Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front.Environ.Sci.Eng.    2010, Vol. 4 Issue (2) : 196-202    https://doi.org/10.1007/s11783-010-0008-5
Research articles
Exposure-response of Cr(III)-organic complexes to Saccharomyces cerevisiae
Nivedita CHATTERJEE,Zejiao LUO,
Key Laboratory of Biogeology and Environmental Geology, Ministry of Education (BGEG), School of Environmental Studies, China University of Geosciences, Wuhan 430074, China;
 Download: PDF(154 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Hexavalent chromium [Cr(VI)] bioreduction produces soluble Cr(III)-organic complexes. The Cr(III)-organic complexes are relatively stable once they are formed, and no data about their toxicity were reported. Therefore, this study aims to investigate the bioavailability and toxicity of the soluble Cr(III)-organic complexes. Saccharomyces cerevisiae L-1 wild type yeast strain was chosen as the model organism and Cr(III)-citrate was selected as the representative compound of the Cr(III)-organic complexes. The short-term chronic aquatic toxicity tests of the Cr(III)-citrate was explored by measuring growth inhibition, direct viable cell count, dry biomass, biosorption, and the amount of CO2 production. Cr(III)-citrate exerted a toxicity of 51mg/L with an EC50, which was calculated from the percent growth inhibition. These toxicity data would be helpful to define the toxic potential of the organo-chromium-III compounds in the environment.
Keywords Cr(III)-organic complexes      Saccharomyces cerevisiae      toxicity      EC50      bioavailability      
Issue Date: 05 June 2010
 Cite this article:   
Nivedita CHATTERJEE,Zejiao LUO. Exposure-response of Cr(III)-organic complexes to Saccharomyces cerevisiae[J]. Front.Environ.Sci.Eng., 2010, 4(2): 196-202.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-010-0008-5
https://academic.hep.com.cn/fese/EN/Y2010/V4/I2/196
Barnhart J. Chromium chemistry and implications for environmentalfate and toxicity. J Soil Contam, 1997, 6: 561–568
Losi M E, Amrhein C, Frankenberger W TJr. Environmentalbiochemistry of chromium. Rev Environ ContamToxicol, 1994, 136: 91–121
Dragun J. Element fixation in soil. Soil Chem Hazard Mater, 1988, 75–152
Arslan, P, Beltrame M, Tomasi A. Intracellular chromium reduction. Biochim Biophys Acta, 1987, 931: 10–15

doi: 10.1016/0167-4889(87)90044-9
Norseth T. The carcinogenicity of chromium and its salts. Brit J Ind Med, 1986, 43: 649–651
Dayan A D, Paine A J. Mechanismsof chromium toxicity, carcinogenicity and allergenicity: Review ofthe literature from 1985 to 2000. HumanExp Toxicol, 2001, 20: 439–451

doi: 10.1191/096032701682693062
Shen H, Wang Y. Characterizationof enzymatic reduction of hexavalent chromium by Escherichia coli ATCC 33456. Appl Environ Microbiol, 1993, 59: 3771–3777
Tebo B M, Obraztsova A Y. Sulfate-reducing bacterium grows with Cr(VI), U(VI), Mn(IV), andFe(III) as electron acceptors. FEMS MicrobiolLett, 1998, 162: 193–198

doi: 10.1111/j.1574-6968.1998.tb12998.x
Michel C, Brugna M, Aubert C, Bernadac A, Bruschi M. Enzymaticreduction of chromate: Comparative studies using sulfate-reducingbacteria. Appl Microbiol Biotechnol, 2001, 5: 95–100

doi: 10.1007/s002530000467
Garbisu C, Alkorta I, Llama M J, Serra J L. Aerobic chromate reduction by Bacillus subtilisBiodegradation, 1998, 9: 133–141

doi: 10.1023/A:1008358816529
Park C H, Keyhan M, Wielinga B, Fendorf S, Matin A. Purificationto homogeneity and characterization of novel Pseudomonas putida chromate reductase. Appl Environ Microbiol, 2000, 66: 1788–1795

doi: 10.1128/AEM.66.5.1788-1795.2000
Suzuki T, Miyata N, Horitsu H, Kawai K, Takamizawa K, Tai Y, Okazaki M. NAD(P)H-dependent chromium(VI) reductase of Pseudomonas ambigua G-1: A Cr(V) intermediateis formed during the reduction of Cr(VI) to Cr(III). J Bacteriol, 1992, 174: 5340–5345
Lovley D R, Phillips E J P. Reduction of chromate by Desulfovibrio vulgaris and Its c3 Cytochrome. Appl Environ Microbiol, 1994, 60: 726–728
Puzon G J, Roberts A G, Kramer D M, Xun L A. Formation of soluble organo-chromium(III) complexes afterchromate reduction in the presence of cellular organics. Environ Sci Technol, 2005, 39: 2811–2817

doi: 10.1021/es048967g
Puzon G J, Petersen J N, Roberts A G, Kramer D M, Xun L A. Bacterialflavin reductase systems reduces chromate to a soluble chromium-(III)-NAD+complex. Biochem Biophys Res Commun, 2002, 294: 76–81

doi: 10.1016/S0006-291X(02)00438-2
Puzon G J, Ranjeet K, Tokala H Z, Yonge D, Peyton B M, Xun L A. Mobility and recalcitranceof organo–chromium(III) complexes. Chemosphere, 2008, 70 (11): 2054–2059

doi: 10.1016/j.chemosphere.2007.09.010
en.wikipedia.org/wiki/Citrates#cite_ref-0
Beattie J K, Haight G P J. Progress in Inorganic Chemistry. In: EdwardsJ O, ed. Chromium (VI) Oxidationsof Inorganic Substrates. New York: Interscience, 1972, 93–146
Cabral M G, Viegas C A, Teixeira M C, Correia L S. Toxicity of chlorinated phenoxyacetic acid herbicidesin the experimental eukaryotic model Saccharomycescerevisiae : Role of pH and of growth phase and size ofthe yeast cell population. Chemosphere, 2003, 51: 47–54

doi: 10.1016/S0045-6535(02)00614-8
Bitton G. Wastewater microbiology. In: Mitchell R, ed. Toxicity Testingin Wastewater Treatment Plants Using Microorganisms. Wiley Seriesin Ecological and Applied Microbiology. New York: John Wiley & Sons, 1999, 413–426
Koch H P, Hofeneder M, Bohne B. The yeast test: An alternativemethod for the testing of acute toxicity of drug substances and environmentalchemicals. Meth Find Exp Clin Pharmacol, 1993, 15: 141–152
Iwahashi H, Fujita K, Takahashi Y. Bioassay for chemical toxicityusing yeast Saccharomyces cerevisiae. WaterSci Technol, 2000, 42: 269–276
Ribeiro I C, Ver_ıssimo I, Moniz L, Cardoso H, Sousa M J, Soares A M V M, Leao C. Yeasts as a model for assessing the toxicity of the fungicidesPenconazol, Cymoxanil and Dichlofluanid. Chemosphere, 2000, 41: 1637–1642

doi: 10.1016/S0045-6535(00)00039-4
Avery S V. Metal toxicity in yeasts and the role of oxidative stress. Adv Appl Microbiol, 2001, 49: 111–142

doi: 10.1016/S0065-2164(01)49011-3
Cervantes C, Campos-Garcia J, Devars S, Gutierrez-Corona F, Loza-Tavera H, Torres-Guzman J C, Moreno-Sanchez R. Interactions of chromium with microorganismsand plants. FEMS Microbiol Rev, 2001, 25: 335–347

doi: 10.1111/j.1574-6976.2001.tb00581.x
Sumner E R, Shanmuganathan A, Theodora C, Sideri. Sylvia A, Willetts J E, Avery S V. Oxidative protein damagecauses chromium toxicity in yeast. Microbiology, 2005, 151: 1939–1948

doi: 10.1099/mic.0.27945-0
Walsh A R, O’Halloran J. ChromiumSpeciation in the tannery Effluent-I. An assessment of techniquesand the role of organic Cr-(III) complexes. Water Res, 1996, 30: 2393–2400

doi: 10.1016/0043-1354(96)00173-X
Blackwell K J, Tobin J M, Avery S V. Manganese toxicity towards Schharomyces cerevicie: dependence on intracellularand extracellular magnesium conc. ApplMicrobiol Biotechnol, 1998, 49: 751–757

doi: 10.1007/s002530051242
Schmitt M, Gellert G, Ludwig J, Lichtenberg-Frate H. Phenotypic yeast growth analysis forchronic toxicity testing. Ecotoxicol EnvironSafety, 2004, 59: 142–150

doi: 10.1016/j.ecoenv.2004.06.002
Boeira L S, Bryce J H, Stewart G G, Flannigan B. Theeffect of combinations of Fusarium mycotoxins (deoxynivalenol, zearalenoneand fumonisin B1) on growth of brewing yeasts. J Appl Microbiol, 2000, 88: 388–403

doi: 10.1046/j.1365-2672.2000.00972.x
Hrenovic J, Stilinovic B, Dvoracek L. Use of prokaryotic and eukaryoticbiotests to assess toxicity of wastewater from pharmaceutical sources. Acta Chim Slov, 2005, 52: 119–125
Gomes D S, Riger C J, Pinto M L C, Panek A D, Eleutherio E C A. Evaluation of the role ofAce1 and Yap1 in cadmium absorption using the eukaryotic cell model Saccharomyces cerevisiae. Environ Toxicol Pharmacol. 2005, 20(3): 383–389

doi: 10.1016/j.etap.2005.02.009
Pill K G, Kupillas G E, Picardal F W, Arnold R G. Estimating the toxicity of chlorinated organic compoundsusing a multiparameter bacterial bioassay. Environ Toxicol Water Qual, 1991, 6: 271–291

doi: 10.1002/tox.2530060302
Lichtenberg-Fraté H, Schmitt M, Gellertb G, Ludwig J. A yeast-based method forthe detection of cyto and genotoxicity. Toxicol in Vitro, 2003, 17: 709–716

doi: 10.1016/S0887-2333(03)00129-2
O’Brien T J, GuoHui Jiang G H, Gina Chun G, Mandel H G, Craig S. Westphal C S, Kahen K, Montaser A, States J C, Patierno S R. Incision of trivalent chromium [Cr(III)]-induced DNAdamage by Bacillus caldotenax UvrABC endonuclease. Mutat Res-GenTox En, 2006, 610(1―2): 85–92
O’Brien T J, Jamie L, Fornsaglio S C and Steven R P. Effects of hexavalent chromium on thesurvival and cell cycle distribution of DNA repair-deficient S.cerevisiae. DNA Repair, 2002, 1: 617–627

doi: 10.1016/S1568-7864(02)00078-2
Bagchi D, Sidney J S, Bernard W D, Bagchi M and Harry G P. Cytotoxicity and oxidative mechanisms of different forms of chromium. Toxicology, 2002, 180: 5–22

doi: 10.1016/S0300-483X(02)00378-5
Raspor P, Batic M, Jamnik P, Josic D, Milacic R, Pas M, Recek M, Rezic-Dereani V, Skrt M. The influence of chromium compounds on yeast physiology(a review). Acta Microbiol Immunol Hung, 2000, 47: 143–173

doi: 10.1556/AMicr.47.2000.2-3.2
Srivastava S, Prakash S, Srivastava M M. Studies on mobilization ofchromium with reference to its plant availability—role of organicacids. Bio Metals, 1999, 12, 201–207

doi: 10.1023/A:1009262609373
[1] Mengjun Chen, Oladele A. Ogunseitan. Zero E-waste: Regulatory impediments and blockchain imperatives[J]. Front. Environ. Sci. Eng., 2021, 15(6): 114-.
[2] Yi Qian, Weichuan Qiao, Yunhao Zhang. Toxic effect of sodium perfluorononyloxy-benzenesulfonate on Pseudomonas stutzeri in aerobic denitrification, cell structure and gene expression[J]. Front. Environ. Sci. Eng., 2021, 15(5): 100-.
[3] Mariana Valdez-Castillo, Sonia Arriaga. Response of bioaerosol cells to photocatalytic inactivation with ZnO and TiO2 impregnated onto Perlite and Poraver carriers[J]. Front. Environ. Sci. Eng., 2021, 15(3): 43-.
[4] Barsha Roy, Khushboo Kadam, Suresh Palamadai Krishnan, Chandrasekaran Natarajan, Amitava Mukherjee. Assessing combined toxic effects of tetracycline and P25 titanium dioxide nanoparticles using Allium cepa bioassay[J]. Front. Environ. Sci. Eng., 2021, 15(1): 6-.
[5] Xuewen Yi, Zhanqi Gao, Lanhua Liu, Qian Zhu, Guanjiu Hu, Xiaohong Zhou. Acute toxicity assessment of drinking water source with luminescent bacteria: Impact of environmental conditions and a case study in Luoma Lake, East China[J]. Front. Environ. Sci. Eng., 2020, 14(6): 109-.
[6] Xuesong Liu, Jianmin Wang. Algae (Raphidocelis subcapitata) mitigate combined toxicity of microplastic and lead on Ceriodaphnia dubia[J]. Front. Environ. Sci. Eng., 2020, 14(6): 97-.
[7] Shengkun Dong, Chenyue Yin, Xiaohong Chen. Toxicity-oriented water quality engineering[J]. Front. Environ. Sci. Eng., 2020, 14(5): 80-.
[8] Ting Zhang, Heze Liu, Yiyuan Zhang, Wenjun Sun, Xiuwei Ao. Comparative genotoxicity of water processed by three drinking water treatment plants with different water treatment procedures[J]. Front. Environ. Sci. Eng., 2020, 14(3): 39-.
[9] Qian-Yuan Wu, Yi-Jun Yan, Yao Lu, Ye Du, Zi-Fan Liang, Hong-Ying Hu. Identification of important precursors and theoretical toxicity evaluation of byproducts driving cytotoxicity and genotoxicity in chlorination[J]. Front. Environ. Sci. Eng., 2020, 14(2): 25-.
[10] Ravikumar KVG, Debayan Ghosh, Mrudula Pulimi, Chandrasekaran Natarajan, Amitava Mukherjee. In situ formation of bimetallic FeNi nanoparticles on sand through green technology: Application for tetracycline removal[J]. Front. Environ. Sci. Eng., 2020, 14(1): 16-.
[11] Siyu Chen, Lee Blaney, Ping Chen, Shanshan Deng, Mamatha Hopanna, Yixiang Bao, Gang Yu. Ozonation of the 5-fluorouracil anticancer drug and its prodrug capecitabine: Reaction kinetics, oxidation mechanisms, and residual toxicity[J]. Front. Environ. Sci. Eng., 2019, 13(4): 59-.
[12] Xin Xing, Yin Yu, Hongbo Xi, Guangqing Song, Yajiao Wang, Jiane Zuo, Yuexi Zhou. Reduction of wastewater toxicity and change of microbial community in a hydrolysis acidification reactor pre-treating trimethylolpropane wastewater[J]. Front. Environ. Sci. Eng., 2018, 12(6): 12-.
[13] Daoud Ali, Huma Ali, Saud Alifiri, Saad Alkahtani, Abdullah A Alkahtane, Shaik Althaf Huasain. Detection of oxidative stress and DNA damage in freshwater snail Lymnea leuteola exposed to profenofos[J]. Front. Environ. Sci. Eng., 2018, 12(5): 1-.
[14] Siyi Lu, Naiyu Wang, Can Wang. Oxidation and biotoxicity assessment of microcystin-LR using different AOPs based on UV, O3 and H2O2[J]. Front. Environ. Sci. Eng., 2018, 12(3): 12-.
[15] Naiyu Wang, Kai Wang, Can Wang. Comparison of different algicides on growth of Microcystis aeruginosa and microcystin release, as well as its removal pathway in riverways[J]. Front. Environ. Sci. Eng., 2017, 11(6): 3-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed