Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front.Environ.Sci.Eng.    2010, Vol. 4 Issue (2) : 123-134    https://doi.org/10.1007/s11783-010-0028-1
Research articles
Challenges of a feasible route towards sustainability in environmental protection
G. LETTINGA1, 2,
1.LeAF-foundation, Sub-department of Environmental Technology, Wageningen University, P.O. box 8120, 6700 EV, Wageningen, Netherlands; 2.2010-07-12 17:07:01;
 Download: PDF(293 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Anaerobic processes for treatment of low and high strength wastewaters and solid wastes constitute the core method in the natural biological mineralization (NBM) treatment concept. When adequately combined with the complementary NBM-systems and modern clean water saving practices in wastewater collection and transport, they represent a feasible route to sustainable environmental protection (EPsus), in essence even towards a more sustainable society. Despite the development and implementation of modern high rate Anaerobic Wastewater Treatment (AnWT-) systems and complementary innovative NBM-processes, the considerable progress made since the seventies in fundamental insights in microbiology, biochemistry and process technology, still numerous challenging improvements in the NBM-field can be realized. This contribution is mainly based on the insights attained from wide ranging literature evaluations and the results of experimental research conducted by numerous PhD students who participated in our group over the last four decades. An attempt is made here to identify major facets on which an improved insight can, and consequently should, be obtained in order to accomplish more optimal operation and design of various types of Anaerobic Degradation (AnDeg-) processes.
Keywords sustainability      environmental protection      anaerobic treatment      micro-aerobic treatment      natural biological mineralization concept      traces elements      macro-nutrients      
Issue Date: 05 June 2010
 Cite this article:   
G. LETTINGA,管理员. Challenges of a feasible route towards sustainability in environmental protection[J]. Front.Environ.Sci.Eng., 2010, 4(2): 123-134.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-010-0028-1
https://academic.hep.com.cn/fese/EN/Y2010/V4/I2/123
Brundtland Commision. Our common future—The world commission on environmentand development. WCED, Oxford UniversityPress, 1987
Lettinga G. A good Life environment for all. Environmental Science Engineering, 2004, 1: 77―82
McCarty P L. Anaerobic Waste Treatment fundamentals. Public Works, 1964, September: 107―112, October: 123―126, November : 91―94, December: 95―99
Wang K, Zeeman G, Lettinga G. Alteration in sewage characteristicsupon aging. Water Science and Technology, 1995, 31: 191―200

doi: 10.1016/0273-1223(95)00336-L
McCarty P L. The development of anaerobic treatment and its future. Water Science & Technology, 2001, 44(8): 157―176
Lettinga G, van Velsen A F M, Hobma S W, de Zeeuw W J, Klapwijk A. Useof the Upflow Sludge Blanket (USB) reactor. Biotechnology Bioengineering, 1980, 22: 699―734

doi: 10.1002/bit.260220402
Lettinga G. Anaerobic digestion and wastewater treatment systems. A Leeuwenhoek, 1995, 67, 328
McHugh S, O’Reilly C, Mahony T, Colleran E, O’Flaverty V. Anerobicgranular sludge bioreactor technology. Reviews in Environmental Science and Bio/Technology, 2003, 2: 225―245

doi: 10.1023/B:RESB.0000040465.45300.97
Jewell W J, Switzenbaum M S, Morris J W. Municipal wastewater treatmentwith the Anaerobic attached microbial film expanded bed process. Journal WPCF, 1981, 53(4), 482―490
Barber W P, Stuckey D C. The use of the anaerobic baffled reactor (ABR) for wastewater treatmentReview. Water Research, 1999, 33(7): 1559―1578

doi: 10.1016/S0043-1354(98)00371-6
Rittmann B, MacCarty P L. Environmental Biotechnology: Priciples and Applications, MacGraw-Hill, 2001
Rinzema A, A Alphenaar, G Lettinga. Anaerobic digestion of longchain fatty acids in UASB-reactors and Expanded Granular Sludge Bedreactors. Process Biochemistry, 1993, 28: 527―537

doi: 10.1016/0032-9592(93)85014-7
Rinzema A, Van Veen H, Lettinga G. Anaerobic digestion of triglycerideemulsions in expanded granular sludge bed reactors with modified sludgeseparators. Environmental Technology, 1993, 14: 423―432

doi: 10.1080/09593339309385310
Rinzema A, Boone M, Van Knippenberg K, Lettinga G. Bactericidal effect on long chain fatty acids in anaerobicdigestion. Water Environmental Research, 1994, 66(1): 40―49
Hwu C S, Molenaar G, Garthoff J, van Lier J B, Lettinga G. Thermophilichigh-rate anaerobic treatment of wastewater containing long-chainfatty acids: impact of reactor hydrodynamics. Biotechnology Letters, 1997, 19: 447―451

doi: 10.1023/A:1018344127057
Hwu C S, van Beek B, van Lier J B, Lettinga G. Thermophilic high-rate anaerobic treatment of wastewatercontaining long-chain fatty acids: Effect of washed out biomass recirculation. Biotechnology Letters, 1997, 19: 453―456

doi: 10.1023/A:1018396111127
Hwu C S, van Lier J B, Lettinga G. Physicochemical and biologicalperformance of expanded granular sludge bed reactors treating long-chainfatty acids. Process Biochemistry, 1998, 33: 75―81

doi: 10.1016/S0032-9592(97)00051-4
Gonzalez Gil G, Kleerebezem R, Van Aelst A, Zoutberg G, Versprille A I, Lettinga G. Toxicity effects of formaldehydeon methanol degrading sludge and its anaerobic conversion in BiobedExpanded Granular Sludge Bbed (EGSB) reactors. Water Science & Technology, 1990, 40:195―202

doi: 10.1016/S0273-1223(99)00626-5
Gonzalez-Gil, G, Kleerebezem R, Lettinga G. Formaldehyde toxicity inanaerobic systems. Water Science and Technology, 2000, 42(5―6): 223―229
Kortekaas S, Wijngaarde R, Klomp J W, Lettinga G, Field J A. Anaerobictreatment of hemp thermomechanical pulping wastewater. Water Research, 1998, 32: 3362―3370

doi: 10.1016/S0043-1354(98)00120-1
Kato M T, Field J A, Versteeg P, Lettinga G. Feasibilityof expanded granular sludge bed reactors for the anaerobic treatmentof low-strength soluble wastewaters. BiotechnologyBioengineering, 1994, 44, 469―479

doi: 10.1002/bit.260440410
Kato M T, Field J A, Kleerebezem R, Lettinga G. Treatment of low strength wastewater in upflow anaerobicsludge blanket (UASB) reactors. Journalof Fermentation and Bioengineering, 1994, 77: 679―685

doi: 10.1016/0922-338X(94)90153-8
Rebac S, van Lier J B, Lens P, Van Capellen J, Vermeulen M, Stams A J M, Dekkers F, Swinkels K Th M, Lettinga G. Psychrophilic high-rate anaerobictreatment of malting wastewater in two-module expanded granular sludgebed. Biotechnology Progress, 1998, 14: 856―864

doi: 10.1021/bp980093c
Rebac S, Gerbens S, Lens P N L, Van Lier J B, Stams A J M, Lettinga G. Kinetics of fatty acid degradation bypsychrophilically cultivated anaerobic sludge. Bioresource Technology, 1999, 69: 241―248

doi: 10.1016/S0960-8524(98)00195-3
Rebac S, Van Lier J B, Lens P N L, Stams A J M, Dekkers F, Swinkels K T M, Lettinga G. Psychrophilic anaerobic treatment of low strength wastewaters. Water Science & Technolology, 1999, 39: 203―210

doi: 10.1016/S0273-1223(99)00103-1
Van Lier J B, Rebac S, Lens P N L, Van Bijnen F, Oude Elferink S JW H, Stams A J M, Lettinga, G. Anaerobictreatment of partly acidified wastewater in a two-stage expanded granularsludge bed (EGSB) system at 8°C. WaterScience & Technolology, 1997, 36: 317―324

doi: 10.1016/S0273-1223(97)00538-6
Gonzalez-Gil, G, Seghezzo L, Lettinga G, Kleerebezem R. Kinetics and mass-transfer phenomena in anaerobic granularsludge. Biotechnology and Bioengineering, 2001, 73, 125―134

doi: 10.1002/bit.1044
Tawlik A, Klapwijk A, Gohary F E, Lettinga G. Post-treatment of effluent of anaerobic (UASB) reactortreating domestic wastewater by a rotating biological contactor. Water Science & Technology, 2001, 45(10): 371―376
Tawfik A, Klapwijk A, El-Gohary F, Lettinga G. Treatment of anaerobically pre-treated domestic sewageby a rotating biological contactor. WaterResearch, 2002, 36(1): 147―155

doi: 10.1016/S0043-1354(01)00185-3
Tawfik A, Zeeman G, Klapwijk A, Sanders W, El-Gohary F, Lettinga G. Treatment of domestic sewagein a combined UASB/RBC system, Process optimization for irrigationpurposes. Water Science & Technology, 2003, 48(1): 131―138
Buisman C J, Lettinga G. Sulphideremoval from anaerobic waste treatment effluent of a papermill. Water Research, 1990, 24(3): 313―319

doi: 10.1016/0043-1354(90)90006-R
Buisman C J, Ijspeert P, Janssen A, Lettinga G. Kinetics of chemical and biological sulphide oxidationin aqueous solutions. Water Research, 1990, 24(5): 667―671

doi: 10.1016/0043-1354(90)90201-G
Buisman C J, Drieszen W, Meyer H, Lettinga G. Effect of organic substrates on biological sulphide oxidation. Applied Microbiology and Biotechnology, 1990, 33: 459―462

doi: 10.1007/BF00176666
Janssen A J H, Sleyster R, van der Kaa C, Jochemsen A, Bontsema J, Lettinga G. Biological sulphide oxidationin a fed-batch reactor. Biotechnology andBioengineering, 1995, 47: 327―333

doi: 10.1002/bit.260470307
Janssen A J H, De Keizer A, Van Aelst A, Fokkink R, Yangling H, Lettinga G. Surface characteristics andaggregation of microbiologically produced sulphur particles in relationto the process conditions. Colloids SurfacesB: Biointerfaces, 1996, 6: 115―129

doi: 10.1016/0927-7765(95)01246-X
Janssen A J H, Ma S C, Lens P, Lettinga G. Performanceof a sulphide-oxidizing expanded-bed reactor supplied with dissolvedoxygen. Biotechnology Bioengineering, 1997, 53: 32―40

doi: 10.1002/(SICI)1097-0290(19970105)53:1<32::AID-BIT6>3.0.CO;2-#
Janssen A J H, Meijer S, Bontsema J, Lettinga G. Application of the redox potential for controlling asulphide oxidizing bioreactor. BiotechnologyBioengineering, 1998, 60: 147―155

doi: 10.1002/(SICI)1097-0290(19981020)60:2<147::AID-BIT2>3.0.CO;2-N
Sipma J, Janssen A J H, Hulshoff Pol L W, Lettinga G. Development of a novel Process for the Biological conversionof H2S and Methanethiol to Elemental Sulfur. Biotechnology and Bioengineering, 2003, 82(1): 1―11

doi: 10.1002/bit.10533
Van den Bosch P L F, Van Beusekom O C, Buisman C J N, Janssen A J H. Sulfide oxidation at halo-alkaline conditions in a fedbatch bioreactor. Biotechnology and Bioengineering, 2007, 97(5) 1053―1063

doi: 10.1002/bit.21326
Van den Bosch P L F. Biological sulfide oxidation by natron-alakliphilicbacteris, Dissertation for the Doctor Degree. Netherlands: Wageningen University, 2008
Van Leerdam R C. Anaerobic degradation of methanethiol in a process forliquefied petroleum gas (LPG) biodesulfurization. Dissertation for the Doctor Degree. Netherlands: Wageningen University, 2007
Strous M, Van Gerven E, Zheng P, Kuenen J G, Jetten M S M. Ammomia removal from concentrated waste streams with the anaerobicammoinium oxidation (ANAMMOX) process in different reaction configurations. Water Research, 1997, 31: 1955―1962

doi: 10.1016/S0043-1354(97)00055-9
El-Shafai S A, El-Gohary F A, Nasr F A, Van der Steen P, Gijzen H J H. Nutrient recovery from UASB effluent using duckweed. In: Proceedings 9th World Congress AD-Part 2, Antwerpen, 2001, 155―157
Gijzen H. Anaerobic digestion for sustainable development: A naturalapproach. Water Science & Technology, 2001, 45(10): 321―328
Chernicharo C A L, Nascimento M C P. Feasibility of a pilot-scale UASB/trickling filter system for domesticsewage treatment. Water Science & Technology, 2001, 44(4): 221―228
Lettinga G, Rebac S, Parshina S, Novzhevnikova A, Van Lier J S, Stam A J M. High-rate anaerobic treatment of wastewater at low temperatures. Applied & Environmental Microbiology, 1999, 1696―1702
Batstone J D, Landelli J, Saunders A, Carrosco E F, Black L L, Keller R J. The influence of Calcium on granularsludge in a full scale UASB treating paper mill wastewater. Water Science & Technology, 2001, 45(10): 187―193
Van Langerak E P A, Hamelers H V M, Lettinga G. Influent calcium removalby crystallization reusing anaerobic effluent alkalinity. Water Science & Technolology, 1997, 36: 341―348

doi: 10.1016/S0273-1223(97)00541-6
Van Langerak E P A. Control of calcium carbonate precipitationin anaerobic reactors. Dissertation forthe Doctor Degree. Netherlands: Wageningen University, 1998
Van Langerak E P A, Beekmans M M H, Beun J J, Hamelers H V M, Lettinga G. Influenceof phosphate and iron on the extent of calcium carbonate precipitationduring anaerobic digestion. Journal ofChemical Technology & Biotechnology, 1999, 74: 1030―1036

doi: 10.1002/(SICI)1097-4660(199911)74:11<1030::AID-JCTB144>3.0.CO;2-L
Van Langerak E P A, Ramaekers H, Wiechers J, Veeken A H M, Hamelers H V M, Lettinga G. Impact of location of CaCO3 precipitation on the development of intact anaerobicsludge. Water Research, 2000, 34(2): 437―446

doi: 10.1016/S0043-1354(99)00154-2
Lettinga G, Hulshoff Pol L W, Wiegant W M, de Zeeuw W J, Hobma S W, Grin P C, R ERoersma, Ayed S, van Velsen A F M. Upflow Sludge Blanket Processes. In: Proceedings 3rd Int. A.D.Symposium, Boston, 1983, 139―158
Van Lier J P, van der Zee F P, Tan N C G, Rebac S, Klerebezedm R. Advancesin high rate anaerobic treatment: staging of reactor systems. Water Science & Technolology, 2001, 44(8): 15―25
Vogelaar J C T, Wal F van der, Lettinga G. Anew post-treatment system for anaerobic effluents containing a highCa2+ content. Biotechnology Letters, 2002, 24: 1981―1986

doi: 10.1023/A:1021106629833
Vallero M V G, Hulshoff Pol L W, Lens P N L, Lettinga G. Effect of high salinity on the fate of methanol duringthe start-up of thermophilic (55°C) sulfate reducing reactors. Water Science & Technology, 2002, 45(10): 121―126
Vallero M V G, Hulshoff Pol L W, Lettinga G, Lens P N L. Effect of NaCl on thermophilic (55°C) methanol degradationin sulfate reducing granular sludge reactors. Water Research, 2003, 37(10): 2269―2280

doi: 10.1016/S0043-1354(03)00024-1
Vallero M V G, Lettinga G, Lens P N L. Assessment of compatiblesolutes to overcome salinity stress in thermophilic (55 degrees C)methanol-fed sulphate reducing granular sludge’s. Water Science & Technology, 2003, 48(6): 195―202
Vallero M V G, Sipma J, Lettinga G, Lens P N L. High-Rate Sulfate Reduction at High Salinity in Mesophilic UASB Reactors. Biotechnology and Bioengineering, 2004, 86(2): 226―235

doi: 10.1002/bit.20040
Vallero M V G, Lettinga G, Lens P N L. High rate sulfate reductionin a submerged anaerobic membrane bioreactor (SAMBaR) at high salinity. Journal of Membrane Science, 2005, 253(1―2): 217―232

doi: 10.1016/j.memsci.2004.12.032
Scherer P, Lippert H, Wolff G. Composition of the majorelements and trace elements of 10 methanogenic bacteria determinedby inductively coupled plasma emission spectrometry. Biological Trace Element Research, 1983, 5: 149―163

doi: 10.1007/BF02916619
Speece R E, McCarty P L. Nutrient requirements and biological solids accumulation in anaerobicdigestion. Advanced Water Pollution Research, 1964, 2: 305―322
Speece R E, Gallagher D, Parkin G F. Nickel stimulation of anaerobicdigestion. Water Research, 1983, 17: 677―683

doi: 10.1016/0043-1354(83)90237-3
Speece R E. Anaerobic Biotechnology and Odor/CorrosionControl forMunicipalities and Industries. Archae Press, 2008, 405―430
Takashima M, Speece R E. Mineral requirements for high-rate methane fermentation of acetateat low SRT. Journal Water Pollution ControlFed, 1989, 61: 1645―1650
Florencio L, Jenicek P, Field J A, Lettinga G. Effect of cobalt on the anaerobic degradation of methanol. Journal of Fermentation and Bioengineering, 1993, 75(5): 368―374

doi: 10.1016/0922-338X(93)90136-V
Florencio L, Field J A, Lettinga G. The importance of cobalt for individualtrophic groups in an anaerobic methanol degrading consortium. Applied and Environmental Microbiology, 1994, 60: 227―234
Florencio L, Field J A, Lettinga G. The role of cobalt on individual trophicgroups in an anaerobic methanol degrading consortium. Applied and Environmental Microbiology, 1994, 60: 227―234.
Paulo P L, Jiang B, Cysneiros D, Lettinga G. Effectof cobalt on the anaerobic thermophilic conversion of methanol. Biotechnology and Bioengineering, 2004, 85(4): 434―44

doi: 10.1002/bit.10876
Florencio L, Field J A, Lettinga G. Substrate competition between methanogensand acetogens during the degradation of methanol in UASB reactors. Water Research, 1995, 29(3): 915―922

doi: 10.1016/0043-1354(94)00199-H
Zandvoort M H, Geerts R, Lettinga G, Lens P N L, Effect of long-term cobalt deprivation on methanol degradationin a methanogenic granular sludge bioreactor. Biotechnology Progress, 2002, 18(6): 1233―1239

doi: 10.1021/bp020078e
Zandvoort M H, Osuna M B, Geerts R, Lettinga G, Lens P N L. Effect of nickel deprivationon methanol degradation in a methanogenic granular sludge bioreactor. Journal of Industrial Microbiology and Biotechnology, 2002, 29: 268―274

doi: 10.1038/sj.jim.7000311
Zandvoor M H, Geerts R, Lettinga G, Lens P N L. Methanol degradation in granular sludge reactors at sub-optimalmetal concentrations: role of iron, nickel and cobalt. Enzyme and Microbial Technology, 2003, 33: 190―198

doi: 10.1016/S0141-0229(03)00114-5
Zandvoort M H, Gieteling J, Lettinga G, Lens P N L. Stimulation of Methanol Degradation in UASB Reactors:In situ versus pre-loading cobalt on anaerobic granular sludge. Biotechnology and Bioengineering, 2004, 87(7): 897―904

doi: 10.1002/bit.20200
Zandvoort M. Trace metal dynamics in methanol fed anaerobic granularsludge bed reactors. Dissertation for theDoctor Degree. Netherlands: Wageningen University, 2005
Jansen S, Steffen F, Threels W F, Van Leeuwen H P. Environmental Science Technology, 2005, 39(24): 9493―9499

doi: 10.1021/es050492l
Field J A, Lettinga G, Geurts M. The methanogenic toxicityand anaerobic degradability of potato starch wastewater phenolic aminoacids. Biological Wastes, 1987, 21(1): 37―54

doi: 10.1016/0269-7483(87)90145-5
Alphenaar P A. Anaerobic granular sludge. Dissertation for the Doctor Degree, Netherlands: Wageningen University, 1994
Alphenaar P A, Sleyster R, de Reuver P, Ligthart G J, Lettinga G. PhosphorusRequirement in High Rate Anaerobic Wastewater Treatment. Water Research, 1993, 27(5): 749―756

doi: 10.1016/0043-1354(93)90137-7
Bechtold T, Burtscher E, Turccanu, A. Anthraquinones as mediatorsfor the direct cathodic reduction of dispersed dyestuffs. Journal of Electroanalytical Chemistry, 1999, 465: 80―87

doi: 10.1016/S0022-0728(99)00057-1
Cervantes F J, Dijksma W, Tuan D D, Ivanova A, Lettinga G, Field J A. Anaerobic Mineralizationof Toluene by Enriched Sediments with Quinones and Humus as TerminalElectron Acceptors. Applied and EnvironmentalMicrobiology, 2001, 67(10): 4471―4478

doi: 10.1128/AEM.67.10.4471-4478.2001
Cervantes F J, Van der Zee F P, Lettinga G, Field J A. Enhanced decolourisation of Acid Orange 7 in a continuousUASB reactor with quinones as redox mediators. Water Science & Technology, 2001, 44(4): 123―128
Cervantes F J, Duong-Dac T, Roest K, Akkermans A D L, Lettinga G, Field J A. Enrichment and immobilizationof quinone-respiring bacteria in anaerobic granular sludge. Water Science & Technology, 2003, 48(6): 9―16
Cervantes F J, Vu-Thi-Thu L, Lettinga G, Field J A. Quinone-respiration improves dechlorination of carbontetrachloride by anaerobic sludge. AppliedMicrobiology and Biotechnology, 2004, 64(5): 702―711

doi: 10.1007/s00253-004-1564-z
Field J A, Cervantes F J, Van der Zee F P, Lettinga G. Role of quinones in the biodegradation of priority pollutants:a review. Water Science and Technology, 2000, 42(5―6): 215―222
Field J A, Sierra-Alvarez R. Biodegradabilityof chlorinated solvents and related chlorinated compounds. Reviews in Environmental Science and Biotechnology, 2004, 3: 185―254

doi: 10.1007/s11157-004-4733-8
Van der Zee F P, Bouwman R H M, Strik B, Lettinga G, Field J A. Applicationof redox mediators to accelerate the transformation of reactive azodyes in anaerobic bioreactors. Biotechnologyand Bioengineering, 2001, 75(6): 691―701

doi: 10.1002/bit.10073
Van der Zee F P, Lettinga G, Field J A. Azo dye decolourisation byanaerobic granular sludge. Chemosphere, 2001, 44(5): 1169―1176

doi: 10.1016/S0045-6535(00)00270-8
Barkovskii A L, Adriaens P. Impactof humic constituents on microbial de-chlorination of polychlorinateddioxins. Environmental Toxicology &Chemistry, 1998, 17: 1013―1020

doi: 10.1002/etc.5620170606
Hulshoff Pol LW, Lens P N L, Stams A J M, Lettinga G. Anaerobictreatment of sulphate-rich wastewaters. Biodegradation, 1998, 9: 213―224

doi: 10.1023/A:1008307929134
Lens P N L, van den Bosch M C, Hulshoff Pol L W, Lettinga G. Effect of staging on volatile fatty acid degradationin a sulfidogenic granular sludge reactor. Water Research, 1998, 32: 1178―1192

doi: 10.1016/S0043-1354(97)00323-0
Lens P N L, Hulshoff Pol L W, Lettinga G. Anaerobic treatment of sulfate-richwastewaters. Recent Research Develop. BiotechnologyBioengineering, 1999, 2: 95―107
Lens P N L, Korthout D, Lier J B van, Hulshoff Pol L W, Lettinga G. Effectof the liquid upflow velocity on thermophilic sulphate reduction inacidifying granular sludge reactors. EnvironmentalTechnology, 2001, 22: 183―193

doi: 10.1080/09593332208618294
Visser A, Gao Y, Lettinga G. Effects of pH on methanogenesis and sulphatereduction in thermophilic (55°C) UASB reactors. Bioresource Technology, 1993, 44: 113―121

doi: 10.1016/0960-8524(93)90184-D
Visser A, Alphenaar P A, Gao Y, Lettinga G. Granulation and immobilisation of methanogenic and sulfate-reducingbacteria in high rate anaerobic reactors. Applied Microbiology and Biotechnology, 1993, 40: 575―580

doi: 10.1007/BF00175750
Visser A, Gao Y, Lettinga G. Effects of short-term temperature increaseson the mesophilic anaerobic breakdown of sulphate containing syntheticwastewater. Water Research, 1993, 27: 541―550

doi: 10.1016/0043-1354(93)90163-C
Visser A, Beeksma I, van der Zee F, Stams A J M, Lettinga G. Anaerobicdegradation of volatile fatty acids at different sulphate concentrations. Applied Microbiology and Biotechnology, 1993, 40: 549―556

doi: 10.1007/BF00175747
Visser A, Hulshoff Pol LW, Lettinga G. Competition of methanogenicand sulfidogenic bacteria. Water Science& Technolology, 1996, 33: 99―110

doi: 10.1016/0273-1223(96)00324-1
Rintala J, Sanz Martin J L, Lettinga G. Thermophilic anaerobic treatmentof sulfate-rich pulp and paper integrate process water. Water Science & Technolology, 1991, 24(3―4), 149―137
Van Houten R T, Yun S Y, Lettinga G. Thermophilic sulphate and sulphite reductionin lab-scale gas-lift reactors using H2 andCO2 as energy and carbon source. Biotechnology and Bioengineering, 1997, 55: 807―814

doi: 10.1002/(SICI)1097-0290(19970905)55:5<807::AID-BIT11>3.0.CO;2-8
Van Langerak E P A, Hamelers H V M, Lettinga G. Influent calcium removalby crystallization reusing anaerobic effluent alkalinity. Water Science & Technolology, 1997, 36: 341―348

doi: 10.1016/S0273-1223(97)00541-6
Weijma J, Gubbels F, Hulshoff Pol L W, Stams A J M, Lens P N L, Lettinga G. Competition for H2 between sulfate reducers, methanogens and homoacetogens in a gas-liftreactor. Water Science & Technology, 2002, 45(10): 75―80
Young J C, McCarty P L. The anaerobic filter for wastewater treatment. Journal WPCF, 1969, 41(5): 160―173
Hulshoff Pol L W, De Zeeuw W J, Velzeboer C T M, Lettinga G. Granulation in UASB-reactors. Water Science & Technology, 1981, 15: 291―304
Hulshoff Pol L W, De Zeeuw W J, Velzeboer C T M, Lettinga G. Granulation in UASB-reactors. Water Science and Technology, 1983, 15: 291―304
Fang H H P, Liu H. Granulationof a hydrogen-producing acidogenic sludge. In: Proceedings 9th World Congress AD-Part 2, Antwerpen, 2001, 527―532
[1] Longfei Wang, Jiaxin Tong, Yi Li. River Chief System (RCS): An experiment on cross-sectoral coordination of watershed governance[J]. Front. Environ. Sci. Eng., 2019, 13(4): 64-.
[2] Biswajit Debnath, Ranjana Chowdhury, Sadhan Kumar Ghosh. Sustainability of metal recovery from E-waste[J]. Front. Environ. Sci. Eng., 2018, 12(6): 2-.
[3] Wenyan Wang, Wei Ouyang, Fanghua Hao, Yun Luan, Bo Hu. Spatial impacts of climate factors on regional agricultural and forestry biomass resources in north-eastern province of China[J]. Front. Environ. Sci. Eng., 2016, 10(4): 17-.
[4] Chesheng ZHAN,Rongrong ZHANG,Xiaomeng SONG,Baolin LIU. An enhanced environmental multimedia modeling system based on fuzzy-set approach: I. Theoretical framework and model development[J]. Front. Environ. Sci. Eng., 2015, 9(3): 494-505.
[5] Beidou XI,Xiaoguang LI,Jixi GAO,Ying ZHAO,Hongliang LIU,Xunfeng XIA,Tianxue YANG,Lieyu ZHANG,Xuan JIA. Review of challenges and strategies for balanced urban–rural environmental protection in China[J]. Front. Environ. Sci. Eng., 2015, 9(3): 371-384.
[6] Kyle E. MURRAY,Erin I. Manitou-ALVAREZ,Enos C. INNISS,Frank G. HEALY,Adria A. BODOUR. Assessment of oxidative and UV-C treatments for inactivating bacterial biofilms from groundwater wells[J]. Front. Environ. Sci. Eng., 2015, 9(1): 39-49.
[7] Chao HE, Zhaolin GU, Shucheng YANG, Jidong LIANG, Weina DAI, Yanling HE. Technical measures to achieve a cleaner production mode for recycled paper mills[J]. Front Envir Sci Eng Chin, 2010, 4(4): 466-474.
[8] Weiqing MENG, Cui HAO, Hongyuan LI, Meiting JU, . EMERGY analysis for sustainability evaluation of the Baiyangdian wetland ecosystem in China[J]. Front.Environ.Sci.Eng., 2010, 4(2): 203-212.
[9] Wei MENG, . System engineering for water pollution control at the watershed level in China[J]. Front.Environ.Sci.Eng., 2009, 3(4): 443-452.
[10] CHANG Miao, PENG Lijuan, WANG Shiwen. Development of environmental management system in China's financial sector[J]. Front.Environ.Sci.Eng., 2008, 2(2): 172-177.
[11] ZHANG Kunmin, WEN Zongguo, PENG Liying. Review on environmental policies in China: Evolvement, features, and evaluation[J]. Front.Environ.Sci.Eng., 2008, 2(2): 129-141.
[12] LIN Yishan, HE Yanling, MENG Zhuo, YANG Shucheng. Anaerobic treatment of wastewater containing methanol in up-flow anaerobic sludge bed (UASB) reactor[J]. Front.Environ.Sci.Eng., 2008, 2(2): 241-246.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed