Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front.Environ.Sci.Eng.    2010, Vol. 4 Issue (2) : 142-149    https://doi.org/10.1007/s11783-010-0026-3
Research articles
Effect of wastewater composition on the calcium carbonate precipitation in upflow anaerobic sludge blanket reactors
Shucheng YANG1,Yanling HE1,Charles CHOU1,Pengxiang ZHANG1,Dongqi WANG1,Yonghong LIU2,
1.Department of Environmental Engineering, Xi’an Jiaotong University, Xi’an 710049, China; 2.Department of Environmental and Chemical Engineering, Xi’an Polytechnic University, Xi’an 710048, China;
 Download: PDF(526 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Calcium carbonate often precipitates in anaerobic reactors treating wastewater with high calcium content. The aim of this paper is to study the effect of wastewater composition on calcium carbonate precipitation in upflow anaerobic sludge blanket (UASB) reactors. Two laboratory-scale UASB reactors were operated with calcium-containing influents using acetate and carbohydrate as substrate, respectively. There was an obvious accumulation of inorganic precipitate observed in the biogranules. Observations via scanning electron microscope (SEM) and energy dispersive spectroscopy (EDS) showed that the acclimated biogranules in the two reactors differed in microstructure. Calcium carbonate was found to have precipitated on the surface of acetate-degrading biogranules, but precipitated at the core of the carbohydrate-degrading biogranules. The results indicated that substrates had significant influence on the location of calcium carbonate precipitation in anaerobic granular sludge, which was expected due to the different methanogens distribution and pH gradient within the granular sludge degrading various substrates. Moreover, the location of calcium carbonate precipitation substantially affected the specific methanogenic activity (SMA) of the granular sludge. The SMA of the acetate-degrading biogranules dropped from 1.96 gCODCH4·gVSS−1·d−1 to 0.61 gCODCH4·gVSS−1·d−1 after 180-d of operation in the reactor. However, the SMA of the carbohydrate-degrading biogranules was not adversely affected by calcium carbonate precipitation.
Keywords calcium carbonate      precipitation      anaerobic granular sludge      wastewater composition      microstructure      upflow anaerobic sludge blanket (UASB)      
Issue Date: 05 June 2010
 Cite this article:   
Shucheng YANG,Yanling HE,Charles CHOU, et al. Effect of wastewater composition on the calcium carbonate precipitation in upflow anaerobic sludge blanket reactors[J]. Front.Environ.Sci.Eng., 2010, 4(2): 142-149.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-010-0026-3
https://academic.hep.com.cn/fese/EN/Y2010/V4/I2/142
Lettinga G, van Velsen A F M, Hobma S W, de Zeeuw W, Klapwijk A. Use of the upflow sludge blanket (USB) reactor concept for biologicalwastewater treatment, especially for anaerobic treatment. Biotechnology and Bioengineering, 1980, 22(4): 699–734

doi: 10.1002/bit.260220402
Hulshoff Pol L W. The phenomenon of granulation of anaerobicsludge. Dissertation for the Doctoral Degree. The Netherlands: Wageningen Agricultural University, 1989
Yu H Q, Tay J H, Fang H H P. The roles of calcium in sludge granulationduring UASB reactor start-up. Water Research, 2001, 35(4): 1052–1060

doi: 10.1016/S0043-1354(00)00345-6
Tiwari M K, Guha S, Harendranath C S, Tripathi S. Influence of extrinsic factors on granulation in UASBreactor. Applied Microbiology and Biotechnology, 2006, 71(2): 145–154

doi: 10.1007/s00253-006-0397-3
Van Langerak E P A, Gonzalez-Gil G, van Aelst A, van Lier J B, Hamelers H V M, Lettinga G. Effects of high calcium concentrationson the development of methanogenic sludge in upflow anaerobic sludgebed (UASB) reactors. Water Research, 1998, 32(4): 1255–1263

doi: 10.1016/S0043-1354(97)00335-7
Batstone D J, Landelli J, Saunders A, Webb R I, Blackall L L, Keller J. The influence of calciumon granular sludge in a full-scale UASB treating paper mill wastewater. Water Science and Technology, 2002, 45(10): 187–193
EI-Mamouni R, Guiot S R, Mercier P, Sail B, Samson R. Liming impact on granules activity of the multiplate anaerobic reactor (MPAR) treating wheypermeate. Bioprocess Engineering, 1995, 12: 47–53
Van Langerak E P A, Ramaekers H, Wiechers J, Veeken V H M, Hamelers H V M, Lettinga G. Impact of location of CaCO3 precipitation on the development of intact anaerobic sludge. Water Research, 2000, 34(2): 437–446

doi: 10.1016/S0043-1354(99)00154-2
Uemura S, Harada H. Inorganic composition and microbial characteristics of methanogenic granularsludge grown in a thermophilic upflow anaerobic sludge blanket reactor. Applied Microbiology and Biotechnology, 1995, 43(2): 358–364

doi: 10.1007/BF00172839
Kim Y H, Han K C, Lee W K. Removal of organics and calcium hardnessin liner paper wastewater using UASB and CO2 stripping system. Process Biochemistry, 2003, 38(6): 925–931

doi: 10.1016/S0032-9592(02)00200-5
Morse J W. The kinetics of calcium carbonate dissolution and precipitation. Reviews in Mineralogy and Geochemistry, 1983, 11: 227–264
Fang H H P, Chui H K, Li Y Y. Effect of degradation kinetics on themicrostructure of anaerobic biogranules. Water Science and Technology, 1995, 32(8): 165–172

doi: 10.1016/0273-1223(96)00021-2
Batstone D J. High-rate anaerobic treatment of complex wastewater,Dissertation for the Doctoral Degree. St Lucia: AWM Centre, University of Queensland, 2000
Batstone D J, Keller J, Blackall L L. The influence of substratekinetics on the microbial community structure in granular anaerobicbiomass. Water Research, 2004, 38(6): 1390–1404

doi: 10.1016/j.watres.2003.12.003
APHA. Standard methods for the examination of water and wastewater. 20th ed. Washington D C, 1998
Díaz E, Amils R, Sanz J L. Molecular ecology of anaerobic granularsludge grown at different conditions. Water Science and Technology, 2003, 48(6): 57–64
McHugh S, Carton M, Mahony T, O’Flaherty V. Methanogenicpopulation structure in a variety of anaerobic bioreactors. FEMS Microbiology Letters, 2003, 219(2): 297–304

doi: 10.1016/S0378-1097(03)00055-7
MacLeod F A, Guiot S R, Costerton J W. Layered structure of bacterialaggregates produced in an upflow anaerobic sludge bed and filter reactor. Applied and Environmental Microbiology, 1990, 56(6): 1598–1607
Guiot S R, Pauss A, Costerton J W. A structured model of anaerobicgranule consortium. Water Science and Technology, 1992, 25(7): 1–10
Liu Y, Tay J H. State of the art of biogranulation technology for wastewater treatment. Biotechnology Advances, 2004, 22(7): 533–563

doi: 10.1016/j.biotechadv.2004.05.001
Fang H H P. Microbial distribution in UASB granules and its resultingeffects. Water Science and Technology, 2000, 42(12): 201–208
De Beer D, Huisman J W, van den Heuvel J C, Ottengraf S. The effect of pH profiles in methanogenicaggregates on the kinetics of acetate conversion. Water Research, 1992, 26(10): 1329–1336

doi: 10.1016/0043-1354(92)90127-P
Lens P N, de Beer D, Cronenberg C C, Houwen F P, Ottengraf S P, Verstraete W H. Heterogeneous distributionof microbial activity in methanogenic aggregates-pH and glucose microprofiles. Applied and Environmental Microbiology, 1993, 59(11): 3803–3815
Lens P, de Beer D, Cronenberg C, Ottengraf S, Verstraete W. The use of microsensors to determine distributions in UASB aggregates. Water Science and Technology, 1995, 31(1): 273–280

doi: 10.1016/0273-1223(95)00174-L
Kim Y H, Yeom S H, Ryu J Y, Song B K. Development of a novel UASB/CO2-stripper system for the removal of calcium ion in paper wastewater. Process Biochemistry, 2004, 39(11): 1393–1399

doi: 10.1016/S0032-9592(03)00269-3
Alphenaar P A, Perez M C, Lettinga G. The influence of substrate transportlimitation on porosity and methanogenic activity of anaerobic sludgegranules. Applied Microbiology and Biotechnology, 1993, 39: 276–280

doi: 10.1007/BF00228619
Cho Y T, Young J C, Jordan J A, Moon H M. Factors affecting measurement of specific methanogenic activity. Water Science and Technology, 2005, 52(1―2): 435–440
[1] Lingchen Kong, Xitong Liu. Emerging electrochemical processes for materials recovery from wastewater: Mechanisms and prospects[J]. Front. Environ. Sci. Eng., 2020, 14(5): 90-.
[2] Zhan Qu, Ting Su, Yu Chen, Xue Lin, Yang Yu, Suiyi Zhu, Xinfeng Xie, Mingxin Huo. Effective enrichment of Zn from smelting wastewater via an integrated Fe coagulation and hematite precipitation method[J]. Front. Environ. Sci. Eng., 2019, 13(6): 94-.
[3] Huosheng Li, Hongguo Zhang, Jianyou Long, Ping Zhang, Yongheng Chen. Combined Fenton process and sulfide precipitation for removal of heavy metals from industrial wastewater: Bench and pilot scale studies focusing on in-depth thallium removal[J]. Front. Environ. Sci. Eng., 2019, 13(4): 49-.
[4] Feng Wang, Xueqiu Zhao, Cynthia Gerlein-Safdi, Yue Mu, Dongfang Wang, Qi Lu. Global sources, emissions, transport and deposition of dust and sand and their effects on the climate and environment: a review[J]. Front. Environ. Sci. Eng., 2017, 11(1): 13-.
[5] Shejiang Liu, Hongyang Yang, Yongkui Yang, Yupeng Guo, Yun Qi. Novel coprecipitation–oxidation method for recovering iron from steel waste pickling liquor[J]. Front. Environ. Sci. Eng., 2017, 11(1): 9-.
[6] Mengchuan Shui, Feng Ji, Rui Tang, Shoujun Yuan, Xinmin Zhan, Wei Wang, Zhenhu Hu. Impact of roxarsone on the UASB reactor performance and its degradation[J]. Front. Environ. Sci. Eng., 2016, 10(6): 4-.
[7] Xuying WANG, Bin ZHANG. Modeling radiative effects of haze on summer-time convective precipitation over North China: a case study[J]. Front. Environ. Sci. Eng., 2016, 10(4): 1-.
[8] Chengyuan SU,Weiguang LI,Xingzhe LIU,Xiaofei HUANG,Xiaodan YU. Fe-Mn-sepiolite as an effective heterogeneous Fenton-like catalyst for the decolorization of reactive brilliant blue[J]. Front. Environ. Sci. Eng., 2016, 10(1): 37-45.
[9] Shuai MA,Siyu ZENG,Xin DONG,Jining CHEN,Gustaf OLSSON. Modification of the activated sludge model for chemical dosage[J]. Front. Environ. Sci. Eng., 2015, 9(4): 694-701.
[10] Guangqing LIU,Mengwei XUE,Jingyi HUANG,Huchuan WANG,Yuming ZHOU,Qingzhao YAO,Lei LING,Ke CAO,Yahui LIU,Yunyun BU,Yiyi CHEN,Wendao WU,Wei SUN. Preparation and application of a phosphorous free and non-nitrogen scale inhibitor in industrial cooling water systems[J]. Front. Environ. Sci. Eng., 2015, 9(3): 545-553.
[11] Lin LUO, Zhongjing WANG. Changes in hourly precipitation may explain the sharp reduction of discharge in the middle reach of the Yellow River after 2000[J]. Front Envir Sci Eng, 2013, 7(5): 756-768.
[12] Wei LI, Xiaowen DING, Min LIU, Yuewen GUO, Lei LIU. Optimization of process parameters for mature landfill leachate pretreatment using MAP precipitation[J]. Front Envir Sci Eng, 2012, 6(6): 892-900.
[13] Xiaojian ZHANG , Chao CHEN , . Emergency drinking water treatment in source water pollution incident-technology and practice in China[J]. Front.Environ.Sci.Eng., 2009, 3(3): 364-368.
[14] WANG Xuejiang, XIA Siqing, ZHAO Jianfu. Biosorption of Direct Black 38 by dried anaerobic granular sludge[J]. Front.Environ.Sci.Eng., 2008, 2(2): 198-202.
[15] ZHOU Xuefei, REN Nanqi. Acid resistance of methanogenic bacteria in a two-stage anaerobic process treating high concentration methanol wastewater[J]. Front.Environ.Sci.Eng., 2007, 1(1): 53-56.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed