Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front.Environ.Sci.Eng.    2010, Vol. 4 Issue (2) : 135-141    https://doi.org/10.1007/s11783-010-0024-5
Research articles
Increasing the performance of anaerobic digestion: Pilot scale experimental study for thermal hydrolysis of mixed sludge
S.I. PEREZ-ELVIRA,M. FDZ-POLANCO,F. FDZ-POLANCO,
Department of Chemical Engineering and Environmental Technology, University of Valladolid, Valladolid 47011, Spain;
 Download: PDF(319 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The performance of a pilot plant operation combining thermal hydrolysis (170°C, 30 min) and anaerobic digestion (AD) was studied, determining the main properties for samples of fresh mixed sludge, hydrolyzed sludge, and digested sludge, in order to quantify the thermal pretreatment performance (disintegration, solubilisation, and dewaterability) and its impact on the anaerobic digestion performance (biodegradability, volatile solids reduction, and digester rheology) and end product characteristics (dewaterability, sanitation, organic and nitrogen content). The disintegration achieved during the thermal treatment enhances the sludge centrifugation, allowing a 70% higher total solids concentration in the feed to anaerobic digestion. The digestion of this sludge generates 40% more biogas in half the time, due to the higher solids removal compared to a conventional digester. The waste generated can be dewatered by centrifugation to 7% dry solids without polymer addition, and is pathogen free.
Keywords anaerobic digestion (AD)      biogas      performance      sludge      thermal hydrolysis      
Issue Date: 05 June 2010
 Cite this article:   
S.I. PEREZ-ELVIRA,M. FDZ-POLANCO,F. FDZ-POLANCO. Increasing the performance of anaerobic digestion: Pilot scale experimental study for thermal hydrolysis of mixed sludge[J]. Front.Environ.Sci.Eng., 2010, 4(2): 135-141.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-010-0024-5
https://academic.hep.com.cn/fese/EN/Y2010/V4/I2/135
Shimizu T, Kudo K, Nasu Y. Anaerobic waste—activated sludgedigestion—a bioconversion mechanism and kinetic model. Biotechnology and Bioengineering, 1993, 41(11): 1082―1091

doi: 10.1002/bit.260411111
Li Y Y, Noike T. Upgrading of anaerobic digestion of waste activated sludge by thermal pretreatment. Water Science and Technology, 1992, 26: 857–864
Chiu Y C, Chang C N, Lin L G, Huang S J. Alkaline and ultrasonic pre-treatment of sludge before anaerobicdigestion. Water Science and Technology, 1997, 36(11): 155–162

doi: 10.1016/S0273-1223(97)00681-1
Dohányos M, Zabranska J, Jenicek P. Enhancement of sludge anaerobicdigestion by using of a special thickening centrifuge. Water Science and Technology, 1997, 36(11): 145–153

doi: 10.1016/S0273-1223(97)00677-X
Kepp U, Machenbach I, Weisz N, Solheim O E. Enhanced stabilisation of sewage sludge through thermalhydrolysis—3 years of experience with full scale plants. Water Science and Technology, 1999, 42(9): 89–96
Mukherjee R S, Levine A D. Chemical solubilization of particulate organics as a pretreatmentapproach. Water Science and Technology, 1992, 26(9―11): 2289–2292
Pérez-Elvira S I, Nieto-Diez P, Fdz-Polanco F. Sludge minimization technologies. Rev. Environmental Science and Biotechnology, 2006, 5(4): 375–398

doi: 10.1007/s11157-005-5728-9
Weemaes M, Verstraete W H. Evaluation of current wet sludge disintegration techniques. Journal of Chemical Technology and Biotechnology(Oxford, Oxfordshire), 1998, 73(2): 83–92

doi: 10.1002/(SICI)1097-4660(1998100)73:2<83::AID-JCTB932>3.0.CO;2-2
Fdz-Polanco F, Velázquez R, Pérez-Elvira S I, Casas C, del Barrio D, Cantero F J, Fdz-Polanco M, Rodríguez P, Panizo L, Serrat J, Rouge P. Continuous thermal hydrolysis and energy integration in sludge anaerobic digestionplants. Water Science and Technology, 2008, 57(8): 1221–1226

doi: 10.2166/wst.2008.072
Kepp U, Solheim O E. Meeting increased demands on sludge quality—experience withfull scale plant for thermal disintegration. Proceedings of the 9th World Congress,Anaerobic Conversion for Sustainability, 2001
APHA. AWWA, WPCF. Standard Methods for the examination of Water and Wastewater, 21th ed. Washington DC: American Public Health Association, 2005
Fdz-Polanco F, Nieto P, Pérez Elvira S I, van der Zee F P, Fdz-Polanc M, García P A. Automated equipment for anaerobicsludge parameters determination. Water Science and Technology, 2005, 52(1―2): 479–485
[1] Yuan Meng, Weiyi Liu, Heidelore Fiedler, Jinlan Zhang, Xinrui Wei, Xiaohui Liu, Meng Peng, Tingting Zhang. Fate and risk assessment of emerging contaminants in reclaimed water production processes[J]. Front. Environ. Sci. Eng., 2021, 15(5): 104-.
[2] Ruijie Li, Mengmeng Zhou, Shilong He, Tingting Pan, Jing Liu, Jiabao Zhu. Deciphering the effect of sodium dodecylbenzene sulfonate on up-flow anaerobic sludge blanket treatment of synthetic sulfate-containing wastewater[J]. Front. Environ. Sci. Eng., 2021, 15(5): 91-.
[3] Ting Wang, Renxian Zhou. PM-support interfacial effect and oxygen mobility in Pt, Pd or Rh-loaded (Ce,Zr,La)O2 catalysts[J]. Front. Environ. Sci. Eng., 2021, 15(4): 76-.
[4] Ying Xu, Hui Gong, Xiaohu Dai. High-solid anaerobic digestion of sewage sludge: achievements and perspectives[J]. Front. Environ. Sci. Eng., 2021, 15(4): 71-.
[5] Lina Gan, Kezhi Li, Hejingying Niu, Yue Peng, Jianjun Chen, Yuandong Huang, Junhua Li. Simultaneous removal of NOx and chlorobenzene on V2O5/TiO2 granular catalyst: Kinetic study and performance prediction[J]. Front. Environ. Sci. Eng., 2021, 15(4): 70-.
[6] Ling Wang, Chunxue Yang, Sangeetha Thangavel, Zechong Guo, Chuan Chen, Aijie Wang, Wenzong Liu. Enhanced hydrogen production in microbial electrolysis through strategies of carbon recovery from alkaline/thermal treated sludge[J]. Front. Environ. Sci. Eng., 2021, 15(4): 56-.
[7] Fan Lu, Tianyu Hu, Shunyan Wei, Liming Shao, Pinjing He. Bioaerosolization behavior along sewage sludge biostabilization[J]. Front. Environ. Sci. Eng., 2021, 15(3): 45-.
[8] Guoliang Zhang, Liang Zhang, Xiaoyu Han, Shujun Zhang, Yongzhen Peng. Start-up of PN-anammox system under low inoculation quantity and its restoration after low-loading rate shock[J]. Front. Environ. Sci. Eng., 2021, 15(2): 32-.
[9] Shengjie Qiu, Jinjin Liu, Liang Zhang, Qiong Zhang, Yongzhen Peng. Sludge fermentation liquid addition attained advanced nitrogen removal in low C/N ratio municipal wastewater through short-cut nitrification-denitrification and partial anammox[J]. Front. Environ. Sci. Eng., 2021, 15(2): 26-.
[10] Xianke Lin, Xiaohong Chen, Sichang Li, Yangmei Chen, Zebin Wei, Qitang Wu. Sewage sludge ditch for recovering heavy metals can improve crop yield and soil environmental quality[J]. Front. Environ. Sci. Eng., 2021, 15(2): 22-.
[11] Milan Malhotra, Anurag Garg. Characterization of value-added chemicals derived from the thermal hydrolysis and wet oxidation of sewage sludge[J]. Front. Environ. Sci. Eng., 2021, 15(1): 13-.
[12] Xiling Li, Tianwei Hao, Yuxin Tang, Guanghao Chen. A “Seawater-in-Sludge” approach for capacitive biochar production via the alkaline and alkaline earth metals activation[J]. Front. Environ. Sci. Eng., 2021, 15(1): 3-.
[13] An Ding, Yingxue Zhao, Huu Hao Ngo, Langming Bai, Guibai Li, Heng Liang, Nanqi Ren, Jun Nan. Metabolic uncoupler, 3,3′,4′,5-tetrachlorosalicylanilide addition for sludge reduction and fouling control in a gravity-driven membrane bioreactor[J]. Front. Environ. Sci. Eng., 2020, 14(6): 96-.
[14] An Ding, Yingxue Zhao, Zhongsen Yan, Langming Bai, Haiyang Yang, Heng Liang, Guibai Li, Nanqi Ren. Co-application of energy uncoupling and ultrafiltration in sludge treatment: Evaluations of sludge reduction, supernatant recovery and membrane fouling control[J]. Front. Environ. Sci. Eng., 2020, 14(4): 59-.
[15] Feng Zhu, Zhijian Yao, Wenliang Ji, Deye Liu, Hao Zhang, Aimin Li, Zongli Huo, Qing Zhou. An efficient resin for solid-phase extraction and determination by UPLCMS/MS of 44 pharmaceutical personal care products in environmental waters[J]. Front. Environ. Sci. Eng., 2020, 14(3): 51-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed