Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front.Environ.Sci.Eng.    2010, Vol. 4 Issue (1) : 65-72    https://doi.org/10.1007/s11783-010-0010-y
Research articles
Modeling and verifying chlorine decay and chloroacetic acid formation in drinking water chlorination
Wenjun LIU1,Shaoying QI2,
1.Department of Environmental Science and Engineering, Tsinghua University, Beijing 100084, China; 2.Department of Civil & Environmental Engineering, University of Illinois at Urbana-Champaign, 205 N. Mathews Avenue, Urbana, IL 61801, USA;
 Download: PDF(156 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract This study presents a phenomenological model that can be used by the water professionals to quantify chlorine decay and disinfection byproduct (DBP) formation in water. The kinetic model was developed by introducing the concept of limiting chlorine demand and extending an established reactive species approach. The limiting chlorine demand, which quantifies chlorine reactive natural organic matter (NOM) on an equivalent basis, was mathematically defined by the relation between ultimate chlorine residue and initial chlorine dose. It was found experimentally that NOM in water has limiting chlorine demand that increases with chlorine dose once the ultimate residue is established. These results indicated that the complex NOM has a unique ability to adjust chemically to the change in redox condition caused by the free chlorine. It is attributed mainly to the redundant functional groups that persist in heterogeneous NOM molecules. The results also demonstrated that the effect of chlorine dose on the rate of chlorine decay can be quantitatively interpreted with the limiting chlorine demand. The kinetic model developed was validated for chlorine decay and chloroacetic acid formation in finished drinking water.
Keywords chlorine demand      chlorine decay      chloroacetic acids      disinfection byproducts      model      
Issue Date: 05 March 2010
 Cite this article:   
Wenjun LIU,Shaoying QI. Modeling and verifying chlorine decay and chloroacetic acid formation in drinking water chlorination[J]. Front.Environ.Sci.Eng., 2010, 4(1): 65-72.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-010-0010-y
https://academic.hep.com.cn/fese/EN/Y2010/V4/I1/65
Liu W. Theprospective of disinfection technologies used in drinking water treatment. Wat Wastewat Eng, 2004, 30(1): 2–5 (inChinese)
GB5749-2006. P.R. China Standards for DrinkingWater Quality. Beijing: Department of Health, P. R. China, 2006 (in Chinese)
Stumm W, Morgan J J. Aquatic Chemistry ChemicalEquilibria and Rates in Natural Waters. 3rd ed. NY: John Wiley & Sons, Inc, 1996
Boccelli D L, Tryby M E, Uber J G, Summers R S. A reactive species model for chlorine decay and THM formation underrechlorination conditions. Water Res, 2003, 37(11): 2654–2666

doi: 10.1016/S0043-1354(03)00067-8
Chang E E, Chiang P C, Chao S H, Lin Y L. Relationshipbetween chlorine consumption and chlorination by-products formationfor model compounds. Chemosphere, 2006, 64(7): 1196–1203

doi: 10.1016/j.chemosphere.2005.11.036
Clark R M. Chlorine demand and TTHM formation kinetics: A second-order model. J Environ Eng, ASCE, 1998, 124(1): 16–24

doi: 10.1061/(ASCE)0733-9372(1998)124:1(16)
Clark R M, Sivaganesan M. Predicting chlorine residualsin drinking water: Second order model. J Wat Resour Plan Manage, ASCE, 2002, 128(2): 152–161

doi: 10.1061/(ASCE)0733-9496(2002)128:2(152)
Jadas-Hécart A, Elmorer A, Stitou M, Bouillot P, Legube B. The chlorine demand of atreated water. Water Res, 1992, 26(8): 1073–1084
Powell J C, Hallam N B, West J R, Forster C F, Simms J. Factors which control bulkchlorine decay rates. Water Res, 2000, 34(1): 117–126

doi: 10.1016/S0043-1354(99)00097-4
Warton B, Heitz A, Joll C, Kagi R. A new methodfor calculation of the chlorine demand of natural and treated waters. Water Res, 2006, 40(15): 2877–2884

doi: 10.1016/j.watres.2006.05.020
Boyce S D, Hornig J F. Reaction pathways of trihalomethaneformation from the halogenation of dihydroxyaromatic model compoundsfor humic-acid. Environ Sci Technol, 1983, 17(4): 202–211

doi: 10.1021/es00110a005
Brezonik P L. Chemical Kinetics and Process Dynamics in Aquatic Systems. New York: Lewis Publishers, 1993
Li C W, Benjamin M M, Korshin G V. Use of UV spectroscopy to characterize the reaction betweenNOM and free chlorine. Environ Sci Technol, 2000, 34(12): 2570–2575

doi: 10.1021/es990899o
Reckhow D A, Singer P C, Malcolm R L. Chlorination of humic materials- by-product formationand chemical interpretations. Environ SciTechnol, 1990, 24(11): 1655–1664

doi: 10.1021/es00081a005
Hua G, Reckhow D A. Comparison of disinfectionbyproduct formation from chlorine and alternative disinfectants. Water Res, 2007, 41(8): 1667–1678

doi: 10.1016/j.watres.2007.01.032
Singer P C. Humic substances as precursors for potentially harmful disinfectionby-products. Water Sci Technol, 1999, 40(9): 25–30

doi: 10.1016/S0273-1223(99)00636-8
Zhang X R, Minear R A. Formation, adsorption andseparation of high molecular weight disinfection byproducts resultingfrom chlorination of aquatic humic substances. Water Res, 2006, 40(2): 221–230

doi: 10.1016/j.watres.2005.10.024
Clark R M, Sivaganesan M. Predicting chlorine residualsand formation of TTHMs in drinking water. J Environ Eng, ASCE, 1998, 124(12): 1203–1210

doi: 10.1061/(ASCE)0733-9372(1998)124:12(1203)
Duirk S E, Valentine R L. Modeling dichloroacetic acidformation from the reaction of monochloramine with natural organicmatter. Water Res, 2006, 40(14): 2667–2674

doi: 10.1016/j.watres.2006.05.010
Gallard H, von Gunten U. Chlorination of natural organicmatter: Kinetics of chlorination and of THM formation. Water Res, 2002, 36(1): 65–74

doi: 10.1016/S0043-1354(01)00187-7
Gang D D, Segar R L, Clevenger T E, Banerji S K. Using chlorine demand to predict TTHM and HAA9 formation. J Amer Wat Works Assoc, 2002, 94(10): 76–86
Sadiq R, Rodriguez M J. Disinfection by-products(DBPs) in drinking water and predictive models for their occurrence:A review. Sci Total Environ, 2004, 321(1―3): 21–46

doi: 10.1016/j.scitotenv.2003.05.001
Sohn J, Amy G, Cho J W, Lee Y, Yoon Y. Disinfectant decay and disinfection by-productsformation model development: Chlorination and ozonation by-products. Water Res, 2004, 38(10): 2461–2478

doi: 10.1016/j.watres.2004.03.009
Yang X, Shang C, Westerhoff P. Factors affecting formation of haloacetonitriles, haloketones,chloropicrin and cyanogen halides during chloramination. Water Res, 2007, 41(6): 1193–1200

doi: 10.1016/j.watres.2006.12.004
Morris J C. The mechanism of the hydrolysis of chlorine. J Amer Chem Soc, 1946, 68: 1692–1694

doi: 10.1021/ja01213a003
Deborde M, von Gunten U. Reactions of chlorine withinorganic and organic compounds during water treatment: Kinetics andmechanisms. A critical review. Water Res, 2008, 42(1―2): 13–51

doi: 10.1016/j.watres.2007.07.025
Snoeyink V L, Jenkins D. Water Chemistry. New York: John Wiley & Sons, Inc., 1980
Dean J A. Lange's Handbook of Chemistry. 14th Ed. New York: McGraw-Hill, Inc., 1992
Kawamura S. IntegratedDesign and Operation of Water Treatment Facilities. 2nded. New York: John Wiley & Sons, Inc., 2000
Luh J, Mariñas BJ. Inactivationof mycobacterium avium with free Chlorine. Environ Sci Technol, 2007, 41(14): 5096–5102

doi: 10.1021/es0630801
Terminology Reference System. U.S. EPA.. 2007www.epa.gov/trs. 2007
APHA-AWWA-WEF. Standardmethods for the examination of water and wastewater. In: Clesceri L S, Greenberg A E, Eaton A D, eds. New York: American Public HealthAssociation, 1998
Harp D L. Current technology of chlorine analysis for water and wastewater. In: Technical Information Series—BookletNo. 17. Loveland, Colorado: Hach Company, 2002
Xie Y, Reckhow D A. Analyzing HAAs and ketoacidswithout diazomethane. J Amer Wat WorksAssoc, 1998, 90(4): 131–138
Bauer M, Heitmann T, Macalady D L, Blodau C. Electrontransfer capacities and reaction kinetics of peat dissolved organicmatter. Environ Sci Technol, 2007, 41(1): 139–145

doi: 10.1021/es061323j
Struyk Z, Sposito G. Redox properties of standardhumic acids. Geoderma, 2001, 102(3―4): 329–346

doi: 10.1016/S0016-7061(01)00040-4
Kapple A, Benz M, Schink B, Brune A. Electron shuttlingvia humic acids in microbial iron(III) reduction in a freshwater sediment. FEMS Microbiol Ecol, 2004, 47(1): 89–92
Peretyazhko T, Sposito G. Reducing capacity of terrestrialhumic acids. Geoderma, 2006, 137(1―2): 140–146

doi: 10.1016/j.geoderma.2006.08.004
Powell J C, West J, Hallam N B, Forster C F, Simms J. Performance of various kineticmodels for chlorine decay. J Wat ResourPlan Manage, ASCE, 2000, 126(1): 13–20

doi: 10.1061/(ASCE)0733-9496(2000)126:1(13)
Vieira P, Coelho S T, Loureiro D. Accounting for the influence of initial chlorine concentration,TOC, iron and temperature when modelling chlorine decay in water supply. J Wat Supply Res, Technol.-Aqua, 2004, 53(7): 453–467
Cowman G A, Singer P C. Effect of bromide ion onhaloacetic acid speciation resulting from chlorination and chloraminationof aquatic humic substances. Environ SciTechnol, 1996, 30: 16–24

doi: 10.1021/es9406905
Miller J W, Uden P C. Characterization of nonvolatileaqueous chlorination products of humic substances. Environ Sci Technol, 1983, 17(3): 150–157

doi: 10.1021/es00109a006
[1] Aifang Gao, Junyi Wang, Jianfei Luo, Aiguo Li, Kaiyu Chen, Pengfei Wang, Yiyi Wang, Jingyi Li, Jianlin Hu, Hongliang Zhang. Temporal variation of PM2.5-associated health effects in Shijiazhuang, Hebei[J]. Front. Environ. Sci. Eng., 2021, 15(5): 82-.
[2] Jiangbo Jin, Yun Zhu, Jicheng Jang, Shuxiao Wang, Jia Xing, Pen-Chi Chiang, Shaojia Fan, Shicheng Long. Enhancement of the polynomial functions response surface model for real-time analyzing ozone sensitivity[J]. Front. Environ. Sci. Eng., 2021, 15(2): 31-.
[3] Pol Masclans Abelló, Vicente Medina Iglesias, M. Antonia de los Santos López, Jesús Álvarez-Flórez. Real drive cycles analysis by ordered power methodology applied to fuel consumption, CO2, NOx and PM emissions estimation[J]. Front. Environ. Sci. Eng., 2021, 15(1): 4-.
[4] Chao Pan, Daniel Giammar. Interplay of transport processes and interfacial chemistry affecting chromium reduction and reoxidation with iron and manganese[J]. Front. Environ. Sci. Eng., 2020, 14(5): 81-.
[5] Wei Fan, Qi Li, Mingxin Huo, Xiaoyu Wang, Shanshan Lin. Transport of bacterial cell (E. coli) from different recharge water resources in porous media during simulated artificial groundwater recharge[J]. Front. Environ. Sci. Eng., 2020, 14(4): 63-.
[6] Aifeng Zhai, Xiaowen Ding, Lin Liu, Quan Zhu, Guohe Huang. Total phosphorus accident pollution and emergency response study based on geographic information system in Three Gorges Reservoir area[J]. Front. Environ. Sci. Eng., 2020, 14(3): 46-.
[7] Xuying Ma, Ian Longley, Jennifer Salmond, Jay Gao. PyLUR: Efficient software for land use regression modeling the spatial distribution of air pollutants using GDAL/OGR library in Python[J]. Front. Environ. Sci. Eng., 2020, 14(3): 44-.
[8] Youfang Chen, Yimin Zhou, Xinyi Zhao. PM2.5 over North China based on MODIS AOD and effect of meteorological elements during 2003‒2015[J]. Front. Environ. Sci. Eng., 2020, 14(2): 23-.
[9] Chao Liu, Hancheng Dai, Lin Zhang, Changchun Feng. The impacts of economic restructuring and technology upgrade on air quality and human health in Beijing-Tianjin-Hebei region in China[J]. Front. Environ. Sci. Eng., 2019, 13(5): 70-.
[10] Fatih Ilhan, Kubra Ulucan-Altuntas, Yasar Avsar, Ugur Kurt, Arslan Saral. Electrocoagulation process for the treatment of metal-plating wastewater: Kinetic modeling and energy consumption[J]. Front. Environ. Sci. Eng., 2019, 13(5): 73-.
[11] Nan Zhao, Huu Hao Ngo, Yuyou Li, Xiaochang Wang, Lei Yang, Pengkang Jin, Guangxi Sun. A comprehensive simulation approach for pollutant bio-transformation in the gravity sewer[J]. Front. Environ. Sci. Eng., 2019, 13(4): 62-.
[12] Cong Liu, Yinping Zhang. Relations between indoor and outdoor PM2.5 and constituent concentrations[J]. Front. Environ. Sci. Eng., 2019, 13(1): 5-.
[13] Mengqian Lu, Bin-Le Lin, Kazuya Inoue, Zhongfang Lei, Zhenya Zhang, Kiyotaka Tsunemi. PM2.5-related health impacts of utilizing ammonia-hydrogen energy in Kanto Region, Japan[J]. Front. Environ. Sci. Eng., 2018, 12(2): 13-.
[14] Wenwei Yang, Yun Zhu, Carey Jang, Shicheng Long, Che-Jen Lin, Bin Yu, Zachariah Adelman, Shuxiao Wang, Jia Xing, Long Wang, Jiabin Li. Development and case study of a new-generation model-VAT for analyzing the boundary conditions influence on atmospheric mercury simulation[J]. Front. Environ. Sci. Eng., 2018, 12(1): 13-.
[15] Yu Liu, Qiao Zhang, Yu Hong. Formation of disinfection byproducts from accumulated soluble products of oleaginous microalga after chlorination[J]. Front. Environ. Sci. Eng., 2017, 11(6): 1-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed