaseous and particulate emissions from gasoline-, E10- and M15-fueled vehicles[J]. Front. Environ. Sci. Eng., 2021, 15(1): 14-.
[6] Wenzhong Tang, Liu Sun, Limin Shu, Chuang Wang. Evaluating heavy metal contamination of riverine sediment cores in different land-use areas[J]. Front. Environ. Sci. Eng., 2020, 14(6): 104-.
[7] Lingchen Kong, Xitong Liu. Emerging electrochemical processes for materials recovery from wastewater: Mechanisms and prospects[J]. Front. Environ. Sci. Eng., 2020, 14(5): 90-.
[8] Yang Deng. Low-cost adsorbents for urban stormwater pollution control[J]. Front. Environ. Sci. Eng., 2020, 14(5): 83-.
[9] Wenlu Li, John D. Fortner. (Super)paramagnetic nanoparticles as platform materials for environmental applications: From synthesis to demonstration[J]. Front. Environ. Sci. Eng., 2020, 14(5): 77-.
[10] Xinyi Hu, Ting Yang, Chen Liu, Jun Jin, Bingli Gao, Xuejun Wang, Min Qi, Baokai Wei, Yuyu Zhan, Tan Chen, Hongtao Wang, Yanting Liu, Dongrui Bai, Zhu Rao, Nan Zhan. Distribution of aromatic amines, phenols, chlorobenzenes, and naphthalenes in the surface sediment of the Dianchi Lake, China[J]. Front. Environ. Sci. Eng., 2020, 14(4): 66-.
[11] Meng Zhu, Yongming Luo, Ruyi Yang, Shoubiao Zhou, Juqin Zhang, Mengyun Zhang, Peter Christie, Elizabeth L. Rylott. Diphenylarsinic acid sorption mechanisms in soils using batch experiments and EXAFS spectroscopy[J]. Front. Environ. Sci. Eng., 2020, 14(4): 58-.
[12] Jing Li, Haiqin Yu, Xue Zhang, Rixin Zhu, Liangguo Yan. Crosslinking acrylamide with EDTA-intercalated layered double hydroxide for enhanced recovery of Cr(VI) and Congo red: Adsorptive and mechanistic study[J]. Front. Environ. Sci. Eng., 2020, 14(3): 52-.
[13] Ouchen Cai, Yuanxiao Xiong, Haijun Yang, Jinyong Liu, Hui Wang. Phosphorus transformation under the influence of aluminum, organic carbon, and dissolved oxygen at the water-sediment interface: A simulative study[J]. Front. Environ. Sci. Eng., 2020, 14(3): 50-.
[14] Alisa Salimova, Jian’e Zuo, Fenglin Liu, Yajiao Wang, Sike Wang, Konstantin Verichev. Ammonia and phosphorus removal from agricultural runoff using cash crop waste-derived biochars[J]. Front. Environ. Sci. Eng., 2020, 14(3): 48-.
[15] Ziwen Du, Chuyi Huang, Jiaqi Meng, Yaru Yuan, Ze Yin, Li Feng, Yongze Liu, Liqiu Zhang. Sorption of aromatic organophosphate flame retardants on thermally and hydrothermally produced biochars[J]. Front. Environ. Sci. Eng., 2020, 14(3): 43-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed