Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front.Environ.Sci.Eng.    2010, Vol. 4 Issue (2) : 164-171    https://doi.org/10.1007/s11783-010-0019-2
Research articles
Preparation of ceria-zirconia solid solution with enhanced oxygen storage capacity and redox performance
Lijing MENG1,Licheng LIU1,Xuehong ZI1,Hongxing DAI1,Hong HE1,Zhen ZHAO2,Xinping WANG3,
1.Laboratory of Catalysis Chemistry and Nanoscience, College of Environment and Energy Engineering, Beijing University of Technology, Beijing 100124, China; 2.State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China; 3.State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China;
 Download: PDF(429 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A new method called ultrasonic-assisted membrane reaction (UAMR) was reported for the fabrication of ceria-zirconia solid solution. A series of ceria-zirconia solid solutions with different Ce/Zr molar ratios were prepared by the UAMR method and characterized by X-ray diffraction (XRD), N2 adsorption, hydrogen temperature-programmed reduction (H2-TPR), scanning electron microscope (SEM), and transmission electron microscopy (TEM) techniques. The UAMR method proved to be superior, especially when the Ce/Zr molar ratio was lower than 1, in fabricating ceria-zirconia solid solutions with large BET surface area, high oxygen storage capacity (OSC), and low reduction temperature.
Keywords membrane reaction      ceria-zirconia      Ce/Zr molar ratio      solid solution      hydrogen temperature-programmed reduction (H2-TPR)      
Issue Date: 05 June 2010
 Cite this article:   
Lijing MENG,Xuehong ZI,Licheng LIU, et al. Preparation of ceria-zirconia solid solution with enhanced oxygen storage capacity and redox performance[J]. Front.Environ.Sci.Eng., 2010, 4(2): 164-171.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-010-0019-2
https://academic.hep.com.cn/fese/EN/Y2010/V4/I2/164
Fornasiero P, Balducci G, Di Monte R, Kašpar J. Modification of the Redox Behaviour of CeO2 Induced by Structural Doping with ZrO2. Journal of Catalysis, 1996, 164(1): 173–183

doi: 10.1006/jcat.1996.0373
Balducci G, Fornasiero P, Di Monte, R. An unusual promotion of theredox behavior of CeO2–ZrO2 solid solutions upon sintering at high temperatures. Catalysis Letter, 1995, 33: 193–200

doi: 10.1007/BF00817058
Zhang Q, Wei J, Shen M Q, Wang, J. Effect of different mixing ways in palladium/ceria-zirconia/alumina preparationon partial oxidation of methane. Journal of Rare Earths, 2008, 26(5): 700–704

doi: 10.1016/S1002-0721(08)60166-0
Escritori J C, Dantas S C, Soares R R, Hori C E. Methane autothermal reforming on nickel–ceria–zirconiabased catalysts. Catalysis Communications, 2009, 10(7): 1090–1094

doi: 10.1016/j.catcom.2009.01.001
Reddy B M, Thrimurthulu G, Saikia P, Bharali P. Silica supported ceria and ceria–zirconia nanocompositeoxides for selective dehydration of 4-methylpentan-2-ol. Journal of Molecular Catalysis: A, Chemical, 2007, 275: 167–173

doi: 10.1016/j.molcata.2007.05.037
Radhakrishnan R, Willigan R R, Dardas Z, Vanderspurt T H. Water gas shift activity and kinetics of Pt/Re catalystssupported on ceria-zirconia oxides. Applied Catalysis B: Environmental, 2006, 66(20): 23–28

doi: 10.1016/j.apcatb.2006.02.017
Djurcic B, McGarry D, Pickering S. The preparation of ultrafineceria-stabilized zirconia particles coated with yttria. Journal of Materials Science Letters, 1993, 12(16): 1320–1323

doi: 10.1007/BF00506350
Deptula A, Carewska M, Olczak T, Lada W, Croce F. Sintering of ZrO2-CeO2 Spherical Powders Prepared by a Water Extraction Variant of the Sol-Gel Process. Journal of the Electrochemical Society, 1993, 140(8): 2294–2297

doi: 10.1149/1.2220811
Potdar H S, Deshpande S B, Deshpande A S, Gokale S P, Khollam Y B, Patil A J, Date S K. Preparation of ceria–zirconia (Ce0.75Zr0.25O2) powders by microwave–hydrothermal (MH) route. Materials Chemistry and Physics, 2002, 74(1): 306–312

doi: 10.1016/S0254-0584(01)00485-0
Maschio S, Piras A, Schmid C, Lucchini E. Effects of attrition milling on precursors of Al2O3 and 12Ce–TZP powders. Journal of European Ceramic Society, 2001, 21: 589–594

doi: 10.1016/S0955-2219(00)00259-4
Teng M, Luo L, Yang X. Synthesis of mesoporous Ce1−xZrxO2 (x = 0.2―0.5) and catalyticproperties of CuO based catalysts. Microporous and Mesoporous Materials, 2009, 119(1): 158–164

doi: 10.1016/j.micromeso.2008.10.019
Dobrosz-Gómez I, Kocemba I, Rynkowski J M. Au/Ce1−xZrxO2 as effectivecatalysts for low-temperature CO oxidation. Applied Catalysis B: Environmental, 2008, 83(23): 240–255

doi: 10.1016/j.apcatb.2008.02.012
Cabanas A, Darr J A, Lester E, Poliakoff M. Continuous hydrothermal synthesis of inorganic materials in a near critical waterflow reactor; the one-step synthesis of nano-particulate Ce1−xZrxO2 (x = 0―1) solid solutions. Journal of Materials Chemistry, 2001, 11: 561–568

doi: 10.1039/b008095k
Mai H X, Sun L D, Zhang Y W, Si R, Feng W, Liu H C, Y C H. Shape-selective synthesisand oxygen storage behavior of ceria nanopolyhedra, nanorods and nanocubes. Journal of Physical Chemistry B, 2005, 109(51): 24380–24385

doi: 10.1021/jp055584b
Zhai S, Wei W, Wu D, Sun Y. Synthesis, characterization and catalytic activities of mesoporous AlMSU-X withwormhole-like framework structure. Catalysis Letter, 2003, 89: 261–267

doi: 10.1023/A:1025718932695
Madier Y, Descorme C, Le Govic A M, Duprez D. Oxygen Mobility in CeO2 and CexZr(1−x)O2 Compounds: Study by CO TransientOxidation and 18O/16O Isotopic Exchange. Journal of Physical Chemistry B, 1999,103 (50): 10999–11006

doi: 10.1021/jp991270a
Parvulescu V, Anastasescu C, Su B L. Bimetallic Ru-(Cr, Ni, orCu) and La-(Co or Mn) incorporated MCM-41 molecular sieves as catalystsfor oxidation of aromatic hydrocarbons. Journal of Molecular Catalysis A: Chemical, 2004, 211(15): 143–148

doi: 10.1016/j.molcata.2003.10.011
Wei Z L, Li H M, Zhang X Y, Yan S H, Lv Z, Chen Y Q, Gong M C. Preparation and property investigation of CeO2–ZrO2–Al2O3 oxygen-storage compounds. Journal of Alloy and Compounds, 2008, 455: 322–326

doi: 10.1016/j.jallcom.2007.01.060
Kim J R, Myeong W J, Ihm S K. Characteristics in oxygenstorage capacity of ceria–zirconia mixed oxide prepared by continuoushydrothermal synthesis in supercritical water. Applied Catalysis B: Environmental, 2007, 71: 57–63

doi: 10.1016/j.apcatb.2006.08.015
Kašpar J, Fornasiero P, Graziani M. Use of CeO2-based oxides in the three-way catalysis. Catalysis Today, 1999, 50: 285–298

doi: 10.1016/S0920-5861(98)00510-0
Kašpar J, Fornasiero, P, Hickey N. Automotive catalytic converters:current status and some perspectives. Catalysis Today, 2003, 77: 419–449

doi: 10.1016/S0920-5861(02)00384-X
Wang X H, Lu G Z, Guo Y, Xue Y Y, Jiang L Z, Guo Y L, Zhang Z G. Structure, thermal-stability and reducibility of Si-doped Ce–Zr–Osolid solution. Catalysis Today, 2007, 126: 412–419

doi: 10.1016/j.cattod.2007.06.009
Yao H C, Yu Yao Y F. Ceria in automotive exhaust catalysts: I. Oxygen storage. Journal of Catalysis, 1984, 86(2): 254–265

doi: 10.1016/0021-9517(84)90371-3
Johnson M F L, Mooi J. Cerium dioxide crystallite sizes by temperature-programmed reduction. Journal of Catalysis, 1987, 103: 502–505

doi: 10.1016/0021-9517(87)90142-4
Larese C, Granados M L, Mariscal R, Fierro J L G, Lambrou P S, Efstathiou A M. The effect of calcinationtemperature on the oxygen storage and release properties of CeO2 and Ce―Zr―O metal oxides modified byphosphorus incorporation. Applied CatalysisB: Environmental, 2005, 59: 13–25

doi: 10.1016/j.apcatb.2004.12.011
Dong F, Suda A, Tanabe T, Nagai Y, Sobukawa H, Shinjoh H, Sugiura M, Descorme C, Duprez D. Dynamic oxygen mobility and a new insight into the roleof Zr atoms in three-way catalysts of Pt/CeO2–ZrO2. Catalysis Today, 2004, 93―95: 827–832

doi: 10.1016/j.cattod.2004.06.076
Kašpar J, Fornasiero P. Nanostructured materials for advanced automotive de-pollution catalysts. Journal of Solid State Chemistry, 2003, 171: 19–29

doi: 10.1016/S0022-4596(02)00141-X
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed